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Abstract

In this work, we apply the Averaging Method to obtain the theoretical results. The Nonlinear Saturation
Controller (NSC) is proposed to decrease the vacillations of the spring pendulum. We investigate the
stability of the system nigh the resonance condition by applying the frequency response equations.
Numerically, the effects of diversified controller’s parameters on the basic system behaviour are studied.
The emulation results are attained by utilising Matlab and Maple programs.

Keywords: Averaging method, stability; NSC control; vibration control.
1 Introduction

One of the most important engineering problems is vibration control. Many methods have been developed
for suppression the vibration using active or passive controllers. It is worth to be mentioned that several
control techniques are used to regulate the reaction of a system such like: passive control, semi active
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control, active control, and hybrid control. In the work [1], Kamel et al presented the vacillation and stability
of the nonlinear spring pendulum which was depicting the roll motion of a ship. They studied the influences
of the linear controller on the fundamental system subject to multi parametric stimulation. Zhou and Chen [2]
used two procedures of ship example under sinusoidal harmonic stimulation to investigate the response and
constancy of the system. They got the equation of bifurcation response close to the collection resonance case
in the existence of internal resonance of the studied system.

Lee et al. [3-5] studied the demeanor of the Spring Pendulum system subordinated to single-harmonic-
excitation force. The concluded results elucidated that the system had an extremely complicated attitude
which include Hopf bifurcations and jump phenomena. Not that only, they also discovered that the
approximation with the 2" - order gave more perfect harmonisation with the fundamental system than the 1%
— order did. Song et al. [6] scrutinised the oscillation reaction of the spring mass damper system with an
agitated parametrically pendulum suspended to the mass by using the harmonic balance method.
Furthermore, they illustrated the unstable motion zone of the system which gotten from the 3™ - order
approximation to become completely coordinated with which acquired from numeral computation. Eissa et al
[7-10] and Sayed [11] applied diversified controllers on the simple and the spring pendulums which showing
the sway motion of the ship then; they studied the effects of them. They subjected the two procedures under
single-harmonic- stimulation force then they studied the action of the transversal and linear toned absorbed
controllers on the existing vibrations. Structural damping treatment is one of the exemplary passive
vibrations control near that had been utilised in the practical structural engineering, but active damping had
also enticed the interesting of a considerable number of investigators [12—14].

The researchers in the work [15], EL-Sayed and Bauomy subjected a nonlinear dynamic system to multi-
parametric-stimulation forces then they investigated the effectiveness of time- delay controller on the
existent vibrations. And they applied the averaging method to drive the system’s frequency response
equations. Hamed and Amer [16] introduced a research for (NSC) controller which had been utilised to
repress the vibrated amplitude of a structural dynamic model assuming non- linear composite beam. They
had a great result by utilising the saturation for frustrating the vacillation of their non-linear system.
Warminski J. et al. [17] introduced experimental and numerical surveys of four kinds of controllers utilised
to non- linear beam models. Validation of distinct control designs is estimated utilising numeral simulations
in Matlab-Simulink program software. The mathematical results for non- linear dynamic system with NSC
are acquired utilising multiple scale method. The numerical and analytical interpretation for NSC submits the
effect of most substantial parameters on the efficiency of the control of a non- linear established paradigm
for an extensive domain of frequency of stimulation and peak scale of amplitude. The consequences for a
solo beam system display which positive position feedback (PPF) and (NSC) controllers are the most
influential for supposed provisions of the established paradigm.

Saeed et al. [18] used saturation-based controller with time delay in active extinction of nonlinear beam
vibrations. They found that the time delays append to the response neoteric control keys through contraction
the bandwidth of the controller’s frequency. They mathematical solutions were in a great agreement with the
numerical ones. Saeed and El-Gohary [19] modified the model of saturation controllers which added to the
system through quadratic nonlinearity coupling. They investigated the leverage of time delays on the
system’s stability and controller’s behavior. Ashour and Nayfeh [20] had used a non- linear controller as a
vacillation suppressor established on saturation incident influential for depression of torsional and flexural
oscillations of the plate. The assessment of hesitancy of stimulation had been appended to the system to
magnify the leverage of the saturation control.

Our main aim of the present paper is to apply control to diminish the vacillation of the system. This
controller is NSC control. Averaging technique is used to get the mathematical analysis. Some testaments
concerning the diversified parameters of the spring pendulum are notified and the influences of the NSC
controllers on the system's demeanor will be studied numerically.
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Main system

raut

X+ 280X+ cufx f a;x" f.f;i:.i')xz (1+x)g" + m;(l cos @) =L':_f; cos(2t)+ .{.‘_'/._u:

¥, U’

(1+x) @+ 280,00+ 2(1+ x)x¢+ @l (1+ x)sin g = £° f, cos(2t) + &y v°

NSC Controller
\_’7;“—( U+ 264,00 + @,V = e, U@ ]| —A]
E‘—‘ U+ 280U+ wlu = edux ]L (A]
b
Fig. 1. (a) Model of a spring pendulum (b) Block diagram of the system

2 Mathematical Model

The differential equations of motion characterising the oscillations of the non- linear spring pendulum with
NSC controllers could be expressed as the next form:

X+2ecx+ @’ x+ax’ +ea,x’ —(1+x)¢" + w,(1-cos) = & f, cos(Q2t) + ey’ (1)

(1+x) p+2¢ec,p+2(1+ x)xp+ @, (1+x)sing = & f, cos(2,t) + gy, v’ 2)
U+ 21+ wju = glux 3)
V+2&1,0+ @]v = el vp (4)
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Where x and ¢ are the longitudinal and angular response of the spring pendulum respectively. # and v
known as the response of the absorbers. ¢, 1, (j=1,2) are the spring pendulum modes’ damping
coefficients and the NSC controllers, respectively. @,,®,,®, and @, are the spring pendulum modes’
natural frequencies of and NSC controllers, respectively. ¢, and ¢, are the non-linear parameters fj is
the external forcing amplitudes of the fundamental system €2 j is the excitation frequencies of the

fundamental system y,, 7, are the control signal gains and 4,, A, are the feedback signal gains.

3 Mathematical Analysis (Averaging Method)

Applying the averaging method, the solutions for equations (1-4) from the first-order approximate are
considering as:

x=a,cos( o t+y,) (5a)
p=a,cos(a,t+y,) (5b)
u=a,cos(o,t+y,) (50)
v=a,cos(o,t+y,) (5d)
Where @, and ¥, ,(nn =1,2,3,4) exist as constants. Differentiate equations (5a)- (5d) we get:
x=-asin(ot+y,) (6a)
¢=-a,0,sin(at+y,) (6b)
u=-awsin(ot+y,) (6¢)
v=-a,o,sin(o,t+y,) (6d)

For ¢ # 0, relatively small, claim @, and 1//n,(n=l,2,3,4) are dependent variables on time t in

equations (1) - (4). Differentiating equations (5a) - (5d) once with respect to time ¢ submits

x=a,cos(ot+y,)-aosin(at +y,)-ay,sin(at +y,) (7a)
¢p=a,cos(ot+y,)-aosin(ot+y,)-ay,sin(ot+y,) (7b)
u=a,cos(wt+y,)-asin(ot +y,)-ay,sin(ot +y,) (7¢)
v=a,cos(ot+y,)-a,o,sin(ot+y,)-ay,sin(ot+y,) (7d)
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Comparing equations (6a) - (6d) and equations (7a) - (7d) we realise that:
a,cos(ot +y,)—ay,sin(ot+y,)=0
a,cos(wt+y,)-ay,sin(at+y,)=0
a,cos(at+y,)—ay,sin(ot+y,)=0
a,cos(ot+y,)-ay,sin(ot+y,)=0

Differentiating equations (5a) - (5d) once respect to time t we find:

X =-a sin(ot +y,)-ae] cos(ot +y,)-aaoy, cos(at +vy,) (8a)
¢=-a,0,sin(ot+y,)-a,0; cos(wt +y, ) - a0, cos(at +vy,) (8b)
ii=—a,o sin(ot +y,)-a,0! cos(at+y,)-a,oy, cos(at +vy,) (8¢)
U=-a,0,sin(ot+y,)-a,w; cos(at+y,)-a,oy,cos(at+y,) (8d)

Substituting X, X,X,®,®,®,U,U,U, 0,0 and U from equations (5a) — (8d) into equations (1) — (4) and
2 3

taking into account that cos ¢ =1— % ,sinp=¢— % we obtain the following:

—a.w sin( ot +y, ) —a,0; cos( ot +y, ) —a,wy, cos(at +y,)-2¢ec,ao sin(at +y, )
+a,0] cos(ot +y,)+a,a; cos’ (ot +y, )+ ea,a; cos’ (ot +y,)

2
—(1+a,cos(ot +y, )a;w; sin’ (ot +y, )+ ] (1 —(1- %)j
=& f,cos(2t) +&y,a; cos’ (it +v,) (9a)
(1+a,cos(mt+y, ))2 (-d,0,sin(wf +y,)-a,0; cos(ot +y,) - a0y, cos( ot +v,))
—2zc,a,0,sin(wt +y,)+2(1+a cos(ot +v, ) )(ao sin(at +y, ) ) a,0,sin( ot +y, )
+@; (1+a1 cos(a)1t+t//l))(go—%)
=&’ f, cos(2,t) + e7,a; cos’ (a,t +y,) (9b)

—a,o,sin(ot+y,)-a,0yp, cos(ot +y,)-2eua,0,sin(wt +y,)

= eAa,a, cos(wt +y,)cos(at +y,) (%)

—a,o,sin(ot +y,)-a,0y,cos(aot +y,)-2euna,0,sin(ot +y,)

=¢A,a,a, cos(at +y, )cos(ot +y, ) (9d)
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Using equations (7a) — (7d) we get:

: aa . aa .
a, =—¢c,a, +c,a, cos(2mt + 2w1)+21—a)lsm(a)lt +y,) +41—a)lsm(3a)1t +3y,)
1

1

2 3 3
L 4% Sin(a)lt +y, ) L 24 sin(2a)lt +2y, )+gg;a‘sin(4a)lt +4y, )
1)

4w 1

4o, )
Za)Z . 20)2 X Za)Z .
——2=2sin(at +y, )+ —=—=sin((@, + 20)t +(y, +2p,)) +——=sin((@, —20,)t +(y, —2y,))
@, @ d
aa,0; . aa,0;
——22sin (20t + 2y, )+ —2—2sin (2w, + 20t + 2y, +2y,))
4o, 8w,
2_2
22 44,0, 22 sin((2w, —20,)t +(2y, — 2y/2))+%sin(a)lt+z//l)
8, 4o,
a2a)2 a2 2
+ﬁsin((a)1 +2m,)t +(y, +21//2)) 82(02 sm((a) 20t +(y, - 21//2))
2 1 82 1 }/
fisin((a, +Ql)t+1,//l)—2—f1 sin((@, -2t +y,)- 2‘ 3 sm(a)t+(,//l)
a)l a)]

:‘ 3Sln((a) —20)t+(y, -2y,)) (10a)

1

8:1 3 sm((a) +20)t+(y, +2p,)) -
1

2 2
%cos(a)lt +y, )+ Z‘icos((—a)1 t+(=w))
a)l

ay, =—¢eca sin(2mt + 2y, )+

1

aa G a,a;
+——cos((Bw)t +(3 ——-cos(2at +2 1-cos(4mt +4
g OS(Ga+Cy)) =R cos(2at+291) + S cos(dat 4y
a,, a0,
- cos(at + ——=cos((o, —2w,)t + 2
20 (ot +y,)+ o (¢ )t+(y, = 2y,))
2 2 2 2
+Cii%cos((a)1 +2w)t +(y, +2W2))_a1:1;0w2 + alj;a)z cos(2m,t +2y, )
1 1
2 2 2 .2
—a‘a—;a)zcos(2a)ll“+21//l)+al;l—zwzcos((2a)1 20t +Qy, -2y,))
1
a,a,w; ola;
Jr%cos((za)1 +2w,)t + 2y, +2t//2))—fcos(a)lt+t//1)
a)l a)l
2 2 2 .2
—a;z—ac)lzcos(@a)1 —20,)t+ 2y, —21//2))+C;2—::2cos((2a)l +20,)t+ 2y, +2y,))
1 1
2 (2 -o)t-y,)- i Lcos((2 +o)t+y, )+ 208 cos(a)t+wl)
20, 2w,
jl/la; cos((&, -2t +(y, —2y,)) + jl/la)} cos((@, +2a)t +(y, +2y,)) (10b)
1 1
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a,

-a,0, .
#sm (2wt +2y,)-ec,a, + ec,a, cos(2w,t + 2y, )+ 2¢c,a,a, cos (at +v,)

—ec,a,a,cos((o, — 20t +(y, —2p,)) - ec,a,a, cos((@, + 2t + (v, +2y,))

+a,a,0sin(ot+y,) —%sin((cg1 +20)t+(y, +2y,))

2

ClCl

22‘ ls1n((a) —20)t+(y, -2y,))- a‘iz Lsin (2et +2y,)

2 2

;400 jzwl sin((2o, +20,)t+Q2y, +2y,))+ %Sin((zwl —20,)t+Qy, —2y,))

3 3

+ —a)zzaz sin(2a)2t +2y, ) - a;i)z sin(2a)2t + 2y, ) - a;? sin(4a)2t +4y, )

+

+

-%Sin((@ +20)t + (v, +2W2))+%sin((a}l —20)t +(y, —2))]

3 3
—ali’gaz sin((@, +2@,)t + (v, +2w2))+%sin((wl +40,)t+(y, +4y,))
3 3 ;
40, sin(at +y,)- a‘z)éaz s1n((a) 20 )t+(l//1 2Wz))_%5in(a’lt+‘/ll)
3
— alg)gaz Sin((wl —4(02)t+([//1 41//2 ) ((a) +.02 )t"l‘l//z)

2

fsin((e, —_Qz)tﬂ//z)—

a)Z 2

152fsin((a)l—a)z—.(.?z)t+(x//l—1//2))—

fsin((a)l +,+02)t+(y, +!//2))

£ fsin((@ +o, - 2)t+(y, +.))

, @,
as’ gy,a
_ 45102 fsin((@, -, + 2)t+(y, —y,))+ 2;24 sin(w,t +y,)
]/2 A sm((a) +2m )t+(l//2+2l//4)) &ra, A sm((a) —20)t+(y, - 2://4))
4(()2 4(02
2
~ 0% sin (o + o)t +(p, +y, )+ 7/22 . 4sm((a) o)t +(y, —v,)
2 a)Z
2
—%‘“a“sin((a)1 + o, +2a)4)t+(1//1+w2+2l//4) 8201 4sm((a) +o,-20)t+(y, +y, - 2;1/4)
, @,
+ &5 “sm((co o, +20)t+(y, -y, +2y,)
4o,
EJZ : 4s1n((a) o, =20t +(y, —v, -2y,)] (11a)
@

2
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—a,w,

2
+a,ec,a,sin (e, + 0t + 2y, +w,)) +a,ec,a, sin(Qa, — o)t + 2y, —y,))

ay, = —%cos(?_a)zt+2¢//2)—gcza2 sin(2ae,t +2y, )

+a2§ Leos((@, — 2wt + (v, —2y,)) - azil Leos((@, + 20t +(p, +2y,))

2 2

—Mcos((Zco1 —20,)t+Qy, - 21//2))—%005((2(01 +20,)t+Qy, +2y,))
w.a, oda 3o.al od ,a’
+ =22+ —22cos(2o,t +2y, ) —————>2cos(2m,t +2 22 cos(4a,t +4

S reos (2ot + 2y, ) =L == cos V)= g cos(4ait +4y,)
aa

S o ) os((0 20 ) 1,2

ala42 2cos((o, —2w,)t +(y, - 21//2)+2af%cos(a)lt+y/l)

3

a‘214 cos((@, - 20,)t +(y, —2y,)) + al‘zlz 2 cos (@, +20,)t +(y, +2p,))]
3
a‘916 cos((o, - 40,)t +(y, —4y,)) + a1‘9126 2 cos((@, +40,)t +(y, +4y,))
82
((0, -2t +y, )+ f,cos((w, + 2t +v,)
2 2a)2
_2a¢’ ace’
ficos((o,—w, -2t +(y, —y,)— ficos((w —a, + 2t +(y, —v,)
2a(92‘ ;2
ficos((o, + @, -2t +(y, +y,)— % ficos((o + o, + 2t +(y, +y, )]
2 2
r,a 4cos(a)t+z//2) &r,a 4cos((a) —20)t+(y, -2y,))
2a)2 4o,
2
e cos((co +20)t+(y, +2,/,4))_‘9722ﬂc05((w1 —o)t+(y, —y,))
2 a)z
£y,a.a;
—%cos((a)1 +o)t+(y, +y,))- 72 s cos((a) —(@, 20 )t +y, — (v, —2yp,))
2 2
2
gyia)l 4 cos((a) +(o, 20 ))t+y, +(y, - 21//4))
e cos((a) —(o, +20 )t +y, -y, +2v,))
2
_ 2,44,

cos((a)1 +(o, +20 )t +y, +(y, +21,y4)) (11b)

2



Amer et al.; ARJOM, 11(1): 1-22, 2018, Article no. ARJOM.44589

a, = —eu,a, + gu,a, cos (2ot + 2y, ) + %sin(@w3 +o)t+Q2y, +y,))
3

+ LG G (o, - o)t + (2w, ) (120)

4o,

ay, =-eua, sin(2w3t+2w3)—%cos(a{tﬂm)
3
gila3al ﬂ‘l 371
1 cos((a) -20,)t+(y, - 21//3) cos((a) +20)t +(y, +21//3) (12b)
a)3 3
a, =—&u,a, +gu,a, cos(2m,t +2y, ) - /12 —=—=2sin((2w, + @)t +Qy, +v,))
4
glaa, .
—Tsm(@@ —o)t+Q2y, —1//2))] (13a)

4

ay, =—eua,sin(2o,t+2y, ) - %cos(a)zt +y,)

a)4
i eos((en =20t + = 20) =75 5 os(01 + 20004 0+ 20 ))) 13
A 4

We can get the averaging equations conforming to simultaneous primary and internal 1:2 resonance by
presenting the detuning parameters (¢ ,0,,0,,0,) according to_Q1 =@ +60,,2,=m,+£0,,0, :%a)l +£0,,0, =%a)2 +&0,

keeping only the constant terms and slowly changing parts in equations (10a) — (13b). So, we’ll have

_ana —1—2sin(6,)-ec,q, (14a)
4o,
_ 3ea,al B a,a,w; & iaszcos(g) (14b)
T 8o, 4o, 1 4o, 3
_ e, —2-2sin(0,) - ¢c,aq, (15a)
o, 4o,
02‘/72 :M_ifz 00592 +8LajCOS(94) (15b)
48 2&)2 40)2
elaa .
a, =-gua -_——1 1 sm(é?) (16a)
3 " 2w, +4eo, :
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. gAaaq,
ay, =———21cos(6 16b
Vs 2w, +4éo, ( 3) (165)
) sla,a .
a, =—-cua, +—=—=2—-sin(6 17a
! #ath 2w, +4¢0, ( 4) (a7
slaa
ay,=—=*+2_cos(6 17b
Vi 20, +4e0, (0) (170)

Where ‘91 =¥, _O-IT 7H2 =V, _O-zT "93 =y, _20-3Tl -2y, 764 =V, _20-4]: -2y,
4 Stability Analysis

The stability for this system in equations (1)—(4) is checked at our selective case of resonance coincides to

the invariant points of equations (14a) — (17b), that will be gotten by putting dn = (9n =0.

That is,
2 2
0=—% flsiné'l—%sin(ﬁ})—gcla1 (18a)
2w, 4o,
3 2 2 2 2
ao, = 360,a) 44,0 | & f,cos@ +%cos(03) (18b)
8, 4o, 20, 4o,
2 2
0=-2 fzsiné'z—%sin(@)—gcza2 (19a)
20, 4o,
P 48 20,7 10} !
elaa .
0=—-gua, ————'—sin(0 20a
s 20, +4¢e0, ( 3) (20a)
1 glaaq,
a0, =—a,0, +————cos|( 6. 20b
373 371 2a)1+480'3 ( 3) ( )
elaa, .
0=-gua, +——>—sin( 0 21
Halls 2w, +4¢0, ( 4) 212)

10
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a0, -tac +Mcos(94) (21b)

2w, +4¢0,

From Egs (20a) to (21b) we get:

. 41w
sin(4,)=—""= (22a)
A
4o, (0'3 - ;ogj
cos(0,) = —a (22b)
171
sin(6,) = % (23a)
2a2
4o, [0'4 - ;sz
cos(6,)= Ta (23b)
2772

For the practical case, d, # 0, substituting by equations (22a) to (23b) and squaring equations (18a), (18b),

then taking the squared results in a computation process, likewise equations (19a), (19b), equations (20a),
(20b) and equations (21a), (21b) deduce the following frequency response equations:

2.2 4 3 2 2 2 2 2
&t gya 3ea,a; —2a,a;w ecaqya; .
L frega 4| —ao, + 2R RS | L E BRI Gin(s,)
40 160 8 @
5 3 2 2
era 3ea,a —2a.a;m.
+L _a10-1+ 21 12 72 COS(93) (24a)
2(01 8a)1
4 2,2 4 3\? 2 2
e gya 3w.a geaya, .
fl=T gl +| —ao, -2 |+ S sin(g)
40’77 1607 e 48 20,
2 3
cr.a 3m.a
+L _azo-z 272 005(94) (24b)
2(02 48
’ 1
ela
RO | oo -tay (24c)
2w, +4é0, 2
ia, ) I
ela
22 — 2/'[22+(o-4 __0-2)2 (24d)
2w, +4¢0, 2

11
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5 Nonlinear Solution

The stability for this system was specified by examining the eigenvalues of the right-hand sides of equations
(14a) — (17b) which represent as the Jacobian matrix. The equipoise solution is approximately stable as long
as the corresponding eigenvalue’s real part is negative. If not, the corresponding result is unstable. To deduce
the stability criteria, we just need to check the demeanor of insignificant perturbations from the stabilised-

case solutions @, and Hno
So, we suppose the following:

an =an0+an1’ en :0n0+9n1’
dn = anl’ en = 0711 ’ (25)
Where @, 49 are the solutions of equations (14a) — (17b) and Q, ,(9 are known as perturbations

which are presumed to be very small compared with @, , 6;0 . Replacing equation (25) into equations (14a)

— (17b) and conserving the linear expressions in ‘9n1 only. We obtain;

nl ?

2

a

= —€ea;, —

fi(cos6,)6, —M(sinﬁm)a31 —&a”(cos@,)ﬁ31

Y0} Y0}

1 1 1

. o Y9saa, a@ o’

. a
ﬁ(Sll’l 910)911 - 2(2; a,

10 8a)1 4a a) IOwl 1
‘971a30 ( 71 30 :
-0 (cos b, )a,, +———(sinéb,, )6, (26b)
2a10a)1 * 4a10a)1 * !
2 2
a, =-ec,a, —287]‘2 (coséb,,)0, ——ggzac:““ (sind, )a, ——SZZ;‘“) (coséb,,)0, (27a)
2 2 2
. o, 9w & . a a, .
0, :( " jan S f(sin6, )0, - Zz = (cost, )a, +Zi—£(smg“°)‘9‘” 27b)
0 072 02 02
ela
. i‘ 1 0ginb, q, +[—gyl 4‘&)“’ sin ), ja +g}“‘f—;;’a‘°(0036’30)6’31 (28a)
3 3 3
. A A en .
0, = gl—am(cosﬁm)an +[—3—g‘—a‘°cos¢9mja + &% (sind,,)é, (28b)
4a, o, a, 4a,o, 4o,
. era, , . ela ela,a
a, = ﬁ(sm 0,)a, +(—g,u2 42(0:0 siné, ja +ﬁ‘:“°(cos 6,6, (29a)

H- _ Eﬂvzam (005940)6121 +{_&_ 5%2(120 COSH ja“ +%(Sin940)0 (29b)

41 41
4a40 a)4 a40 4a40 a)4 4a)4
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The previous equations could be presented in the matrix form:

N T
[an S oay & a4 9 q, ‘9511] :[J][‘ﬁl Goay S oa G gy ‘9511] (30)

Where [J ] is the Jacobin of the right hand sides of equations (26a) — (29b). Now let us put the eigenvalues

of the above system of equations [J ] in the following form:

E+SE +8,E+8,E+8,E+ 8.8 +85,E+8,E+8,=0 (31)

If and only if the real part of the eigenvalue, which obtained from Eigen equation (31), is negative, then the
solution is stable; otherwise, the solution is going to be unstable. The necessary and sufficient conditions for
all the roots of Eq. (31) will be calculated corresponding to the Routh-Hurwitz criterion.

s, 1.0 0 0 0 0 0

s, S, S 1 0 0 0 0

S, S, S, s, S 1 0 0 (32)
bS5 Se soosooso s, s

o S, S, S, S, S, S, s,

o o o0 S, s, S, S, S,

o 0o o0 o0 o0 S, S, S,

o 0 0 0 0 0 o0 &,

6 Numerical Solutions

The basic system with NSC controllers which expressed in the differential equations form (1-4) was solved
by applying Rung-Kutta 4" order method numerically. The emulation results are attained by utilising
MATLAB 7.14 (R2013a).

0.02 .1
a 0.01 0.05
=
£ g
=8 o = o
5 o
> —0.01 —0.05
—0.02 —0.1
o 500 1000 —0.02 (4] 0.02
Time X—Amplitude
0.04 0.2
W
g 0.02 g .1
= =2
[v] o (o]
E I
RN 7 o
s —0.02 e —0a
—0.04 —0.2
o 500 1000 —0.04 —0.02 o 0.02 0.04
Time phi—Amplitude

Fig. 2. The fundamental system (X , () ) without controllers
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0.04 0.2
0.02 0.1
3 z
£ 0 2 o
E =
=< J
1 =
x —002 -0.1
—0.04 —-0.2
o 200 400 600 800 1000 —0.04 —0.02 o 0.02 0.04
Time X=Amplitude
0.5
2 z
E 5
= - T o
E =
5 2
-05
1000 —0.1 0 01 02 03
Time phi=Amplitude
Fig. 3. Response of the fundamental system with NSC controllers
0.015 0.03
b
0.01 ooz |
ﬂl— “’n
0.005 0.01
a
[ [
—0.05 ] 0.05 =0.05 o] 0.08
o o]
1 1
Fig. 4. Frequency response curves of: (a) the fundamental system (b) the NSC
Table 1. Frequency response curve with the detuning parameter (o, )
Parameters Effect Figures
The external forcing f, While the value of f| was increasing, the amplitude of the Fig.(5)
fundamental system and the NSC increased.
The damping coefficients ¢, It is noticed that the increasing in the values of ¢, ,@, and Fig.(6,7,8)
The natural frequencies @, 7, led to the decreasing in the magnitude of amplitude of
The control signal gains 7, the fundamental system and the NSC
The detuning parameter O, In the case of increasing the value of 07 , the amplitude of Fig.(9)
the fundamental system and the NSC are shifted to the
right.
Fig.(10)

The damping coefficients £

When the value of £ increased, the magnitude of

amplitude of the fundamental system and the NSC were
decreasing.
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L]

0.015 0.03
0.0 0.02 1
i
0.005 0.0 1
0 0 g .
=0.05 1] 0.05 —01 —0.05 0 0.05 1
o, %
01
0.08
o o 004
0.05 L
0.02
" 0 i ;
-4 -02 o 0.2 04 =0.2 =01 0 01 0.2
o, g,
Fig. 5. Influence of f | (the external force) on the fundamental system and the NSC
0015 7 o0
c, =0.04
001 1
>
0.005
o i L ;
=005 0 0.05 =003 =002 -0M 0 0.01 002 0.03

Fig. 6. Influence of ¢, (the damping coefficient) on the fundamental system and the NSC
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0.015

0.005

=005

00

=005

005

Fig. 7. Influence of @, (the natural frequency) on the fundamental system and the NSC

0015

001

0005 T

0.05

0.015

0.03

0.01

7, =18

-0.05

0.05

Fig. 8. Influence of }/; (the control signal gain) on the fundamental system and the NSC

0.015

o,=0
0.0 o,=0.015

o, =0.01

1,005

0
-005 (] 0.05 04 015
o

0.03

oy, =0
o, =0.015
o, =0.01

0

0,08
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Fig. 9. Influence of 0 (the detuning parameter) on the fundamental system and the NSC
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0015 00s N =
=0.006
001 001 H
W. lﬂ—

0.005 0.008

0 0 i

=0.05 o 005 =0.04 =p.02 o .02 0.04
GI 1

0015 00 T =0.0002

o, = 0.006
&, =0.001

0.05

Fig. 10. Influence of £§ (the damping coefficient) on the fundamental system and the NSC

0.04 T r T (.04
B £,=0.01
- £,=0.004 o
L\ U |
-2 0.1 () 0.1 02 .2 .1 0 0.1 02
o 0,
0.04 2

002 o |
0 0
0.2 0.2 -0 0.2
g, 0,

Fig. 11. Influence of f, (the external excitation force) on the fundamental system and the NSC

Table 2. Frequency response curve with the detuning parameter (O,)

Parameters Effect Figures

The external forcing f; While we were increasing the values of f; the Fig. (1)

amplitude of the fundamental system and the NSC
increased
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Parameters Effect Figures
. . Fig. (12,16)
The natural frequency @3 In the case of increasing the values of @} andC,, the
. . magnitude of amplitude of the fundamental system
The damping coefficient € andgthe NSC are Ic)lecreased. g
. . . . Fig(13,17)
The control signal gain )5 When the values of }5and £4 were increasing, the
The damping coefficient £4 amplitude of the NSC decreased
. . . . Fig(14)
The detuning parameter O In the case of increasing the value of G,the amplitude
of the fundamental system and the NSC are shifted to
the right.
Fig(1
The Feedback signal gain /12 If we increase the value of 22 , we notice that the ig(15)
amplitude of the system decreased while it increased
in the NSC.
0.015 @, -4 (.4 @, |
@, = B an = 8

ﬂ L 1
=0.03 0 0.05 =0.03 0 0.05

Fig. 12. Influence of @, (the natural frequency) on the fundamental system and the NSC

0.015 0.015
(.01 0.01
NN ;VZ = 18 mr\l }/2 = 28
0.005 0.003
1] 0
—0.05 0 0.05 -0.05 0 0.05
l'_T1 Gﬂ.
0.015

()
-0.03 0 0.05

Fig. 13. Influence of y, (the control signal gain) on the fundamental system and the NSC

18



Amer et al.; ARJOM, 11(1): 1-22, 2018, Article no.ARJOM.44589

0.02 T T - 0.4

oy =0 g, =0
o, =0.01 =00
35 g i) R 7, =002
0 — 0 L '
-0.05 0 0.05 0.1 0.15 -0.035 0 0.0 0.1 0.15
o, 0,

Fig. 14. Influence of o, (the detuning parameter) on the fundamental system and the NSC
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Fig. 15. Influence of A, (the feedback signal gain) on the fundamental system and the NSC
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Fig. 16. Influence of ¢, (the damping coefficient) on the fundamental system and the NSC
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Fig. 17. Influence of £, (the damping coefficient) on the fundamental system and the NSC

7 Conclusions

The NSC controllers for suppressing of the oscillations of the non-linear spring pendulum have been studied.
We represent the problem by non-linear ordinary differential equation system with four-degree-of-freedom.
The averaging method is used for the mathematical analysis. for the case of primary resonance in the
presence of 1:2 internal resonances, the frequency response equations have been derived. The system’s
stability has been discussed by applying the frequency response equations and the phase plane technique. It
is worth to notice that the steady-state amplitudes of the spring pendulum with NSC controllers were reduced
to about 97.8% in both directions (X , ) ) from its value without NSC controllers.

The influences of the diversified parameters of the system are surveyed numerically. This survey makes the
frequency response curve with the detuning parameter (O, ) is clear due to different parameters. And it was
noticed that:

e The amplitude of the system was increasing when the value of f1 increased.
e While the values of ¢, @, ¥, and fi, were increasing, the values of the amplitude of the system

decreased.

Also, we studied the effectiveness of distinguished parameters on the frequency response curve with the

detuning parameter ( 0, ). The most obviousness features are:

e The amplitude of the system was direct proportional to the values of f2 .

e The amplitude of the system was inverse proportional to the values of the following parameters

025w277/29ﬂ2 and,uz
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The effectiveness of the controller Ea (Ea= steady-state amplitudes of the system without controller/steady-
state amplitudes with controller) is about 45.3 for ( X ) and 40.5 for ().
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