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ABSTRACT 
 

Responses collected from dependent clusters are affected by the dependence among clusters and 
it should be taken into account in modeling such responses. In this study, a new approach was 
evaluated to incorporate cluster dependence in generalized linear Poisson mixed models for count 
responses from dependent clusters. Performance of this approach was evaluated by using a 
simulation process under three different designs and different covariates. The Marginal 
Generalized Quasi-likelihood (GQL) method was used for estimation of parameters with the cluster 
dependence. Monte Carlo likelihood (MCL) and Penalized Quasi-likelihood (PQL) estimates also 
were obtained for the purpose of comparison.  Proposed approach was tested with a real data set 
also.  
The proposed approach, with the incorporation of cluster dependence, gives better estimates for 
both fixed effects and variance of random effects with low standard errors with compared to the 
estimates obtained by ignoring the cluster dependence. Therefore, the proposed approach can be 
used for modeling count responses from a dependent cluster set up. 
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1. INTRODUCTION  
 
Discrete data analysis is used in most of fields, 
and it consists of the analysis of count or binary 
data. Count data may be recorded for a cluster 
(panel, group or family). Depending on the 
situation, a cluster may be an individual or a set 
of individuals. A family in a village, a district in a 
province, a plot in a field, or even a location in an 
area may be considered as a cluster.  
 

When a set of clusters is considered, they may 
be independent or dependent on others based 
on distances among clusters. When clusters 
have situated far away from each other, 
dependence among clusters is negligible, and 
clusters are assumed to be independent. But, 
this assumption is violated when clusters are 
closer to each other, because clusters tend to be 
dependent on other, especially on adjacent 
clusters. In this case, when responses from 
clusters are studied, effects come through 
dependence among clusters are also should be 
taken into consideration.   
 
As a real example, assume that a researcher is 
interested to know effects of certain factors such 
as gender, educational level, and age on number 
of visits by family members to a family doctor (a 
measure for health status) within a year. In this 
example, families under study can be considered 
as clusters. It is obvious that health status of a 
family depends on the environment, especially 
on health status of adjacent families. Degree of 
dependence on health status of other families 
changes depending on distances among 
families. If families are far away from others, 
dependence of health status of a family on 
adjacent families may be negligible. When 
families are nearby, health status of a family is 
affected by its’ adjacent families. This 
dependence can changes the effects of factors 
mentioned above. Therefore, in modeling effects 
of such factors on response, dependence among 
clusters also should be taken into account. 
Otherwise, effects of those factors may be 
incorrectly estimated. 
 

A few authors have studied this problem for 
responses in continuous scale as well as in 
discrete scale.  
 

Mariathas and Sutradhar [1] have studied this 
sort of dependence from locations for continuous 
responses with the linear mixed model by 

forming families of locations and relevant location 
specific random effects.  

                                                   

rrrr wxy   *
rγ ,                                     (1) 

 

where rx is a p-dimensional vector of covariates 

recorded for r th location, β  is the regression 

covariate effects, rw is the weight vector 

corresponding to random effects vector
*
rγ , and 

the random error r is normally distributed with a 

zero mean and a constant variance. In defining 
covariance structure, they have considered 

decomposition of two families(say rf and sf )  

and number of common (
*
rsn ) and uncommon(

* ; ,in i r s ) locations. Then, covariance 

between ry and sy is defined in term of a distance 

based truncated equi-correlation for random 

effects of i th
 and j th

 locations, i and j as 

follows: 
                                      
















*

*

:0

0:

0:1

),(

ddif

ddif

dif

Corr ji 

          (2) 
 

where d  is the euclidian distance between i th 

and j th locations, and 
*d is the pre-specified 

distance defined by the researcher. Then, the 
first order pair-wise covariance between 
responses of rth and sth locations was shown as  

                 

 
 

* * *2

* * *

(
( , )

( 1)

rs rs r s

r s

r s rs rs rs

n n n n
Cov y y

n n n n n






  
 
    

,  (3) 

 

where rsn is the number of correlated pairs of 

locations among 
* *
r sn n locations.  

 
The moment- generalized least square hybrid 
method and maximum likelihood methods have 

been used to estimate   parameters in model 

(1), while the method of moments and maximum 
likelihood method have been used to estimate 
the variance of random effect, the variance of 
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random error and the spatial correlation.  A 
simulation study has been used to test 
performances of this method.  
 

As in above study, many authors have studied 
different covariance structures in spatial setup for 
continuous data. Cressie [2], Jones and Vecchia 
[3], Berger et al. [4], Gelfand et al. [5], Cressie 
and Johannesson [6] have studied spatial 
correlation for continuous data. Correlation 
structures suggested by Cressie are exponential 

covariance function: (
22 2( ) exp( ),C h a h   

where ,dh a  ); Gaussian covariance 

function: (
2 2 2( / 2) 2 ( )

( )
( )

v
va h K a h

C h
v





) where 

, , , 0dh a v v   , vK ; modified Bessel 

function of the second kind of order v ); and the 
reciprocal covariance function (

 22 2( ) 1 ( / ) , , , 0dC h h b h b


 


    

), where h is the euclidean norm of distance h, 

and 
2 is the variance of the random covariate. 

All these correlation structures decay as the 
distance between two objects increases. With the 
spectral approach, Jones and Vecchia [3] have 
used the above three correlation structures for 
modeling spatial continuous data by using ARMA 
models. Based on Bayesian approaches, Berger 
et al. [4] and Gelfand et al. [5] have exploited 
some other covariance functions for continuous 
scale data.  
 

A few studies are available for discrete 
responses also. Clayton and Kaldor [7] have 
used some nonlinear mixed models (including 
gamma and log-normal) to estimate relative risk

i
i

i

y

E
  , where iE  is the expectation of the 

number of observed counts iy  in the i th 
cluster, 

related to a covariate ix . They have assumed 

that conditional on relative risk i , the count 

response iy  follows a Poisson distribution with 

parameter i iE .  Then the conditional 

expectation of /i iy   has been given by          
                

 
( / ) exp( )

exp( )

i i i i i i

i

E y E E  



 

 ix β
,                       (4)   

where i is the random effect belongs to i th 

cluster. In this case, they assumed a log-normal 

distribution for i , and the dependence of 

clusters has been incorporated via the random 
effects of adjacent clusters. Dependency among 
clusters has been modelled by applying 
conditional auto-regressive (CAR) model having 
the following properties.  
 

( / , ) ( ),i j i ij j
j

E i j x w         jx β    (5) 

 

and     
2( / , ) ,i jV i j                              (6) 

 
where,      

          
1:

0 : .
ij

if i and j are adjacent clusters
w

otherwise





 

 
Finally, they identified the covariance structure of
 as

2 1( )I w    , where  is correlation 

index between two adjacent clusters. 
 
Wijekoon et al. [8], have modeled count 
responses from locations where single response 
has been recorded from each location, by using 
Poisson generalized linear mixed model. Similar 
to Mariathas and Sutradhar [7], they also have 
constituted families of neighboring locations in a 
pre-specified distance and similar decomposition 
has been considered for families. When p-

dimensional covariates 1,.....,s s spx x


   x is 

specific to
ths  location, they have used the 

following conditional Poisson model to model 
count responses. 
 

/ exp( )s s s sy e   γ x β a γ                           (7) 

 

where β is the effect of fixed covariates on sy
and a is the vector of weights for vector of 

random effects, sγ . Term e  is the zero mean 

error component of the model. It has been 

assumed that random effect vector sγ follow sn -

dimensional normal distribution with 0 mean 

vector and covariance matrix s . Here s  is 

defined as 
 

sssss nnnnns IC )1(11)( 22   
, 

where 
sn1 and 

snI  are sn dimensional unit vector 
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and matrix respectively, based on the correlation 
structure for random effects as given in (2). 
 
They have derived mean, variance, covariance 
and correlation structure under two situations. In 
the first situation, independent random effects 
with equal weights have been considered. Under 
this situation, expected value and variance of 

response are 21
( ) exp

2
s s

s

E y
n

 
 
   

 
sx β , 

and

2

2( ) exp 1s s s

s

V y
n

 
 

    
 

, respectively. 

Covariance between two locations sy and wy is

),( ws yyCov
. 

 1)exp( 2  swws r
.   

 
The case of equi-correlated random effects has 
been considered in the second situation.  
 

While the expected value of sy has been derived 

as

2

( ) exp {1 ( 1)}
2

s s sE y n 
 
      

 
sx β , 

the variance of sy is given by 

2 2( ) exp{ (1 ( 1))} 1s s s sV y n          . 

Under the set up of equi-correlated random 

effects, the covariance between two locations sy

and wy is given in the form 

 

 

  

2

2

2

( , )

exp 2 exp 1 .
2

1 1

s w

sw

s w

s w s w

sw

s w sw

s w

Cov Y Y

n

n n
n n

n
n n n

n n










 






   
   

                
     

      
   

                         (8) 
 

where
2
 is the variance of random effect and 

swr is defined as  sw
sw

s w

n
r

n n
 . The term swn  is 

number of pairs of correlated locations in 
uncommon locations. Exact joint generalized 
quasi-likelihood estimation method has been 
used for parameter estimation. Performances 
have been tested by mean of a simulation study. 
In their study, same correlation has been used 
for all pairs of locations in the formed families. 
Not only that, they have assumed equal weights 
for all locations within the families. In real 
situation, such cases can be rarely found. At the 

same time, when family size increases, these 
assumptions can be highly violated. Dependence 
or correlation between two locations changes 
with the distance or gap (lag) between the 
selected locations. Dependence among adjacent 
clusters may arise through factors or covariates 
common to respective clusters and correlations 
among model errors. They also should be taken 
into consideration, when dependence among 
clusters is incorporated.   
 
The aim of this study was to find out a different 
approach to incorporate cluster dependence in 
modeling count responses from dependent 
clusters. In this study, the cluster dependence of 
adjacent clusters was incorporated at two stages 
through covariates of adjacent clusters by means 
of a hierarchical model for cluster specific 
random effects and correlation structure of model 
random errors. A correlation index that changes 
with the lag or distance among clusters, was 
used for random errors. 
 
Hence both fixed effects and random effects 
were to be incorporated in the model, 
generalized linear Poisson mixed model was 
used to model the count responses from clusters. 
Performances of the proposed approach were 
evaluated based on a simulation study with a 
linear set up of clusters. Proposed approach was 
tested for three different designs with different 
covariates. Parameters associated with the 
model were estimated by using the marginal 
generalized quasi-likelihood (GQL) method. 
Estimates of new approach were compared with 
the estimates of Penalized Quasi likelihood 
(PQL) and Monte Carlo likelihood (ML) 
approaches.  
 
Details about the mean, variance, and 
covariance structure are given in section 2, while 
details about simulation process, design, and 
covariates used for the simulation are discussed 
in section 2.3. Section 2.4 presents the 
estimation methods. The results and applications 
are discussed in sections 3.1 and 3.2 
respectively, while the conclusions are given in 
section 4. 

 
2. METHODOLOGY  
 

Let iy be a single count response at i
th
 cluster (i 

=1,2,..,k) and i  be the corresponding  random 

effect which is assumed to be identically and 

normally distributed with mean   and a 
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common variance
2
 ,(

2~ ( , )i N     . It is 

assumed that random effects i ’s are correlated. 

Model for the count response of i
th
 cluster iy , 

depending on the random effect i , is given by  

 

/ exp( )i i i i iy      x ,                            (9) 

 

where 
),....,( ,,2,1
 ipiii xxxx
is the vector of p-

covariates for the ith cluster, i is identically and 

independently distributed pure white noise. Here, 
a normal distribution with zero mean and a 

common variance 
2, (i.e., 

2~ (0, )i N    is 

assumed for .i   Cluster dependency is 

incorporated through a hierarchical linear model 
for random effect. Marginal properties of the 
model were derived under two situations (cases) 
and they are discussed below. 
 

2.1 Case 1: with Non-zero Mean for 

Random Effect ( ) 0E      

 
Assume that k number of clusters are in a line 
and they are denoted by 1, 2,...k. At the first 
stage of incorporation of cluster dependence, 

random effect of ith cluster, i , was modeled by 

using covariates of adjacent clusters (i-1)
th
 and 

(i+1)th as follow. 
 

Let        ii   θzi  ,                                    (10) 
 

where 1 1i i iz x x 
    and ( , ) 0,i jcorr i j    , 

2~ (0, )i N   with ( ) 0iE   iz θ  and

( ) ( )i iV V  . Coefficientθ is the effect of iz on 

i . 

 

Hence,
2~ (0, )i N   , moment generating 

function of i is ,  

 

2
1 1

1
( ) (exp( )) exp

2i t i tM t E t   

 
   

 
   (11) 

 
Then, for any integer n(>0), 
 

                             
2

2
1 1( ) (exp( ) exp

2i t i t

n
M nt E nt   

 
   

 
. (12) 

 

Hence,  
 

 

 
1

22 2 2

exp( ) (exp( ))

exp( ) (exp( )) exp( ) exp( ) 1

i it

i i

V t Var

E E  

 

   


 

        

         

(13) 
 

The expected value of response iy  can be 
derived as, 

                           

    
2

2

( ) ( / ) exp

1
exp

2

1
exp .

2

i i i i i

i

i

E y E E y E E

E 



 





      

  
     

  

 
    

 

i

i

i

x β z θ

x β z θ

x β z θ

                                     

(14) 
 

The expected value of squared response 
2
iy is 

given as 
 

 
  

     
  ,222exp

exp222exp

)exp(

)/()(

22

2

2

22

 















θzβx

βxβx

βx

ii

iiiiii

iii

iii

EE

EE

yEEyE

                                                  
(15) 

and the variance of response iy is given by 

 

   .1)exp(22exp

)()()(
222

22

  



θzβx ii

iii yEyEyV

                                                                  
(16) 

 
At the second stage, cluster dependence was 
incorporated through the following correlation 

structure for random errors i and j

corresponding to responses iy and jy  in a 

specified distance d called as lag, 
 


















.:0

0:

0:1

),(

djiif

djiif

jiif

Corr
ji

ji 

     (17) 
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Now, define w  a , where (1,1) a , and

i( , )j ξ . This w has a normal distribution (

2(0, )wN  ) because it is a linear function of i

and j . Since 
2( )Var    and the correlation 

matrix of ξ  is 
1

( )
1

i j

i j
Corr









 
 
 
 

ξ , the 

variance covariance matrix of ξ  can be written 

as       

2 2

( )
2 2

i j

i j
Cov

  
 

  
 





 
 

   
 
 

ξ
ξ

.               (18) 

 
Then, the variance of w is derived as 
 

.)1(2)()( 22
 ji

w CovzCov


 aξa
   (19) 

 
Therefore, according to (19), the moment 
generating function of w is,  
 

1 1

2 2

( ) (exp( ) (exp( ))

1
exp exp (1 )

2

w t t i j

i j

w

M t E t w E



 

  

 



  

         

   (20) 

Then, expectation of product of responses iy and

jy  is given by 

 

 

   

   
 

2

2

( ) (( / ) ( / ))

exp(( ) ( ) ( ))

exp ( ) ( ) exp( )

exp ( ) ( ) exp (1 )

exp ( ) ( ) (1 )

i j i i j j

i j i i j

i j i j

i j

i j

i j

i j

E y y E E y y

E E

E E

E 



 

 

 

 

 





   

          

         

        
 

        

i

i j

i j

i j

x x β z z θ

x x β z z θ

x x β z z θ

x x β z z θ

                                       

(21)  
 

Covariance between responses iy and jy can be 

formed as 
 

  1)exp()()(exp

)()()()(

22 





  ji

ji

jijiji yEyEyyEyyCov

θzzβxx ji

                                            (22) 
 

Therefore, correlation between responses iy and

jy can be obtained by  

 

))V(yV(y

),yCov(y
),yCorr(y

ji

ji

ji 

                    (23) 

 

Expected value of 
4
iy is 

 

 
  

     
    4222

42

4

44

222exp6844exp

22exp644exp

)exp(

)/()(

 















θzβxθzβx

βxβx

βx

ii

i

i

ii

iiii

ii

iii

i
EE

EE

yEEyE

                                       (24) 
 

By equation (15),  2 2 2( ) exp 2 2 2i iE y       ix β z θ . 

 

Variance of 
2

i
y is, 

 

     .222exp41)4exp(444exp

)()()(

42222

2242

  



θzβxθzβx ii ii

i ii
yEyEyV

      (25) 
 
Expectation of product of squared responses can be found as 
 

 ))/)(/(()( 2222
jjiiji yyEEyyE 
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     22
)exp()exp( jjjiiiEE   βxβx

 

 

    
     

































2

2

exp222exp

*exp222exp

jjjjjj

iiiiii
EE





βxβx

βxβx

 

 

      
     222

2

222

222)(2)(2)(2exp

jiijj

jiijiji

EEE

EEE









θzβx

θzβxθzzβxx

j

iji

 
 

 

     
  422

222

222exp

222exp)1(4exp)(2)(2exp














θzβx

θzβxθzzβxx

j

iji

j

i

ji

ji

  
 

   
  422

222

222exp

222exp)1(4)(2)(2exp














θzβx

θzβxθzzβxx

j

iji

j

i

ji

ji

     (26) 
 
Therefore covariance of squared responses is 
 

    .14exp4)(2)(2exp

)()()()(

22

222222







  ji

ji

jijiji yEyEyyEyyCov

θzzβxx ji                     (27) 
 
Hence, correlation of squared responses can be obtained by 
 

2 2

2 2

2 2

( )
( , ) .

( ) ( )

i j

i j

i j

Cov y , y
Corr y y

V y V y
                                                                                         (28) 

 

In case i are uncorrelated, random effects  's also be independent.  Under this situation, the same 

expected value and the variance can be obtained. But, covariance of first order responses and 
second order responses become zero, implying that responses are independent. i.e. 

2 2( ) ( ) 0i j i jCov y y Cov y y   

 

2.2 Case 2: Random Effects with Zero Mean ( ( ) 0E    ) 

Since '( ) 0i iE z B    , then equation (10) becomes as i i  , and hence
2 2
   . 

Because, i  is normally distributed,
2~ N(0, )i   , as in case 1, it can be shown that,  

2
1

1
( ) exp

2i tM t 

 
  

 
.                                                                                                     (29) 

 
Then, the expectation and variance of count response of the i

th
 cluster are given respectively by, 

 

  2 21 1
( ) ( / ) exp( ) exp

2 2
i i i i iE y E E y E    

   
       

   
x β x β                                   (30) 

 
and 
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  .1)exp()2exp(

)()()(
222'

22

  



βxi

iii yEyEyVar

                                                                (31)  
 

Under the following correlation structure for i and j , 

 

1 : | | 0

( , ) : 0 | |

0 : | | ,

i j

i j

if i j

Corr if i j d

if i j d

   

 

   
  

                                                                    (32) 

covariance between iy and jy can be obtained as, 
 

  .1)exp()(exp)()()(),( 22 


 
ji

jijijiji yEyEyyEyyCov βxx
     (33) 

Further, the covariance between 
2
iy and 

2
jy is given by 

 

    .1)exp(44)(2exp),( 2j-i222   βxx jiji yyCov
                                          (34) 

 
2.3 Simulation Study 
 

The performance of proposed approach was 
tested by using a simulation study, as done in the 
literature, based on a sequence of linearly 
connected 100 clusters as shown in Fig. 1. 
 

Lag of one (that is
* 1d  ) was considered in 

setting dependence among clusters. In this 
setup, the first cluster is dependent on the 
second cluster only, while the last (100th) cluster 
depends only on the 99th cluster. All other 
clusters are dependent on adjacent clusters in 
left and right sides. For example, the ith cluster is 
dependent on the (i-1)

th
 and (i+1)

th
 clusters. 

 

Simulation study was performed under three 
different designs explained below with both 
discrete and continuous covariates for clusters. 
Under the first design, only two covariates

1 2( , )X X  were considered. Covariate 1X  was 

discrete-binary generated from Bernoulli 

distribution with probability 0.7, and 2X  was a 

continuous covariate generated from Uniform 
distribution within the interval (1, 3).  Values 0.3 
and 0.8 were used as true values of covariates 

effects ( 1  , 2 ) under this design. In the second 

design, only two covariates 1 2( , )X X  were used. 

The first covariate takes value 1 for all the 
clusters, while the other was generated from the 
Uniform distribution as in the first design. In this 
design, as the true values of covariates effects     

( 1  , 2 ), values 0.3 and 0.8 were used. Three 

covariates 1 2 3( , , )X X and X  were used under 

the third design. The first covariate, 1X  is having 

a value 1 for all clusters and the other two 

covariates ( 2X and 3X ) were from Bernoulli 

distribution. Values 0.3, 0.5 and 0.8 were used 

as the true values of covariates effects ( 1 , 2 ,

3 )  in the third design. 

 

With a given variance
2
 , random effect i  for 

the i
th
 cluster was generated as explained below. 

First, a random number was generated from the 
standard normal distribution (normal distribution 
with zero mean and variance one), say number is

ig . Then, the value obtained through the product 

of the number ig and the square root of variance 

of random effect
2
 , as 2 ,i ig    used as 

the value of i . Similarly, random effects for 

other clusters also were generated. 
 

Then, cluster dependence was included through 
the random effect component of the mixed 
model. The random effect for the ith cluster (i=2, 
3,...., 99) after incorporating cluster dependence 

(say 
*
i ) was obtained by 

                                       

))21(/1)(( 11
*    sqrtiiii .    (35) 
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Fig. 1. A sequence of linearly located 100 clusters 
 

Random effects of adjacent clusters have been 
weighted in term of clusters correlation  . But, 

for the first and last clusters, random effects        
with cluster dependence were obtained             

by using
*
1 1 2( )(1/ (1 ))sqrt      and 

*
100 100 99( )(1/ (1 ))sqrt      respectively. 

 

Count responses were generated based on the 
assumption that conditional on random effects, 
count responses follow Poisson probability 

distribution, that is / ~ ( )i i iy Poisson  , where

*exp( )i i ix    . 
 

Then, iz variables were formed by using 

11 
 iii xxz

. Cluster dependence 
incorporated random effects were modeled by 

using the iz  variables as
*
i i  iz θ , where

is the effect of iz on 
*
i , which was estimated 

by the least squared method. Assume 


 is the 

estimate of .  Here, the variance of i ,
2
 was 

estimated by using the estimated random errors 

obtained through the equation
* .i i iz  

 

 
Under the second case of the first approach, 
there was not such a need for usage of z 
variable. 
 

Simulation was performed for several values 
(0.1, 0.2, 0.3, 0.4,) of correlation index , and 

four values (0.3, 0.5, 0.8, and 1.2) of the variance 

of random effects
2
 with 500 iterations. 

Generalized quasi likelihood estimates were 
obtained with the incorporation of cluster 
dependence. Further, for the purpose of 
comparison, Penalized Quassi likelihood and 
Monte Carlo likelihood estimates also were 
obtained. The performance of estimates was 
compared by using the simulated mean (SM: 
average of converged values of estimates of 
parameters) and the simulated standard error 
(SSE). R software was used for simulation 
process. Penalized Quassi likelihood estimates 
were obtained by using glmmPQL function in 

glmmPQL package and Monte Carlo likelihood 
estimates were obtained by using glmm function 
in the glmm package.   
 

2.4 Estimation of Parameters 
 
2.4.1 Generalized quasi-likelihood 
 
Marginal generalized quasi-likelihood (GQL) 
estimating equations of Sutradhar [9] were used 
to estimate covariates effects and variance of 
random effects, based on Gauss-Newton 
iterative procedure. In estimating those 
parameters, it is assumed that value of   and

2
 are known.  The first order responses are 

used to construct the marginal GQL estimation 

equation to estimate  . Then the GQL 

estimation equation for   is          

 

  ,01 


  



y

                                      (36) 
 
and the solution of this equation could be 
obtained by using the Gauss-Newton iterative 
equation 

                      

 
rr

GQLGQL yrr 





























 


















 1

1

1)()1(

,                      (37) 
 

where  
r
denotes that the expression within the 

square bracket is evaluated at ( )GQL r 
 

 , the 

estimate obtained for the rth iteration,  and   
are given by equation (14), and equation (22), 
respectively. 
 

The second order response based GQL 
estimation was used to obtain the marginal 

estimation of 
2
  as follows. Let 

2 2 2
1( ,..., ,..., )s ky y yU , be the vector of second-

order responses of all k clusters. Also, let 

11( ) ( ,..., ,..., )ss kkE     λ U  , where 

.....

.....

......

......

  99  

100 

  

i+1 

   i   i-1 2 1 
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2( )ss sE y  for all s=1,...,k , as given by 

equation (15).  Now define covariance matrix of 

U, ( )Cov U Ω , and elements of this 

covariance matrix are giving by equation (27) 

and estimated
2
 . Then GQL estimating 

equation for 
2
 is 

 

  .01

2




  λUΩ
λ

                                     (38) 
 

The solution of this was also obtained by using 
the iterative equation 
 

rr

GQLGQL
rr





































 






)()()1( 1

2

1

2

1

2

22 λUΩ
λλ

Ω
λ








              (39) 
 

where  
r
denotes that the expression within the 

square brackets, and is evaluated at 

2 2 ( )
GQL

r  
 

 for the rth iteration.  

 

2.4.2 Penalized Quasi-likelihood 
 
The PQL approach assumes that the random 

effects i  are fixed effects parameters and 

estimate them along with  , before estimating 

2
 by assuming that

2
 is known. For   and i  

respectively, the estimating equations are 
obtained by maximizing the penalized quasi-
likelihood function  
 

2

2

1

/

1

/

2
)exp()()(




 i

i

n

j
iji

n

j
ijiji

ii

xxyh  


                      (40) 
 

with respect to  and i , and the corresponding 

estimating equations are given by 
 

0)]exp([),(
1 1

/*
1 

 
iji

K

i

n

j
ijiji xxyg

i


 (41) 

 

and 
 

0)]exp([),,(
2

1

/2*
2  

 





 i

i

n

j
ijiji

i

xyg

. (42) 
To obtain an estimate (restricted maximum 
likelihood estimate) for the variance parameter,

2
 , profile quasi-likelihood based score 

equation is obtained by differentiating the profile 

quasi-likelihood function with respect to 
2
 as, 

2

2
,2*

3

),(
),,(



















PQLPQL

PQLPQL

ql
g

     (43) 

Where PQL


and i PQL



 (i = 1, . . . ,K) are the 

Penalized quasi-likelihood estimators of  and 

~

i , Then the following equation can be derived 

and estimate of 
2
  denoted by 

2
,r PQL




can be 

obtained by solving    
                     




























K

i
n

j
PQLiPQLij

n

j
PQLiPQLijK

i
PQLi

i

i

x

x

1

1

/2

1

/
4

1

2

, 0

),exp(1

),exp(










   (44) 
 

2.4.3 Montecarlo likelihood 
 

In this approach, estimates are obtained by 
approximating the following likelihood, 
 

  ,)2/exp(2),/(),( 222
1

2

1 1

2
iii

K

i

n

j ij dyfL i   


   
          (45) 

 

Where  
 

( )
( / , ) exp ( ) .

exp( )

ij ij i

ij i ij

ij i

y x
f y b y

x

 
 

 

  
   

     
                                                              

(46) 
 

Estimates for  and 
2
 are iteratively obtained 

based on McCulloch’s EM approach [10]   by 
using 

                                       

 ,),/(log
1

1

)( 

N

w

w
iyf

N


                        (47) 
 

And  ( ) 2

1

1
log ( / )

N w
iw

g
N

 
 respectively, 

with random effects generated from metropolis 

algorithm [11]. In this study, in
was 1 for all 

1,2,..,i K and .N K  

2.4.3.1 McCulloch’s EM algorithm 
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This algorithm is as follows. 
 

1. Choose starting values for
(0) and 

2(0)
 , 

0r where r denotes iteration. 
2. Generate N number of values of the 

random effect by using 
( ) 2( )( | , , )r r

if y   
  and  

 

(a) Choose 
( 1)r 

to maximize a Monte Carlo 

estimate of  log ( | , )iE f y    

 

That is, maximize 
( )

1

1
log ( | , ).

N
w

i
w

f y
N

 


 
 
 
  

(b) Choose 
2( 1)r



to maximize 

( ) 2

1

1
log ( | ),

N
w

i
w

g
N

 


 
 
 
  

 
where 

( ) 2 2 1/2 2 2( | ) (2 ) exp{ / 2 }w
i ig         . 

 

(c ) Set 1 rr . 
 

3. If convergence is achieved, then declare 
( 1)r 

and
2( 1)r



to be the maximum 

likelihood estimates; otherwise go back to 
step 2. 

 

3. RESULTS AND DISCUSSION 
 

3.1 Results of Simulation 
 

The proposed approach gave accurate estimates 

for all parameters 1 , 2 , 3 and
2
  under the 

low values of correlation  , up to 0.4. The 

simulated results with 500 iterations for 0.1  ,

0.2  , 0.3  , and 0.4   under all 

designs are given in Table 1, Table 2, Table 3, 
and Table 4 (in appendix) respectively. Estimates 
obtained with the incorporation of cluster 
dependence at both stages, are given in the 
column named as CDBS and estimates obtained 
by incorporating cluster dependence at the first 
stage only are given in the column CDFS. 
Estimates obtained without incorporation of 
cluster dependence by using Monte Carlo 
likelihood and Penalized Quasi likelihood 
methods are given in MCL and PQL columns 
respectively. 

 
Proposed approach has given better estimates 
for both regression effects and variance of 
random effects. With compared to estimates 
obtained by ignoring cluster dependence 
(estimates in columns MCL and PQL), most of 
estimates obtained with the incorporation of 
cluster dependence (estimates in columns 
CDBS, CDFS) were closer to the actual values of 
the parameters. For example, consider estimates 

of regression effects ( 1 2,  ) in Table 1 (in 

appendix) under the first design. PQL estimates 

for ( 1 20.3, 0.8   ) were 0.3478 and 0.7703 

respectively, while the corresponding MCL 
estimates were 0.3717 and 0.7745. Estimates 
with incorporation of cluster dependence at the 
first stage were 0.3661 and 0.7576, while the 
estimates obtained with incorporation of cluster 
dependence at both stages, were 0.3343 and 
0.7829 respectively.  In the same case, the 

variance of random effects
2 0.3  was 

estimated as 1.1169 and 0.0013 by PQL and 
MCL respectively.  GQL estimates with the 
incorporation of cluster dependence at the first 
stage and both stages were 0.2630 and 0.2607 
respectively. In most of cases, it could be seen 
that GQL estimates obtained with the 
incorporation of cluster dependence at the both 
stages were closer than the GQL estimates 
obtained by incorporating dependence at the first 
stage only. But differences between 
corresponding values in columns CDBS and 
CDFS were small. That may be due to                    
the low lag length (d=1) which was used                   

in this study. When value of 
2
 , design and 

covariates changes, any pattern of estimates 
could not be observed. Further, it can be seen 
that standard error of the estimates were very 
low.  
 

Fig. 2 shows how estimates were closer to their 
actual values and hence, the accuracy of the 
estimates. 
 
A plot of generated responses and estimated 
responses by using the fitted model with 
estimates obtained using proposed approach, 
are given in Fig. 3. Lines of both generated and 
estimated responses take the same pattern with 
low deviations in values. These lines also confirm 
suitability of estimates obtained from the 
proposed approach.          
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(a) Design 1 

 

 
(b) Design-2 

 

 
(c) Design 3 

 

Fig. 2. Plot of estimated values for design-1 with 1.0  
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(a) Design 1 

 
 

(b) Design 2 

 
 

(c) Design 3 
 

Fig. 3. Plot of generated and estimated responses for design-1 with 1.0  
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3.2 An Application  
 
Performance of proposed approach was tested 
by using Scottish lip cancer data set (Table 5 in 
appendix 2) which has been used for several 
studies. Data have been collected over a period 
of five years by covering 56 districts (counties) in 
Scotland. Data set contains observed and 
expected counts of lip cancer, the latitude and 
longitude of each county. The expected counts 
have been found based on population, its age 
and sex distribution in each county. Further the 
percentage of population engaged in agriculture, 
fishing or forestry (PAFF) is available as a 
covariate. Adjacent districts for each county also 
have been given. 
 
In this study, while PAFF was used as the 
covariate, available observed counts were used 
as the responses to obtain expected counts 
under the proposed approach. The covariance of 
responses was found based on the given 
adjacent districts. It was assumed that all 
adjacent districts have the same dependence 
with the respective district. Under the approach, 

estimates of   and
2
  were obtained for 

different values of  and
2
 .  Estimated values 

of  , 
2
 and  when the estimate of 

2
  was 

closer to its’ true value were taken as the most 

suitable estimates of  , 
2
 and . All most all 

the procedures were same as explained in the 
simulation study. Random effects were estimated 
by applying PQL method and used those 
estimated random effects as the random effect of 
each cluster.  
 

Estimates obtained for  , 
2
 and  for this data 

set under proposed approach are given in Table 
6 below. This says that correlation among 
adjacent districts is about 0.2. 
 
Table 6. Estimates of parameters under each 

approach 
 

Estimates of parameters 
  

  
0.10 1.49 0.20 

 

Based on the estimates of parameters  and 

2 in Table 6, counts were estimated. Accuracy 
of estimated counts were found by using mean 

error (ME), mean absolute deviation (MAD), and 
mean absolute percentage error (MAPE) and 
they are given in Table 7. ME, MAD, and MAPE 
obtained by using observed and expected values 
in the data set are listed under APP-0, while the 
results for proposed approach are listed under 
APP-1. This approach has given closer values 
for ME, MAD and MAPE. 
 
Table 7. Accuracy of estimated counts under 

proposed approach 
 

Approaches Accuracy measures 
ME MAD MAPE 

App-0 0.0035 6.38 84.33 
App-1 4.40 7.45 67.39 

 

4. CONCLUSION 
 
Results obtained for the simulated data and real 
data, confirm that proposed approach give better 
estimates for the parameters in the model with 
low standard deviation for moderate cluster 
dependence. Therefore, the proposed approach 
can be used to incorporate cluster dependencies 
in modeling count data from dependent clusters 
by using Poisson mixed models when there is 
weak or moderate dependence among adjacent 
clusters.  
 

Under the simulation study, this approach was 
evaluated for a linear set up of clusters. As a lag 
length, one (d=1) was used. , In that, 
dependence of two nearest clusters in left and 
right side to the given cluster was considered. By 
using a larger value for d, accuracy of estimates 
could be improved. In the application of proposed 
approach for the cancer data, dependence of 
more than two clusters (counties) was 
considered because clusters (counties) in the 
cancer data sets are not having a linear setup 
and each cluster is dependent on more than two 
clusters. This confirms that the proposed 
approach is applicable even for non linear set up 
of clusters. According to Sutradhar [9], GQL 
estimation approach always gives consistent 
estimates. Therefore, in this study, GQL 
estimation method was used for parameter 
estimation.  
 

Method suggested by Wijekoon et al. [8], 
requires formation of spatial families of clusters 
(locations), decomposition of formed families, 
identification of common and uncommon 
locations to families, and identification of 
correlated random effects. Hence, it is a long 
procedure. With compared their method, 




2


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proposed approach by this study is simpler and 
easy to perform. At the same time, the proposed 
approach gives lower standard errors for 
estimates with compared to method suggested 
by Wijekoon et al. [8].  
 
This study can be extended for nominal or 
ordinal scale responses as further research. At 
the same time, case that random effects are 
having different variances also can be taken for 
further studies. 
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APPENDIX 1. SIMULATED RESULTS 
 

Under each design of covariates, 0.0 was used as the initial value of all parameters: 1 ; 2 ; and 3 , while 0.1 was used as the initial value of 
2
 .                                                                     

 

Table 1. Simulated results for 0.1   

 
Design 

 

QTY 
  

 

 

CDBS CDFS MCL PQL CDBS CDFS MCL PQL CDBS CDFS MCL PQL CDBS CDFS MCL PQL 

First 
 

 

0.3 SM 0.3343 0.3661 0.3717 0.3478 0.7879 0.7576 0.7745 0.7703 _ _ _ _ 0.2630 0.2607 0.0013 1.1169 

SSE 0.0038 0.0038 0.0038 0.0037 0.0015 0.0015 0.0025 0.0015     0.0028 0.0027 0.0006 0.0165 
0.5 SM 0.3700 0.3909 0.4123 0.3718 0.7782 0.7779 0.7633 0.7676 _ _ _ _ 0.5079 0.5102 0.0113 1.1487 

SSE 0.0037 0.0036 0.0041 0.0039 0.0014 0.0014 0.0035 0.0015     0.0037 0.0037 0.0021 0.028 
0.8 SM 0.2969 0.3046 0.3596 0.3280 0.8411 0.8446 0.9594 0.8582 _ _ _ _ 0.6804 0.6795 0.0020 0.7602 

SSE 0.0032 0.0032 0.0092 0.0035 0.0015 0.0031 0.0039 0.002     0.0026 0.0026 0.0011 0.0397 
1.2 SM 0.3309 0.3413 0.5076 0.3845 0.8598 0.8564 1.0944 0.8789 _ _ _ _ 0.9864 0.9835 0.0299 0.4019 

SSE 0.0030 0.0030 0.0075 0.0035 0.0016 0.0015 0.0057 0.0015     0.0032 0.0026 0.0031 0.0246 

Second 
 

 

0.3 SM 0.3705 0.3715 0.5249 0.4208 0.7590 0.7403 0.7514 0.7227 _ _ _ _ 0.2778 0.276 2.08E-06 0.2836 

SSE 0.0068 0.0066 0.0162 0.0070 0.0029 0.0032 0.0076 0.0028     0.0016 0.0016 8.15E-07 0.024 

0.5 SM 0.1442 0.1417 0.7583 0.3539 0.8924 0.8958 0.8272 0.8600 _ _ _ _ 0.5265 0.5268 1.02E-05 0.0678 

SSE 0.0047 0.0042 0.0080 0.0070 0.0029 0.0027 0.0042 0.0031     0.0016 0.0016 3.37E-07 0.0146 

0.8 SM 0.6187 0.6387 0.9260 1.0196 0.6640 0.6541 0.6060 0.5803 _ _ _ _ 0.7337 0.7333 2.23E-05 2.5844 

SSE 0.0063 0.0063 0.0153 0.0112 0.0030 0.0029 0.0038 0.0031     0.0031 0.0031 8.84E-07 0.0601 

1.2 SM 0.5124 0.5179 0.9329 0.8003 0.6985 0.6962 0.6768 0.6468 _ _ _ _ 1.1022 1.1002 4.37E-06 2.1060 

SSE 0.0058 0.0059 0.0154 0.0065 0.0025 0.0025 0.0078 0.0026     0.0024 0.0024 2.20E-06 0.0499 
Third 
 

 
 

0.3 SM 0.3560 0.3651 0.4175 0.3528 0.5436 0.5591 0.5735 0.5504 0.6986 0.6971 0.7093 0.6939 0.2666 0.2661 4.35E-06 0.5203 

SSE 0.0071 0.0069 0.0105 0.0073 0.0053 0.0052 0.0109 0.0052 0.0076 0.0076 0.0093 0..0071 0.0021 0.002 7.47E-07 0.0242 
0.5 SM 0.3859 0.3888 0.5057 0.3521 0.5694 0.5748 0.6263 0.5732 0.6660 0.6635 0.6963 0.6716 0.4418 0.4415 7.30E-06 0.1732 

SSE 0.0067 0.0071 0.0148 0.0082 0.0048 0.0047 0.0185 0.005 0.0068 0.0073 0.0149 0.0079 0.0024 0.0024 2.13E-06 0.0200 
0.8 SM 0.3983 0.4046 0.5856 0.3484 0.5869 0.5862 0.6268 0.5881 0.6574 0.6536 0.6557 0.6359 0.6911 0.6863 7.12E-06 0.1279 

SSE 0.0066 0.0065 0.0084 0.0079 0.0048 0.0048 0.0146 0.0050 0.0071 0.0068 0.0100 0.0075 0.0030 0.0033 1.48E-06 0.0200 

1.2 SM 0.4206 0.4379 0.4238 0.3694 0.6191 0.6322 0.6480 0.6132 0.6243 0.6190 0.7740 0.6194 1.0222 1.0180 6.11E-06 0.0941 

SSE 0.0064 0.0061 0.0041 0.0080 0.0043 0.0044 0.0122 0.0051 0.0060 0.0061 0.1587 0.0070 0.0032 0.0035 1.88E-06 0.0192 

 

2

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Table 2. Simulated results for 0.2   

 
Design 

 

QTY 
  

 

 

CDBS CDFS MCL PQL CDBS CDFS MCL PQL CDBS CDFS MCL PQL CDBS CDFS MCL PQL 

First 
 

 

0.3 SM 0.3490 0.3518 0.3582 0.3332 0.7625 0.7621 0.7772 0.7728 _ _ _ _ 0.2698 0.2650 1.60E-03 1.1001 
SSE 0.0038 0.0038 0.0043 0.0038 0.0014 0.0014 0.0027 0.0014     0.0028 0.0028 8.00E-04 0.0162 

0.5 SM 0.3895 0.3906 0.4138 0.3614 0.7586 0.7574 0.8056 0.7975 _ _ _ _ 0.4680 0.4655 0.1033 0.9427 
SSE 0.0036 0.0036 0.0060 0.0039 0.0015 0.0015 0.0046 0.0020     0.0046 0.0045 0.0020 0.0307 

0.8 SM 0.3913 0.3927 0.4359 0.3726 0.7853 0.7840 0.8880 0.8239 _ _ _ _ 0.7971 0.8099 0.0103 0.9069 

SSE 0.0045 0.0046 0.0045 0.0050 0.0027 0.0025 0.0055 0.0018     0.0125 0.0137 0.0019 0.0426 
1.2 SM 0.4455 0.4382 0.4146 0.3121 0.7674 0.7708 0.7594 0.7805 _ _ _ _ 1.1088 1.1090 0.0235 0.8215 

SSE 0.0073 0.0073 0.0071 0.0095 0.0037 0.0038 0.0074 0.0041     0.0050 0.0051 0.0025 0.0365 
Second 
 

 

0.3 SM 0.5022 0.5064 0.5156 0.4999 0.7016 0.6988 0.7089 0.6915 _ _ _ _ 0.2311 0.2294 2.93E-06 0.6908 

SSE 0.0061 0.0195 0.0135 0.0085 0.0026 0.0031 0.0075 0.0032     0.0018 0.0019 2.14E-07 0.0297 
0.5 SM 0.3127 0.3182 0.1912 0.3220 0.7916 0.7787 0.9455 0.7742 _ _ _ _ 0.4304 0.4243 1.25E-05 0.2121 

SSE 0.0068 0.0064 0.0080 0.0068 0.0029 0.0022 0.0041 0.0031     0.0022 0.0083 5.43E-07 0.0162 

0.8 SM 0.4413 0.4421 0.3288 0.5831 0.7220 0.7165 0.7148 0.6867 _ _ _ _ 0.8043 0.8001 1.96E-06 1.1470 

SSE 0.0064 0.0068 0.0045 0.0077 0.0027 0.0027 0.0052 0.0030     0.0025 0.0036 5.46E-07 0.0495 

1.2 SM 0.3394 0.3249 0.5271 0.6830 0.8156 0.8305 0.8953 0.7309 _ _ _ _ 0.9395 0.9372 7.92E-06 1.1019 

SSE 0.0075 0.0061 0.0253 0.0083 0.0045 0.0036 0.0118 0.0033     0.0086 0.0086 6.21E-07 0.0602 

Third 
 

 
 

0.3 SM 0.3269 0.3327 0.3838 0.3292 0.5508 0.5461 0.5777 0.5640 0.7257 0.7182 0.7068 0.7030 0.2893 0.2834 4.58E-06 0.5127 

SSE 0.0068 0.0065 0.0083 0.0073 0.0055 0.0049 0.0108 0.0050 0.0071 0.0071 0.0076 0.0072 0.0022 0.0021 7.04E-07 0.0238 

0.5 SM 0.3784 0.3831 0.4510 0.3328 0.5621 0.5626 0.5907 0.5818 0.6715 0.6611 0.6902 0.6802 0.4593 0.4519 7.17E-06 0.2968 

SSE 0.0069 0.0064 0.0098 0.0078 0.0049 0.0052 0.0096 0.0050 0.0068 0.0061 0.0109 0.0068 0.0030 0.0028 1.45E-06 0.0252 
0.8 SM 0.3986 0.4090 0.5689 0.3414 0.5602 0.5620 0.5598 0.5757 0.6562 0.6533 0.6679 0.6517 0.7343 0.7261 4.18E-06 0.5210 

SSE 0.0063 0.0065 0.0118 0.0082 0.0051 0.0051 0.0151 0.0055 0.0063 0.0063 0.0132 0.0069 0.0035 0.0035 7.12E-07 0.3140 
1.2 SM 0.4155 0.4184 0.6990 0.3828 0.5623 0.5895 0.5920 0.5947 0.6400 0.6278 0.6300 0.6135 1.1241 1.1211 7.32E-06 0.2547 

SSE 0.0061 0.0060 0.0127 0.0084 0.0042 0.0041 0.0138 0.0049 0.0064 0.0062 0.0134 0.0071 0.0044 0.0044 1.07E-06 0.0281 
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Table 3. Simulated results for 0.3   

 
Design 

 

QTY 
  

 

 

CDBS CDFS MCL PQL CDBS CDFS MCL PQL CDBS CDFS MCL PQL CDBS CDFS MCL PQL 

First 
 

 

0.3 SM 0.3480 0.3495 0.3605 0.3282 0.7621 0.7618 0.7808 0.7734 _ _ _ _ 0.2902 0.2817 0.0009 1.1019 

SSE 0.0038 0.0037 0.0081 0.0038 0.0014 0.0014 0.0035 0.0014     0.0032 0.0032 0.0006 0.0156 

0.5 SM 0.3665 0.3691 0.4014 0.3471 0.7424 0.7434 0.7723 0.7695 _ _ _ _ 0.5417 0.5495 0.0065 0.7695 

SSE 0.0040 0.0038 0.0114 0.0039 0.0015 0.0015 0.0054 0.0015     0.0044 0.0045 0.0016 0.0015 

0.8 SM 0.3025 0.3025 0.2966 0.2019 0.8491 0.8549 0.9751 0.8381 _ _ _ _ 0.5288 0.5484 0.0025 0.3159 

SSE 0.0031 0.0031 0.0031 0.0039 0.0018 0.0018 0.0029 0.0015     0.0054 0.0050 0.0007 0.0205 

1.2 SM 0.2478 0.2626 0.2443 0.2775 0.8429 0.8395 0.7969 0.8851 _ _ _ _ 0.7817 0.7754 0.0053 1.5172 

SSE 0.0036 0.0035 0.0035 0.0038 0.0031 0.0015 0.0023 0.0019     0.0051 0.0050 0.0013 0.0370 

Second 
 

 

0.3 SM 0.3276 0.3299 0.4943 0.3766 0.7779 0.7720 0.8005 0.7441 _ _ _ _ 0.2991 0.2965 1.73E-06 0.4185 

SSE 0.0071 0.0068 0.0393 0.0079 0.0032 0.0031 0.0170 0.0032     0.0018 0.0019 5.20E-07 0.0277 

0.5 SM 0.3665 0.3799 0.5165 0.4179 0.7566 0.7424 0.7655 0.7291 _ _ _ _ 0.5112 0.5130 7.22E-06 0.6237 

SSE 0.0062 0.0068 0.0177 0.0078 0.0029 0.0056 0.0082 0.0031     0.0023 0.0022 2.39E-06 0.0099 

0.8 SM 0.4022 0.4061 0.6778 0.5486 0.7329 0.7272 0.7699 0.7060 _ _ _ _ 0.8675 0.8569 9.06E-07 1.3200 

SSE 0.0062 0.0063 0.0234 0.0075 0.0027 0.0035 0.0141 0.0028     0.0028 0.0028 1.31E-07 0.0485 

1.2 SM 0.4836 0.4861 0.9395 0.7652 0.7297 0.7463 0.6982 0.6543 _ _ _ _ 0.9812 0.9795 2.42E-06 0.9281 

SSE 0.006 0.0058 0.0101 0.0067 0.0027 0.0026 0.0040 0.0030     0.0099 0.0098 4.19E-07 0.0641 

Third 
 

 
 

0.3 SM 0.4076 0.4025 0.8317 0.5174 0.5767 0.5840 0.5939 0.5206 0.6215 0.6322 0.4735 0.5353 0.2344 0.2216 3.43E-05 0.7937 

SSE 0.0070 0.0075 0.0097 0.0071 0.0053 0.0050 0.0053 0.0052 0.0067 0.0073 0.0069 0.0069 0.0032 0.0034 1.32E-06 0.0246 

0.5 SM 0.3636 0.3833 0.3996 0.5390 0.5475 0.5438 0.5518 0.5926 0.6912 0.6703 0.6497 0.6637 0.4962 0.7783 7.71E-01 7.8E-06 

SSE 0.0066 0.0070 0.0064 0.0123 0.0051 0.0050 0.0045 0.0146 0.0067 0.0075 0.0067 0.0126 0.0029 0.0040 3.80E-03 1.1E-06 

0.8 SM 0.3833 0.3996 0.5390 0.3424 0.5438 0.5518 0.5926 0.5760 0.6703 0.6497 0.6637 0.6610 0.7783 0.7712 7.86E-06 0.3158 

SSE 0.0070 0.0064 0.0123 0.0082 0.0050 0.0045 0.0146 0.0049 0.0075 0.0067 0.0126 0.0071 0.0040 0.0038 1.14E-06 0.0302 

1.2 SM 0.3364 0.4097 0.6216 0.4259 0.5295 0.5874 0.5499 0.6165 0.6321 0.6164 0.6303 0.5904 1.2800 1.2757 7.36E-06 1.1689 

SSE 0.0058 0.0056 0.0094 0.0094 0.0047 0.0044 0.0045 0.0050 0.0060 0.0055 0.0089 0.0069 0.0053 0.0053 8.41E-07 0.0617 
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Table 4. Simulated results for 0.4   

 
Design 

 

QTY 
  

 

 

CDBS CDFS MCL PQL CDBS CDFS MCL PQL CDBS CDFS MCL PQL CDBS CDFS MCL PQL 

First 
 

 

0.3 SM 0.3325 0.3332 0.3369 0.3107 0.7656 0.7643 0.7873 0.7765 _ _ _ _ 0.2996 0.2871 0.0006 1.1127 
SSE 0.0038 0.0040 0.0043 0.0040 0.0014 0.0014 0.0050 0.0014     0.0028 0.0029 0.0003 0.0155 

0.5 SM 0.3577 0.3500 0.3743 0.3339 0.7450 0.7415 0.7699 0.7756 _ _ _ _ 0.5866 0.5699 0.0094 1.2659 
SSE 0.0041 0.0036 0.0045 0.0041 0.0014 0.0015 0.0027 0.0016     0.0043 0.0043 0.0018 0.0272 

0.8 SM 0.5600 0.5919 0.7106 0.5592 0.7745 0.7633 0.9194 0.8628 _ _ _ _ 0.6243 0.6243 0.0086 0.3413 

SSE 0.0055 0.0058 0.0079 0.0055 0.0019 0.0017 0.0052 0.0027     0.0094 0.0094 0.0022 0.0305 
1.2 SM 0.2688 0.2461 0.3159 0.3634 0.8708 0.8627 1.0565 0.5212 _ _ _ _ 1.0170 0.9864 0.0399 0.7547 

SSE 0.0048 0.0065 0.0069 0.0051 0.0026 0.0031 0.0064 0.0015     0.0055 0.0060 0.0033 0.0334 
Second 
 

 

0.3 SM 0.3113 0.3413 0.3886 0.3355 0.7854 0.7814 0.7851 0.7612 _ _ _ _ 0.3064 0.3051 6.81E-07 0.4145 

SSE 0.0067 0.0067 0.0127 0.0078 0.0030 0.0050 0.0069 0.0033     0.0019 0.0017 1.29E-07 0.0268 
0.5 SM 0.3424 0.3432 0.4930 0.3799 0.7695 0.7677 0.7914 0.7460 _ _ _ _ 0.5329 0.5374 3.06E-06 0.5294 

SSE 0.0063 0.0066 0.0231 0.0074 0.0028 0.0029 0.0127 0.0030     0.0025 0.0025 1.43E-06 0.0354 

0.8 SM 0.3719 0.3835 0.5951 0.5104 0.7472 0.7425 0.7982 0.7250 _ _ _ _ 0.8985 0.8993 1.79E-06 1.3593 

SSE 0.0059 0.0061 0.0209 0.0073 0.0026 0.0026 0.0152 0.0028     0.0032 0.0032 3.04E-07 0.0496 

1.2 SM 0.2563 0.2482 0.7212 0.9227 0.8236 0.8262 0.7850 0.6539 _ _ _ _ 1.2665 1.2697 1.69E-05 1.8983 

SSE 0.0063 0.007 0.0088 0.0081 0.0033 0.0039 0.0028 0.0029     0.0036 0.0036 5.29E-07 0.0345 

Third 
 

 
 
 

0.3 SM 0.3117 0.3190 0.3939 0.3208 0.5572 0.5565 0.6173 0.5570 0.7386 0.7283 0.7715 0.7049 0.2997 0.2944 3.99E-06 0.5892 

SSE 0.0068 0.0066 0.0235 0.0074 0.0053 0.0052 0.0250 0.0053 0.0073 0.0071 0.0277 0.0072 0.0024 0.0025 7.11E-07 0.0252 

0.5 SM 0.3579 0.3697 0.4463 0.3535 0.5453 0.5442 0.5553 0.5674 0.7060 0.6817 0.6794 0.6642 0.4898 0.4847 8.25E-06 0.3411 

SSE 0.0067 0.0066 0.0096 0.0074 0.0052 0.0050 0.0052 0.0048 0.0076 0.0067 0.0507 0.0068 0.0030 0.0041 1.46E-06 0.0265 
0.8 SM 0.3896 0.3241 0.9859 0.6758 0.5434 0.4633 0.5111 0.4941 0.5527 0.6752 0.5596 0.5874 1.0295 1.0152 1.80E-05 1.2735 

SSE 0.0070 0.0064 0.0091 0.0098 0.0049 0.0047 0.0063 0.0048 0.0070 0.0063 0.0073 0.0061 0.0047 0.0045 1.06E-06 0.0492 
1.2 SM 0.3417 0.3555 0.6043 0.4004 0.5176 0.5788 0.5436 0.5931 0.7071 0.6701 0.6832 0.6344 1.3202 1.314 9.55E-06 0.9256 

SSE 0.0063 0.0060 0.0233 0.0099 0.0049 0.0044 0.0145 0.0049 0.0064 0.0060 0.0154 0.0069 0.0047 0.0048 8.46E-07 0.0511 
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APPENDIX 2. DATA SET 
 

Table 5. Scottish lip cancer data set 
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1 9 1.4 16 57.29 5.5 5,9,11,19 
2 39 8.7 16 57.56 2.36 7,10 
3 11 3 10 58.44 3.9 6,12 
4 9 2.5 24 55.76 2.4 18,20,28 
5 15 4.3 10 57.71 5.09 1,11,12,13,19 
6 8 2.4 24 59.13 3.25 3,8 
7 26 8.1 10 57.47 3.3 2,10,13,16,17 
8 7 2.3 7 60.24 1.43 6 
9 6 2 7 56.9 5.42 1,11,17,19,23,29 

10 20 6.6 16 57.24 2.6 2,7,16,22 
11 13 4.4 7 58.12 6.8 1,5,9,12 
12 5 1.8 16 58.06 4.64 3,5,11 
13 3 1.1 10 57.47 3.98 5,7,17,19 
14 8 3.3 24 54.94 5 31,32,35 
15 17 7.8 7 56.3 3.1 25,29,50 
16 9 4.6 16 57 3 7,10,17,21,22,29 
17 2 1.1 10 57.06 4.09 7,9,13,16,19,29 
18 7 4.2 7 55.65 2.88 4,20,28,33,55,56 
19 9 5.5 7 57.24 4.73 1,5,9,13,17 
20 7 4.4 10 55.35 2.9 4,18,55 
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21 16 10.5 7 56.7 2.98 16,29,50 

22 31 22.7 16 57.1 2.2 10,16 

23 11 8.8 10 56.4 5.27 9,29,34,36,37,39 

24 7 5.6 7 55.6 3.96 

27,30,31,44,47,48, 

55,56 

25 19 15.5 1 56.2 3.3 15,26,29 

26 15 12.5 1 56.1 3.6 25,29,42,43 

27 7 6 7 55.2 4.09 24,31,32,55 

28 10 9 7 55.9 2.8 4,18,33,45 

29 16 14.4 10 56.6 4.09 
9,15,16,17,21,23, 
25,26,34,43,50 

30 11 10.2 10 55.9 3.8 24,38,42,44,45,56 

31 5 4.8 7 55.47 4.55 14,24,27,32,35,46,47 

32 3 2.9 24 55 4.36 14,27,31,35 

33 7 7 10 55.8 3.2 18, 28,45,56 

34 8 8.5 7 56.3 4.73 23,29,39,40,42,43,51,52,54 

35 11 12.3 7 55.2 4.98 14,31,32,37,46 

36 9 10.1 0 55.9 4.95 23,37,39,41 

37 11 12.7 10 55.7 5.02 23,35,36,41,46 

38 8 9.4 1 55.9 4.18 30,42,44,49,51,54 
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39 6 7.2 16 56.1 4.99 23,34,36,40,41 
40 4 5.3 0 56 4.91 34,39,41,49,52 
41 10 18.8 1 55.8 4.82 36,37,39,40,46,49,53 
42 8 15.8 16 56 4 26,30,34,38,43,51 
43 2 4.3 16 56.1 3.96 26,29,34,42 
44 6 14.6 0 55.8 4.09 24,30,38,48,49 
45 19 50.7 1 55.9 3.4 28,30,33,56 
46 3 8.2 7 55.6 4.75 31,35,37,41,47,53 
47 2 5.6 1 55.7 4.45 24,31,46,48,49,53 
48 3 9.3 1 55.7 4.27 24,44,47,49 
49 28 88.7 0 55.9 4.55 38,40,41,44,47,48,52,53,54 
50 6 19.6 1 56.4 3.2 15,21,29 
51 1 3.4 1 56 4.27 34,38,42,54 
52 1 3.6 0 56.1 4.64 34,40,49,54 
53 1 5.7 1 55.7 4.7 41,46,47,49 
54 1 7 1 55.9 4.45 34,38,49,51,52 
55 0 4.2 16 55.6 3.38 18,20,24,27,56 
56 0 1.8 10 55.1 3.4 18,24,30,33,45,55 
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