
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: rmatei@etti.tuiasi.ro; 
 
 
 

Journal of Scientific Research & Reports 
12(4): 1-9, 2016; Article no.JSRR.29802 

ISSN: 2320-0227 
 

SCIENCEDOMAIN international 
             www.sciencedomain.org 

 

 

Design Approach for 2D Recursive Filters Used in 
Frequency Plane Partitioning 

 
Radu Matei1* 

 
1
Faculty of Electronics, Telecommunications and Information Technology, “Gheorghe Asachi” 

Technical University, Bd. Carol I nr.11, Iasi, Romania. 
 

Author’s contribution  
 

The sole author designed, analyzed and interpreted and prepared the manuscript. 
 

Article Information 
 

DOI: 10.9734/JSRR/2016/29802 
Editor(s): 

(1) Grigorios L. Kyriakopoulos, School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), 
Greece. 

Reviewers: 
(1) Moumi Pandit, Sikkim Manipal University, India. 

(2) Shilpi Birla, Manipal University, Jaipur, India. 
Complete Peer review History: http://www.sciencedomain.org/review-history/16784 

 
 
 

Received 29
th

 September 2016 
Accepted 29th October 2016 

Published 4
th

 November 2016 

 
 

ABSTRACT 
 

This work proposes an analytical design procedure for some types of 2D recursive filters useful in 
frequency plane partitioning, namely diamond, parallelogram, fan or wedge-shaped filters with a 
specified bandwidth and orientation. Such filters can be used as components of particular filter 
banks, applied in directional image decomposition. The design starts from two zero-phase low-pass 
1D prototypes, to which specific frequency mappings are applied, also exploiting the symmetry 
properties in the frequency plane. This method combines analytical approach with numerical 
approximations, yielding the desired 2D frequency response. A more selective filter results by 
combining two or several elementary filters. Several design examples for these filters are provided. 
 

 
Keywords: 2D IIR filters; directional filters; frequency mapping; approximation. 
 
1. INTRODUCTION 
 
Various design methods for 2D filters, both FIR 
and IIR, have been proposed by many 
researchers and are now well founded [1,2]. A 

frequently-used design technique is based on a 
specified 1D prototype filter, whose transfer 
function is transformed using various frequency 
mappings to obtain a 2D filter with desired 
shape. Some early papers on 2D filter design 
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using spectral transformations are [3,4]. Some 
authors have used optimization methods to 
design 2D filters with arbitrary frequency 
response, like in [5]. The stability issue for 2D 
filters and some stabilization methods are treated 
in papers like [6,7]. Diamond filters are currently 
used as anti-aliasing filters for conversion of 
sampled signals from rectangular to quincunx 
sampling grid. Different design methods for 
diamond filters were studied in various papers 
like [8-10].  
 
In [11] a filter bank for the directional 
decomposition of images was proposed. The 
Bamberger directional filter bank [12] is an 
oriented image decomposition with very good 
selectivity and low computational complexity. It 
splits the frequency plane into wedge-shaped 
channels with N = 2, 4, 6 and 8 sub-bands, each 
capturing spatial details along a specific 
orientation. Fig. 2 (a) shows the 8-band 
frequency partition. Wedge and fan filters, 
combined with pattern recognition techniques, 
are applied in feature extraction, for instance in 
texture classification. Recently, some authors 
have proposed the more general class of 
nonuniform directional filter banks, with arbitrary 
frequency partitioning or number of sub-bands 
[13,14]. 
 
Various efficient design procedures for FIR and 
IIR fan filters were approached in early works like 
[15,16]. Some analytical methods were proposed 
by the author for the design of adjustable square-
shaped filters [17] and wedge filters [18], using 
specific frequency mappings and various 
approximations. 
 
This paper proposes a novel analytical method 
for the design of various 2D filters for frequency 
plane partition, namely with diamond, 
parallelogram, fan or wedge-shaped frequency 
response, starting from two zero-phase low-pass 
prototype filters and applying specific frequency 
mappings. The proposed design approach is 
mainly analytical, but also uses some efficient 
approximations. Section 2 presents the prototype 
filters used, while in Section 3 the design of 
diamond and fan filters is detailed. More general 
filters, like parallelogram and wedge filters are 
derived in Section 4. 
 

2. PROTOTYPES FOR DIAMOND AND 
FAN-SHAPED 2D FILTERS 

 
Generally, analytical design methods are based 
on 1D filters with imposed parameters, which     

are prototypes for the desired 2D filters.                      
In this section, two zero-phase low-pass                       
(LP) prototype filters will be discussed and will     
be used in the proposed design approach. First, 
let us consider a continuous function with odd 
parity approximating a step function, namely 

hyperbolic tangent ( ) tanh(10 )HTH    . In 

order to find a trigonometric approximation of 

( )HTH  the following variable change is 

introduced: 

 

 arcsin sin( )x x                 (1) 

 
Using the Chebyshev-Padé method, we can 
easily derive the following trigonometric 

approximation for ( , )    : 

 

   
 1

sin 1 0.687922cos 2
( ) 1.265

1 1.062289cos 2 0.105738cos 4
H

 


 


 

 

                           (2) 
 
which is displayed in Fig. 1 (a). This                     
smooth, maximally-flat function will be further 
used as a prototype for particular diamond and 
fan filters.  
 
For the second prototype, let us consider a 
Butterworth low-pass filter ( )BH s  of order N, with 

transfer function magnitude of the form 
2

0( ) 1 1 ( / ) N
BH j    , where 0  is the 

cut-off frequency of the filter. Its magnitude in 

normalized frequency 0( 1)   is the function 

( )BnH j  [2]: 

 

 
2( ) 1 1 N

BnH j                               (3) 

 
In order to obtain a zero-phase prototype of                

the same shape as ( )BnH j , a rational 

approximation of the magnitude ( )BnH j  for 

 ,     is needed. A convenient method is 

the Chebyshev-Padé expansion; it yields an 
efficient and uniform approximation over a 
specified interval and can be found using a 
symbolic computation software like MAPLE. 
Since a filter with a steeper characteristic would 
be desirable, let us take an order 12N   and we 

get for [ , ]    the 8-th order rational 

approximation of the magnitude in factored form, 
also used in [17]: 
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4 4

4

2 2

424

1

2 2

2

( 5.8589322 22.393616) 13.689786 49.701 ( )
( )

( (

1196

0.253253 0.2830378) 1 )1

                            ( ) ( )

.843889 0.999034
P

P P

H

H H

   
 

   

  

   

 

 
   



  

                  (4) 

 
where 0.0002516  . The frequency response 

( )PH   of this prototype is plotted in Fig. 1 (b) 

and shows a small amplitude ripple in the pass-

band. The cut-off frequency is 0 1   and 1p  . 

A low-pass filter with a better flatness would 
obviously result of higher order. The advantage 
of this factored rational approximation is that it is 
easily scalable on frequency axis. Each of the 

rational expressions ( )PiH   (for 1, 2,...i  ) 

occurring as factors in ( )PH   given by (4), with 

4-th order numerator and denominator, can be 
written: 
 

   4 2 4 2
1 0 1 0( )Pi i i i iH b b a a                                              

(5) 
 
As specified earlier,   is the frequency 

normalized to the cut-off frequency 0 ; finally, 

  is substituted by 0   in (5). It is more 

convenient to substitute   by p  , where

01p  . Thus the ratio factor ( )PiH   from (5) 

can be re-written in the following form including 
the parameter p, which makes it scalable along 
the frequency axis: 
 

   4 4 2 2 4 4 2 2
1 0 1 0( )Pi i i i iH p b p b p a p a                                      

(6) 
 

For a given value 1p  , the characteristic ( )PH   

displayed in Fig. 1 (b) either stretches (for 1p  ) 

or shrinks (for 1p  ) along the frequency axis. In 

Fig. 1 (c), (d) two low-pass characteristics 

derived from ( )PH   are plotted, for the 

indicated values of p and 0 . Thus the 1D 

prototype is parametric depending on p. From 

the two proposed prototypes, 1( )H   given by (2) 

is maximally-flat and simpler, but its bandwidth is 
fixed and can only be used in a few particular 
cases, as shown further in Section 3. The 

prototype ( )PH   given by (4) has a higher 

order, but it has the advantage of being scalable. 
Thus it is more general and will be used in some 
design examples in Section 4. 

 

  
  

    (a)                           (b) 
 

 
 

 

                             (c)                                         (d) 
 

Fig. 1. (a) Odd-parity function 1( )H  ; (b) LP prototype filter for 1p  0( 1)  ; (c), (d) scaled LP 

filter for 0.6p   0( 0.53 )   and 2.7p  0( 0.118 )   
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3. DIAMOND AND FAN-SHAPED 2D 
FILTER DESIGN 

 

Some simple 2D IIR filters with diamond,                     
fan and wedge-shaped characteristics                   
will be next designed using frequency                       

mappings applied to the zero-phase LP    
prototype filter given by (2). By making the 

substitution 1 2( ) / 2     in (2), a 

diagonal unilateral filter results, as shown in Fig. 
2 (b): 

 

 
   

 
 

1 2 1 2

1 1 2 1 2

1 2 1 2

1 2 1 2

1.265 sin ( ) / 2 1 0.687922cos ( )
( , ) ( ) / 2

1 1.062289cos ( ) 0.105738cos 2( )

                                                      1.265 sin ( ) / 2 ( )

U P

PE

H H

H

   
   

   

   

    
  

   

    

                (7) 

 

where 1 2( )PEH    is the even part of the unilateral response 1 1 2( , )UH   . Likewise, making the 

substitution 1 2( ) / 2    , another  diagonal unilateral filter results: 

 

    2 1 2 1 2 1 2 1 2( , ) ( ) / 2 1.265 sin ( ) / 2 ( )U P PEH H H                                               (8) 

 

The frequency response 2 1 2( , )UH    is 1 1 2( , )UH    rotated with / 2  in the frequency plane. 

Obviously the factors  1 2sin ( ) / 2   and  1 2sin ( ) / 2   from (7) and (8) can only be 

implemented by means of interpolation. However, the product of functions 1 1 2( , )UH   , 2 1 2( , )UH    

represents the frequency response of a fan filter as follows: 
 

1 1 2 1 1 2 2 1 2( , ) ( , ) ( , )F U UH H H                                                                                      (9) 

 

   
   

                   (a)      (b)       (c) 

  
   
                     (d)       (e)     (f) 

 

Fig. 2. (a) 8-band frequency plane partition; frequency response and contour for: (b) diagonal 
unilateral filter; (c), (d) fan filter; (e), (f) diamond filter 
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and using the identity    1 2 1 2 2 1sin ( ) / 2 sin ( ) / 2 (cos cos ) / 2          , the frequency 

response of the fan filter shown in Fig. 2 (c) is given by: 
 

1 1 2 2 1 1 2 1 2( , ) 0.8 (cos cos ) ( ) ( )F PE PEH H H                                                       (10) 

 
From this fan filter it is straightforward to derive a diamond filter. As shows the frequency response in 

Fig. 2 (e), it simply results by shifting the fan filter in Fig. 2 (c) along the axis 1  with the values  . 

Its frequency response 1 1 2( , )DH    is: 

  

1 1 2 1 1 2 2 1 1 2 1 2( , ) ( , ) 0.8 (cos cos ) ( ) ( )D F PE PEH H H H                               (11) 

 

Substituting   in (2) by 1  and 2 , we derive the frequency responses 12 1 2 1 1( , ) ( )UH H   , 

22 1 2 1 2( , ) ( )UH H    of the half-plane unilateral filters shown in Fig. 3 (a), (b).  

 

   

(a) (b)    (c) 

   

(d) (e)    (f) 

  

                                                   (g)                    (h) 
 

Fig. 3. Frequency responses and contour plots for: (a), (b) unilateral filters; (c) uncorrected 
odd-symmetry fan filter; (d) square LP correction filter; (e), (f) corrected odd-symmetry fan 

filter; (g), (h) half-quadrant wedge-filter 
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Using these frequency responses, the fan filter 

2 1 2( , )FH    displayed in Fig. 3 (c) results, with 

the frequency response given by the expression: 
 

 2 1 2 12 2 22 1( , ) 0.5 1 ( ) ( )F U UH H H      
  
(12) 

 
As can be noticed, this filter has some marginal 
residual distortions due to periodicity in the 
frequency plane. These are subsequently 
removed by applying an additional correction 

low-pass filter 1 2( , )CH    with large pass-

bandwidth, like in Fig. 3 (d). 
 
This square-shaped low-pass correction filter is 
based on a simple prototype having the rational 

expression  ( ) (1 cos ) (1 cos ) 1CH k k        ; 

for larger values of k, the filter is steeper and with 
larger bandwidth. The 2D low-pass filter results 

as: 1 2 1 2( , ) ( ) ( )C C CH H H      and is 

separable.  The filter in Fig. 3 (d) results for the 

parameter value 100k  .  
 

The corrected fan filter shown in Fig.3 (e), (f)         
has the frequency response of the form 

2 1 2 2 1 2 1 2( , ) ( , ) ( , )F C F CH H H        and                 

the marginal distortions are visibly reduced.                  

The frequency response 3 1 2( , )FH    of a                  

half-quadrant wedge filter, shown in Fig. 3                   
(g), (h), results as the product 

3 1 2 1 1 2 2 1 2( , ) ( , ) ( , )F F F CH H H       , i.e. 

multiplying the filter frequency responses 
displayed in Fig. 2 (c) and Fig. 3 (e). 

 

   
   

   (a) (b)     (c) 
 

   
    

 (d)      (e)      (f) 
 

  
  (g)        (h)      (i) 

 

Fig. 4. (a) contracted fan filter; (b) LP filter; (c), (d) narrower fan filter; quarter-quadrant filters: 

(e) 5 1 2( , )FH   ; (f) 6 1 2( , )FH   ; (g) The function 
2  (in blue) and its trigonometric 

approximation (in red); (h), (i) parallelogram-shaped 2D filter 
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A low-pass filter can be derived from the 

unilateral function 12 1 2( , )UH    through the 

frequency shift 1 1    , resulting in

 1 1 2 1 1( , ) 0.5 1 ( )LPH H       , which is 

displayed in Fig. 4 (b).  
 

From 1 1 2( , )FH    shown in Fig. 2 (c), a fan filter 

contracted along 1  axis results, having the 

frequency response given in Fig. 4 (a), with the 
expression: 
 

 12 1 2 1 1 2 1 1 2( , ) 0.5 1 ( 2 ) ( 2 )FH H H                                      

(13) 
 

Using the LP filter in Fig. 4 (b) to remove 
undesired spectra, the narrower fan filter shown 
in Fig. 4 (c), (d) results, given by: 
 

4 1 2 12 1 2 1 1 2( , ) ( , ) ( , )F F LPH H H      
  
 (14) 

 

Finally two quarter-quadrant wedge filters                    
are derived, whose contour plots are                  
displayed in Fig. 4 (e), (f). Their frequency 
responses are given by the expressions 

5 1 2 4 1 2 2 1 2( , ) ( , ) ( , )F F F CH H H        and 

6 1 2 3 1 2 5 1 2( , ) ( , ) ( , )F F FH H H       , 

respectively. Using successively this method, 
more selective filters of this type may be 
obtained.  
 

4. PARALLELOGRAM AND WEDGE-
SHAPED FILTER DESIGN 

 
In this section a design method for parallelogram 
and wedge-shaped 2D IIR filters is proposed, 
using frequency transformations applied to the 
scalable low-pass prototype (4). From a 1D 

prototype filter ( ) ( )P PH s H j  (varying on one 

axis only), a 2D oriented filter results by rotating 

the axes of the plane 1 2( , )   by an angle  . 

The rotation is defined by the linear 

transformation, where 1 2,   are the original 

frequency variables and 1 2,   the new ones 

[1]: 
 

1 1

2 2

cos sin

sin cos

  

  

    
         

                (15) 

 

The spatial orientation is specified by an angle   

about 1  axis, and defined by the 1D to 2D 

frequency mapping [1]:  

1 2cos sin                               (16) 

 
Squaring both members of mapping (16), we 
obtain: 
 

2 2 2 2
1 1 2 2 12 1 2( )p p p           (17) 

 
where the parameters occurring in (17) have the 
following expressions:

1 0.5 (1 cos 2 sin 2 )p      , 

2 0.5 (1 cos 2 sin 2 )p      , 12 0.5 sin 2p   ,  

depending on the value of angle  . Substituting 

the mapping given by (17) into the adjustable LP 
prototype (4), a rational expression in powers of 

2
1 , 

2
2  and 

2
1 2( )   is found. The next step 

is to find convenient trigonometric expressions 
for these terms. Using the variable change 

 arccos cos( )x x       and the 

Chebyshev-Padé method, we can easily derive: 
 

 
 

2 1 0.31518 cos 0.68117 cos 2
1.3451

1 0.99346 cos 0.08573 cos 2

 


 

   
 

   

                                 (18) 
 
which is a very accurate approximation, plotted in 
Fig. 4 (g). The parallelogram-shaped filter in Fig. 

4 (h), (i) has a frequency response 1 1 2( , )PH    

resulted as a product between frequency 
responses of two oriented filters with parameters 

0.96p  , 6   and 0.46p  , 12  , 

respectively. In this example, two opposite 
corners of the parallelogram are located in two 
opposite corners of the frequency plane. 
  
From the parallelogram-shaped filter 1 1 2( , )PH   , 

a wedge filter 1 1 2( , )WH    is derived if its 

frequency response is shifted by the value   

along both frequency axes 1  , 2 : 

 

1 1 2 1 1 2( , ) ( , )W PH H                   (19) 

 
5. DISCUSSION 
 
The stability of the designed filters will be studied 
in further work. Generally, the problem of 
ensuring stability for 2D filters is much more 
complicated than for 1D filters. However, if the 
1D prototype used in design is stable and the 
applied frequency mappings preserve stability, 
the obtained 2D filters should also be stable. 
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However, various stability criteria have been 
established [6] and stabilization methods can be 
applied for unstable filters [7]. 

 
As regards comparison with previous work on 
this topic, the novelty of the proposed method 
consists in using efficient, zero-phase scalable 
prototype filters, to which specific frequency 
mappings are applied, which lead to 2D filters 
with desired shapes. Based directly on the 
prototypes proposed by the author, elementary 
diamond and fan-shaped filters are obtained, 
then these are combined successively, using 
symmetry properties as well, in order to derive 
more selective filters of this type, for instance fan 
filters with a smaller aperture angle, i.e. with 
higher angular selectivity. Thus, these filters can 
be regarded as components of directional filter 
banks, as they realize a partitioning of the 
frequency plane into a given number of fan-
shaped regions. Such filter banks are used in 
pattern recognition applications, in particular 
detecting and separating objects with a given 
orientation in the image to be processed. The 
author basically proposed here a novel, efficient 
approach to solve the problem of frequency 
plane partitioning. The analytical design method 
presented here is relatively simple and efficient, 
leading to accurate 2D filters with high selectivity 
and relatively low order, which is a major 
advantage in implementation. 

 
6. CONCLUSION 
 
The proposed analytical design method is simple 
and efficient, yielding 2D IIR zero-phase filters 
which can select in the frequency plane regions 
of various shapes, for instance parallelogram, 
diamond, fan or wedge-type. As shown, more 
selective 2D filters (which select narrower 
regions of the frequency plane) result by 
combining more elementary filters, in other words 
by multiplying their frequency responses. The 
derived 2D filters, as the presented design 
examples show, have maximally-flat 
characteristics, steep transition, an accurate 
shape with low distortions and high selectivity, 
which allows for a precise partitioning of the 
frequency plane into regions with desired shape. 
These may be used in 2D filter banks which are 
applied in image classification tasks. 
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