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Abstract

In this paper, the Homotopy Perturbation Elzaki TramsfoMethod (HPETM) and Homotof
Decomposition Method (HDM) are used to solve nonlineactifraal Heat - Likeequations. Both
methods are very efficient techniques and quite capaldetigally for solving different kinds of linear
and nonlinear fractional differential equations .The resudieal that the (HDM) has an advantage qver
the (HPETM) which is that it solves the nonlinear problersing only the inverse operator which|is
basically the fractional integral. Additionally therenis need to use any other inverse transform to find
the components of the series solutions as in the casd’BfM. As a consequence the calculatipns

involved in HDM are very simple and easy execution.

Keywords: Homotopy decomposition method; integral transformanlinear Heat -Like equation;
Elzaki transform.
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1 Introduction

Fractional calculus [1-3] is a generalization of difféi@ion and integration to non-integer orders. Many
problems in physics and engineering are modulated in terfnaatibnal differential and integral equations,
such as acoustics, diffusion, signal processing, electmustry, and many other physical phenomena.
During the past few decades, a great deal of interest apjedractional differential equations. The
solutions of fractional equations [4-15] are investidatey many authors using powerful methods in
obtaining exact and approximate solutions, Among these nurheniethods, the Variational Iteration
Method (VIM) [Biazar and Ghazvini (2007)], Adomian Decomgiosi Method (ADM) [Hashim, Noorani,
Ahmed. Bakar. Ismail and Zakaria, (2006)] [16-17], and tifeei2ntial Transform Method (ADM) are the
most popular ones that are used to solve differential angtatequations of integer and fractional order.

The Homotopy perturbation method (HPM) is proposed by He 98 188-22]. This method is a coupling of
traditional perturbation method and homotopy in topology. In recestsyHomotopy perturbation method
has been extensively introduced by numerous authors, andmengied to obtain exact and approximate
analytical solutions to a wide range of both linear andimear problems in science and engineering The
Homotopy decomposition method (HDM) was recently proposef@®y4] to solve the groundwater flow
equation and the modified fractional KDV equation [25]. Themdtopy decomposition method [26] is
actually the combination of perturbation method and Adomiaromeosition MethodRecentlyTarig M.
Elzaki and Sailh M. Elzaki in [27-32], showed Elzakirtsform, was applied to partial differential equations,
ordinary differential equations, system of ordinary andiglatifferential equations and integral equations.

In this paper, the main objective is to introduce a coatper study of nonlinear fractional Hedtike
equations by using the Homotopy Perturbation Elzaki Transkéethod (HPETM) which is the coupling of
the Elzaki transform and the HPM using He’'s polynomialsd Ame Homotopy Decomposition Method
(HDM).

2 Fundamental Facts ofElzaki Transform

A new transform called the Elzaki transform defined forction of exponential order we consider functions
in the setA, defined by:

Itl

A= {f(D:3 M, ky,k, >0,[f(D)] < MY ,ift € (1) X [0,0) 1)

For a given function in the set, the const¥ninust be finite numbet,, k, may be finite or infinite. The
Elzaki transform which is defined by the integral equrati

EIF(O] =T@) = v [ f(Dev dt  ,t20,k <v<k, @)

t
E[f(t) vl =T@) = v [, f(the vdt, v € (ky,k;)
The following results can be obtained from the definitiod simple calculations

1) E[t"] =n!v"t?
2) EIf'()] =2 —vf(0)

v
T(v)

3) Elf"(0] ="2~ f(0)-vf (0)
4 E[f™®)]=T2 - proivrmrkpo),

v
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3 Fundamental Facts of the Fractional Calculus

Definition 1: A real function fx),x > 0, is said to be in the spaCg, U € R if there exists a real number
p > |, such thaf (x) = xPh(x) , whereh(x) € [0,) and it is said to be in spacg" if f™ € C,,, m €
N.

Definition 2: The Riemann-Liouville fractional integral operator of order 0, of a functionf € C,,,
u = —1, is defined as

Jof(x) = r(a)f (x - D" f(Ddt,a >0,x >0 )
Jr () = f(x)
Let’s consider a some of properties for operatof“ (e.g., [1-3]):

If f€Cy, pu=-1,a,20 andy >—1 then/*JFf(x) = J**Pf(x), JYPf(x) = JFJ*f(x) J%x¥ =
r(y+1) aty

v am——

T'(a+y+1)

Lemma 1:

Ifm—-1<a <m,méeNandf € C,, p = —1thenD*J*f(x) = f(x) and,

JUD§ f(x) = f(x) = XRsg f® (0) (4)

Definition 3: (Partial Derivatives of Fractional order)

Assume now thaf(x) is a function ofn variablesx;, i =1,...,n also of clas€ onD € R,,. As an
extension of definition 3 we define partial derivative ofesr@ for f(x) respect tox;

Xi

1
adyf = T

— m-a-t a’?if(xj”xj:tdt (5)

If it exists, wheredy, is the usual partial derivative of integer order
Theorem 1:

If T(v) is Elzaki transform oft), one can take into consideration the Elzaki transformhefRiemann-
Liouville derivative as follow:

T[D*f(1)] = v [T (W) = Tio v* 2 [D**f(0)]] ;-1<n-1<a<n (6)
Proof: Let us take Laplace transformationfoft) = % f(®

LID*f ()] = S*T(s) — Xz s*[D** £ (0)]

= 5°T(s) = ) SFUDTHF(O)] = 5T(s) = ) s*2[DTHF(O)]

k=0 k=1

- SaT(S) —k+2 k=1[Da_kf(0)] = SaT(S‘) - Zk 0 ga- k+2 - [Da kf(O)]

= 59T (s) — Loy 5 =z [DE£(0)]
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L f O] =5 [16) - T () 105 *F (O]

Therefore, when we substituttie for s, we get the Elzaki transformation of fractional orderf @f) as
follows:

E[D*f(©)] = v™¥[T(v) — Xj= v* 2 [D*7*£(0)]] )
Definition 4:
The Elzaki transform of the Caputo fractional derivatiyeusing Theorem 1 is defined as follows:

EIDEF(D)] = vE[f(D)] - X ve k2 f® (0) ,m-1<a<m ®

4 Basic ldea

4.1 Basic idea of HPETM

To illustrate the basic idea of this method, we considgmeral form of nonlinear non homogeneous patrtial
differential equation as the follow:

DEu(x,t) = L(u(x, ) + N(u(x, ) + f(x,t) , a>0 ©)
with the following initial conditions

Dku(x,0) = g, k=0,..,n—1, D}u(x,0) = 0 andn = [a] (10)
where DF denotes without loss of generality the Caputo fractionaivakdre operatorf is a known
function, N is the general nonlinear fractional differential operatndL represents a linear fractional
differential operator.
Taking Elzaki transform on both sides of equation (9), to get:

E[Dfu(x, )] = E[L(u(x,t))] + E[N(u(x, ©))] + E[f (x, )] (11)
Using the differentiation property of Elzaki transform atve initial conditions, we have:

Elu(x, )] = v*E[L(u(x,1))] + v*E[N(ulx, )] + g(x,t) (12)
Operating with the Elzaki inverse on both sides of equdfighgives:

ulx,t) = Gx,t) + E-1 [v“E[L(u(x, )] + vE[N (ulx, t))]] 13§

whereG (x, t) represents the term arising from the known funcfi@n t) and the initial condition.
Now, we apply the homotopy perturbation method

u(x, t) = Y=o p"u, (x, ). (14)
And the nonlinear term can be decomposed as:

Nu(x,t) = Xr=op"Hy(u) (15)
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whereH,, (u)are He's polynomial and given by:

Ha (g s, g - n) = 2 N (L P (5, D pmo 7= 012, (16)
Substituting equations. (15) and (14) in equation (13) we get:
Trcop"un(x,6) = 606, t) + p [E7 [ve E[L(Ziim0 ™t (r, )] + v EIN (Zrico p"un (x, )] (17)

which is the coupling of the Elzaki transform and the hampperturbation method using He’s polynomials
and after Comparing the coefficient of like powerppive obtain the following approximations:

p° tup(x, t) = G(x,t),

ptiu (x,t) = ETHv*E[L(uy(x, t)) + Ho(w)]],

p? i uy(x,t) = ETY[w*E[L(u,(x, t)) + H,(W]],

p3ruz(x,t) = ETYwYE[L(u,(x, t)) + Hy(w)]],

p" i up(x,t) = ET v E[L(up-1(x, 1) + Hpy W]], (18)
Hence, the solution can be expressed in the form

u(x, t) = limy, up(x,t) = up(x, t)+uy (x, t) + up(x,t) + - 19)
By virtue of (18) the solution (19) is converges very dapi

4.2 Basic idea of HDM

The method consists of first step to transform the fractipastial differential equation to the fractional
partial integral equation which applying the inverse opemfoto the both sides of equation (9), finally,
solution u(x,t) can be written in the form:

ule,t) = Yot —2 ¢ + %f;(t - )% L(ulx, 1) + N(ulx, 1) + f(x,7)]dr (20)

I(a—j+1)
Other side using the following

n-1_JFj®)
Zi:l [(a—j+1)

—j - gj i
t%J = f(x, t)orynt r(a_j,ﬂ) t/ = f(x,t)

we have

u(x, t) = T t) + — [ (t = ) [L(uCx, D) + N(ulx, D) + f(x,)]dr (21)

I'(a)~0

In the method of homotopy decomposition method, the lz@siomption is that the solutions can be written
as a power series n

u(x, tr p) = Z;CL?O pnun(x: t) (22)

u(x, t) = limp,_,; u(x, t,p) (23)
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and the nonlinear term can be decomposed as
Nu(x,t) = Xz=op"H, (W) (24)

wherep € (0,1] is an embedding parameter and the He’s polynomials that agenleeated by:

an o i
Hy,(ugr tqy Uy e Upn) = %m INEiZop'ui(x,t)]p=0 ,n=0,12,... (25)

The homotopy decomposition method is obtained by the graceful sgugdlhomotopy technique with Abel
integral and can be written as

S0P un(6,6) = T, 6) = L [t = G0 D) + L(Eino pttn (5, 7)) + N (Erimo Pt (x, 7) e
(26)

Comparing the terms of same powers of gives solutions ofusadalers with the first term:
up(x,t) = T(x,t) (27)
We include that the term is the Taylor series of thecesolution of equation (9) of order— 1.

5 Applications

In this section we solve some nonlinear partial differéptiation with both methods.

Example 5.1:Let’s consider the following one dimensional fractionalthblke equation:
Df‘u(x,t)=%x2uxx(x,t),O<x<1,0<a$1,t>0 (28)

With the boundary conditions;
u(0,t) =0, u(l,t) =et

and initial condition;
u(x,0) = x?

5.1 Application method of Homotopy perturbation Elzaki transform

Apply the steps involved in HPETM as presented inigeet.1 to equation (28) we obtain the following:
p? :uy(x,t) = x?

x2t®  x%t®
a! I'(a+1)

PG ) = B v E [E oo D | = B v B L)) = B [P0+ =

2. I « 1 5 I « X2t R (v20+2)x2 _ x2p2a
p?iu,(x,t) =E [” E [Zx ur (3, t)"x” =E [v E [F(a+1)]] =E T(a+1) ] T r@a+1)’
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Proceeding in a similar way, we have:

_ 1 2¢3a
3t u,(x,t) =EL [U“E [Exzuz(x, t)xx” = ﬁ

_ 1 Ztna
nu,(x,t) =E71 [U“E [Exzun(x, t)xx” = lj(cna+1) ,

Therefore the solution(x, t) can be written in the form:

tZa t3a tna
ulxt) =x (1 * F(a+1) Yz Tteen T Ty T ) (29)
This is an equivalent form to the exact solution in closechf
u(x, t) = x2E,(t%) (30)

whereE, (t*) is the Mittag-Leffler function

5.2 Application the method of Homotopy perturbationAdomain decomposition

Applying the steps involved in HDM as presented inisact.2 to equation (28) we obtain the following
Sii-op"n (e, 0) = x? = L 1 = T (Timo Pt O, D))t (31)

Comparing the terms of the same powerg afe obtain:

Uy (x,t) = x?

u; (x,t) = I (a )f (t =D x? (o (x, D)) dT = F(a+1)

u, (x, t) = F(a)f (t — D [x?(uy (x, 7)) ]dT = = i

rea+1)’
us (6, ) = = (0 = D)% 1P (1, O, D) dT = 225
3 I'(a) 230 Hxx r(Ga+1)’
a-1 2 xztna
un(x' t) = (e )f (t—1) [x (un 1(x T)xx)] F(na+1) )
Hence, the asymptotic solution can expressed by
(l tZ(l t3a tna
ulx, ) = x (1 + T(a+1) + Ta+1) + IGa+1) Tt T(na+1) + ) (32)
Tlli_rl}oun(x, t,a) = x%et
a—-1
This is the exact solution of equation (28) whker.
Example 5.2:Let’s Consider the following tow dimensional fractional Hédag equation:
Difu =1y, +uyy, 0<x, y<2m, 0<a<2,t>0 (33)

with the initial conditions

u(x,y,0) = sinxsiny
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5.3 Application method of Homotopy perturbation Elzaki transform
Applying the steps involved in HPETM as presented iticed.1 to equation (33) we obtain the following:
p° : up(x,y,t) = sinxsiny

__ —2sinxsiny t®

piu (i, y,t) =E7! [vaE [uoxx + u(’yy” T I(a+1)

) 4sinxsiny t2¢
p?:u,(x,y,t) =E1 [vaE [ulxx + ulyY” - W

Proceeding in a similar way, we have:

—8sinxsiny t3%

3. _
p?rus(x,y,6) = r(3a+1)

_ (=2)"sinxsiny t"¢

pn : un(x!y!t) - T N

I'(na+1)

Therefore the solution(x, t) can be written in the form:

(2t%) (2t%)? (2t%)3 (2"
T'(a+1) T'Qa+1) TI'(Ba+1) I'(na+1) ) (34)

u(x,y,t) = sinxsiny (1 —
For the special case when= 1, we can get the solution in a closed form

u(x,y,t) = e ?'sinxsiny (35)
5.4 Application the method of Homotopy perturbationAdomain decomposition

Applying the steps involved in HDM as presented inisact.2 to equation (33) we obtain the following
S0Pty (3, 0) = £ [t = ) [(Trcop"un (63, ), + Bico P un(x,3,8),, )] dT - (36)

p° : uy(x,y,t) = sinxsiny

S
I(a)

(-2sinx siny )t%

ui(x,3,6) = I(a+1)

f;(t - T)a_l(uoxx + uoyy)dT =

t

1 3 (4sin x sin y )t2*

uy (x,y,t) = mj(t =D Uy, + Uy, )AT =
0

I'Ca+1)
I S P _ (=2)"(sinxsiny )t"*
un(6,3,) = () fo (=D (uny, + u"yy)dT - I(na+1) ’
Therefore the solution(x, t) can be written in the form:
. . (2t (2t%)2 _ (2t%)3 @tHn
u(x' Y t) =sinxsiny (1 T'(a+1) T'Qa+1) TQGBa+l) I'(na+1) * ) (37)

For the special case whan= 1, we can get the solution in a closed form

2

u(x,y,t) = e *'sinxsiny (38)
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This is the exact solution for this case
Example 5.3:Let’s Consider the following three dimensional fractiomat-like equation:
Dfu(x,y,z,t) = x*y*z* + i(xzuxx +y2uy, +z%u,),0<xy,z<10<a<1 (39)
With the initial condition;
u(x,y,z,t) =0
5.5 Application method of Homotopy perturbation Elzaki transform
Applying the steps involved in HPETM as presented in@eet. 1 to equation (39) we obtain the following:

p? 1 uy(x,y,zt) = xty*z*

1. _r1|,ap[l(,2 2 2 _ xtytzte
priu(x,y,zt) =E [v E [36 (x Ug,, + YU, +2 uozz)” = T@
1 x4y4z4t2a
2. — -1 a _ 2 2 2 —
p*ru,(x,y,zt) =E [v E[36 (x Uy, YU, +2 ulzz)” =T2a+ D)
Proceeding in a similar way, we have:
3. _ x4y4z4t3a
p’rus(ny zt) = r3a+1) '
n. _ x4—y4z4tna
p: un(x,y,z, t) = r'(na+1) '
Therefore the solution(x, t) can be written in the form:
_ 4. 4.4 t(l tZa t3a . tna .
u(x' t) =xyz (1 + I'(a+1) + I'(2a+1) + rGa+1) + + T'(na+1) + ) (40)

5.6 Application the method of Homotopy perturbationAdomain decomposition
Applying the steps involved in HDM as presented inisact.2 to equation (39) we obtain the following

0 t —
Y=o "un(x,y,2,t) = %fo (t—-1)* 1

[x tytat (i (xz Zn=0P"un(%,y,2,8)  +y? Xn=op"un(x,3,2,t)  +2° Xn=op"un(x,y, 2, t)zz))] dt
(41)
uy(x,y,zt) =0

xtytztea
I'(a+1) '’

1

u,(x,t) = %)

Jy (& = Lty iz dr =

1 _ (x4y4z4)t"“

t _ 1
u,(x,y,2,t) = @ INGEEI i [(x"y"z”’) ;(xzun_lxx + ¥ Un g, + zzun_lzz)] dr = =
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Therefore, the approximate solution of equation for thé firscan be expressed by:

N
(x4-y4-z4-) tna

un(0,y,2,6) = I'(na+1)
n=1

whenN — o« the solution can be expressed by

0

4,4, 4\ +na
u,(x,y,2,t) = Z% = (x*y*z*) = (x*y*zH[E,(t*) — 1]
n=0

whereE, (t%) is the generalized Mittag-Leffler function.

Note that in the case = 1

u(x,y,z,t) = (xyz)*[et — 1] (42)

This is the exact solution for caseaot= 1 .

6 Conclusion

In this paper, the Homotopy Perturbation Elzaki Transform Metl{BPETM) and Homotopy
Decomposition Method (HDM) are used to solve nonlineartitraal Heat - Likeequations. These two
methods are very efficient techniques and quite capabletiqaity for solving different kinds of linear and
nonlinear fractional differential equations arising irfetiént fields of science and engineering. However, the
HDM has an advantage over the HPETM which is that #esothe nonlinear problems using only the
inverse operator which is simple the fractional integfdéo we do not need to use any order inverse
transform to find the components of the series soluticnsnathe case of HPETM. In addition the
calculations involved in HDM are very simple and easy eten.
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