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ABSTRACT 
 
Based on the knowledge exhibited in the literature on the Carnot cycle, a preliminary study is carried 
out on Carnot machines capable of implementing the Carnot cycle at high thermal efficiency. 
Therefore, two engine structures are proposed: (i) reciprocating single and double-acting cylinder-
based thermal engines implemented under a closed processes-based Carnot thermal cycle 
characterised by a mechanical structure internally coupled, and (ii) similar engines characterised by 
a mechanical structure internally decoupled.  
In order to perform the cycle analysis, however, observational (experimental) evidence confirms on 
a daily basis the fact that there are two performance criteria: conventional (output net work/input 
heat) thermal efficiency and output/input energetic-based first law efficiency. Based on such 
premises, this study investigates both coupled and decoupled Carnot engine structures.  
The results confirm that an important fraction of heat can be converted into useful work by 
configuring a decoupled structure of the Carnot engine. 
Indicative results support the use of internally decoupled thermal machines, especially when the 
heat source has a low or medium temperature. Even at high temperatures, such machines are 
advantageous in terms of energy efficiency. Furthermore, avoiding internal coupling allows for power 
regulation without disturbing interactions due to variations in load, thus enabling robust control. 
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ABBREVIATIONS 
 
Symbol Nomenclature/units Acronyms Meanings 
n polytropic exponent CF Carnot factor, Carnot efficiency 
 adiabatic exponent cpb closed process-based 
CV specific heat at const. vol. (kJ/kg.K) FCF forced convection fan 
th thermal efficiency (%) HE irreversible heat engine 

E energetic efficiency, Energ.eff  (%) HEr reversible heat engine 

c  Carnot efficiency, Carnot factor (%) Hex heat exchanger 
h specific enthalpy (kJ/kg.K) HTF heating transfer fluid  
p pressure (bar) sp thermal state point 
q specific heat magnitude (kJ/kg) TWF thermal working fluid 
qi specific heat in (kJ/kg) TC temperature controller 
qo specific heat out (kJ/kg) TT temperature transmitter 
R ideal gas constant [Cp-Cv] (kJ/kg.K)   
s specific entropy (kJ/kg.K)   
T temperature (K)   
TH top temperature (cycle) (K)   
TL bottoming temperature (cycle) (K)   
u specific internal energy (kJ/kg)   
v specific volume (m3/kg)   
V volume (m

3
)   

w specific work (kJ/kg)   
wi specific work in (kJ/kg)   
wo specific work out (kJ/kg)   
wn net specific work (kJ/kg)   
 

1. INTRODUCTION 
 
1.1 Introduction and Background 
 

In 1824, Carnot proposed an ideal reversible 
thermal cycle operating on reversibility conditions 
[1]. He proved that there exists an upper limit of 
the efficiency of this ideal reversible thermal 
cycle, and, according to him, this limit is 
applicable to any real thermal cycle. However, 
Carnot’s theorem limits the thermal efficiency of 
the Carnot cycle, including Carnot-like cycles 
such as ideal Stirling and ideal Ericsson cycles. 
 

The Carnot cycle is designed to operate 
exclusively as a reversible ideal Carnot engine. 
Carnot’s principle states that “no heat engine 
(HE) can be more efficient than a reversible one 
(Her) operating between the same 
temperatures.” This relevant statement 
asseverates that any irreversible engine is less 
efficient than the same reversible engine. 
Nevertheless, this statement does not make any 
reference to the impossibility of converting heat 
to mechanical work under a limited or restricted 
conversion ratio to any given value. Thus, it does 
not refer to the impossibility of designing ideal 

thermal machines that are more efficient than the 
Carnot engine. 
 
Thus, since the Carnot engine operates 
exclusively under a Carnot cycle, it is not a real 
thermal engine requiring that all cycle processes 
are reversible. As a consequence, no type of real 
machine or thermal working fluid is considered. 
However, it is used as a benchmark that is useful 
when approaching the thermal efficiency or 
performance of conventional thermal engines, 
which are designed to be as close as possible to 
the Carnot engine. 
 
In terms of Carnot’s theorem’s usefulness, how 
can a concept that cannot exhibit real existence 
be compared with a real entity? It can be done 
only if Carnot efficiency is considered as an 
unattainable goal. 
 
Accordingly, the non-existent concepts of the 
Carnot cycle and its efficiency are useful as 
unattainable goals against which existing 
technologies can be compared. This                    
does not mean that a technological paradigm 
shift cannot exceed a goal set by the Carnot 
factor. 
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However, the concept of Carnot efficiency 
explains that even under ideal conditions (without 
dissipation), there are physical reasons for 
avoiding converting all the energies absorbed by 
the cycle in mechanical work. Therefore, it is 
worth trying to design a real thermal engine 
capable of coming as close to the Carnot factor 
as possible.  
 
When trying to approach a real and efficient 
Carnot engine in the first place, it must be 
considered that the ideal Carnot cycle operates 
without a thermal working fluid. It is known that 
the characteristics of a thermal working fluid are 
one of the conversion factors that heavily 
influence the efficiency of the thermal cycle. 
Another important factor is the heat-work 
conversion ratio (w/q) of the thermal process 
carried out in any thermal cycle. The conversion 
ratio depends on the characteristics of the 
working fluids and the path function. Another 
crucial factor is the structural conception of the 
thermal engine. Heat transfer facilities (internal 
and external irreversibilities) and external 
environment conditions also contribute to the 
efficiency of the cycle. The limits of the thermal 
efficiency of real thermal cycles depend on many 
factors besides Carnot constraints. The 
conversion of total heat to work requires that for 
every conversion process in a thermal cycle 
satisfies the condition that (w/q) = 1. 
 
The advances made in the Carnot cycle over the 
last two decades concern general aspects rather 
than the approximation of a real machine using 
the Carnot cycle. F. Moukalled [2] used 
endoreversible thermodynamics to study the 
performance of Carnot engines with heat                     
leaks, showing that the efficiency at maximum 
power output is significantly affected by the rate 
of heat leak. M. Bojić [3] found that the 
production of heat and power is maximised when 
the products of the size and heat transfer 
coefficients on the hot and cold sides of the heat 
exchangers of the Carnot engine are equal.  
Also, the ratio of the lower and higher 
temperatures of the Carnot engine should 
present optimal values. 
 
Stanislaw Sieniutycz [4] analysed an irreversible 
extension of the Carnot problem of maximum 
mechanical work delivered from a system that 
involves two fluids of different temperatures. Ali 
Kodal et al. [5] reported finite time 
thermodynamic optimisation based on the 
maximum power density criterion for an 
irreversible Carnot heat engine. 

Francesco di Liberto [6] proposed a stepwise 
Carnot cycle performed by means of N small 
weights (called dw’s), which were first added and 
then removed from the piston of a vessel 
containing the gas. The results show that the 
work performed by the gas can increase the 
potential energy of the dw’s. N. Sánchez Salas et 
al. [7] presented the results of efficiency and 
power output for irreversible Carnot-like heat 
engines with nonlinear inverse, Dulong-Petit, and 
Stefan-Boltzmann heat transfer laws when 
optimised with a recent criterion. 
 

S.K. Tyagi et al. [8] performed a parametric study 
of irreversible Stirling and Ericsson cryogenic 
refrigerator cycles as a paradigm of Carnot cycle 
applications. Lingen Chen et al. [9] approached 
an optimal configuration and the fundamental 
optimal relationship between the cycle’s power 
output and efficiency, discussing some special 
examples. The authors claim that some 
theoretical guidance for the design of practical 
engines was achieved. 
 

M. Feidt et al. [10] proposed a model for studying 
and optimising thermal machines with two heat 
reservoirs. The authors claim that once it is 
proven that one of the possible objective 
functions is fixed (as a parameter with imposed 
value), the optima of the other three always 
correspond to each other for the corresponding 
stationary state system, with a given optimum 
heat conductance allocation for one degree of 
freedom. Jonathan M. Cullen et al. [11] 
conducted a study aimed at calculating absolute 
potential to reduce energy demand by improving 
efficiency (they did this by finding the efficiency 
limits for individual conversion devices). 
 

Hamza Semmari et al. [12], showed that a 
thermodynamic engine cycle can be 
implemented by exploiting the temperature 
difference that exists between warm surface 
seawater and cold deep seawater. The engine is 
based on a new Carnot-based cycle for OTEC 
applications (called the CAPILI cycle). In this new 
engine cycle, work is produced by the movement 
of an inert liquid through a hydraulic turbine. In 
the work of Bing Zhou et al. [13], the concepts of 
entransy and entropy are applied to analyses of 
the irreversible Carnot engines based on finite 
time thermodynamics. 
 

Blaise M. et al. [14], studied a Carnot type engine 
with a phase that changed during heating and 
cooling that was modelled with its thermal 
contact with the heat source. Martínez I. et al. 
[15] present an exhaustive study of the 
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energetics of the engine. Their analysis of the 
fluctuations of finite-time efficiency shows that 
the Carnot bound can be surpassed for a small 
number of non-equilibrium cycles. 
 

Michel Feidt [16] presented an extension and 
generalisation of the model proposed by Carnot. 
Mathilde Blaise et al. [17] attempted to define an 
upper bound for waste heat to power conversion 
that depends on the waste heat temperature and 
its available mass flow rate, the working fluid 
used, and the exchangers’ size. Based on this, 
the researchers attempted to model and optimise 
a Carnot-type engine with a changing phase 
working fluid. 
 

Fontaine K, et al. [18] present a method for 
evaluating heat exchangers for OTECs based on 
finite-time thermodynamics. In their method, the 
maximum net power output for different heat 
exchangers (which use both heat transfer 
performance and pressure drop) was assessed 
and compared to improve performance. Michel 
Feidt et al. [19] aimed to enrich the model and 
further the debate by emphasising the 
fundamental role of the heat transfer entropy and 
the production of entropy when accounting for 
the external or internal irreversibilities of the 
converter. They emphasised the main 
consequences of the approach and obtained 
new limits of efficiency at maximum energy or 
power output. 
 
The remainder of the current work is organised 
as follows. Section 2 describes the analysis of 
potential viable Carnot cycle structures. Section 
3 describes the implementation of coupled and 
decoupled Carnot machines. Section 4 explains 
the case study. Section 5 discusses the results of 
the studied cases. Section 6 presents the 
conclusions derived from the analysis. 
 

2. VIABLE THERMAL ENGINE 
STRUCTURES CAPABLE OF 
SUPPORTING A CARNOT CYCLE 

 
All thermal cycles are associated with a specific 
thermo-mechanical structure. Generally, in terms 
of internal mechanical couplings, there are two 
groups of thermal engine structures: internally 
decoupled and internally coupled structures. 
Double and single-acting reciprocating thermal 
engines are inherently internally coupled. 
However, it is possible to construct                   
decoupled reciprocating engines with modular 
structures. 

Fig. 1 depicts several engine structures to 
illustrate the concept of internal and external 
mechanical couplings. The difference between 
coupling and decoupling structures is an 
essential and relevant characteristic that 
determines the efficiency of the thermal engine. 
 

2.1 Modelling and Analysis of the 
Thermo-structural Characteristics of 
Closed Processes-based Thermal 
Engines  

 

2.1.1 Decoupled thermal engine structure  
 

Internally decoupled thermal engine cycles for 
closed processes are modelled according to Fig. 
1 (a) and (b). All types of losses neglected from 
the heat-work interactions considered in this 
analysis are assumed to be based on the 1

st
 law.  

Input energy 
 

iii wqE              (1) 

 

Output energy 
 

ooo wqE              (2)  

 

0)()(  ooiioi wqwqEE       (3) 

 

From (4), it follows that 
 

ooii wqwq  , and iooi wwqq  (4) 

 

The above equation (energy balance) defines the 
1st law for a thermal cycle, which asserts that 
“the net input energy equals the net output 
energy.” 
 

The net output of useful work wu is defined as the 
difference between the output and input 
mechanical work such that  
 

niooi wwwqq             (5) 

 

The thermal efficiency th is defined as the ratio 
of the output useful work to the input heat. Thus, 
the thermal efficiency is 
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Fig. 1. Engine structures: (a) and (b) depicts the OPB Brayton internally decoupled thermal 
engine, (c) and (d) depicts the OPB Brayton internally coupled Brayton thermal engine, and (e) 
and (f) depicts a single-acting reciprocating internally coupled thermal engine (Stirling, Diesel, 

Otto structure types). 
 

From Eqs. (6) and (7), it follows that for internally 
decoupled thermal engine cycles, the thermal 
and energetic efficiencies are different from each 
other. 
 
2.1.2 Coupled thermal engine structure  
 
The internally coupled thermal engine cycles for 
closed processes are modelled according to 
Fig.1 (b) 
 
Input energy 
 

ii qE               (8) 

 
Output energy 
 

icompon www  exp             (9) 

 

ioonoo wwqwqE          (10) 

 
From (10), it follows that  
 

oon qEw   

Also, from 9 and 10,  
 

0)()(  noioi wqqEE         (11)  

 
From (11), it follows that 
 

ooii wqwq  , and niooi wwwqq 

(12) 
 
The above equation (energy balance) defines the 
1st law for a thermal cycle, which asserts that 
“the net input energy equals the net output 
energy.” 
 
The net output useful work wn is defined as the 
difference between the output and input 
mechanical works such that  
 

niooi wwwqq           (13) 

 
Thermal efficiency th is defined as the ratio of 
the output useful work to the input heat. Thus, 
thermal efficiency is 
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The energetic efficiency E is  
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From (14) and (15), it follows that  
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From (14) and (15), it follows that for internally 
coupled thermal engine cycles, the thermal and 
energetic efficiencies are equal.  
 

Table 1 shows the behaviour of thermal and 
energetic efficiencies as a function of mechanical 
coupling structures. The results are achieved 
through the analysis carried out by Eqs. (1)-(15). 
Thus, the findings depicted in Table 1 lead to the 
following conclusions. 
 

Conclusion 1: The energetic and thermal 
efficiencies of an internally coupled thermal 
engine are equal. 
 

Conclusion 2: The energetic efficiencies of two 
thermal engines (internally decoupled and 
coupled) are different from each other. 
 

For the case of internally coupled thermal 
engine cycles, the energetic and thermal 
efficiencies are different. Such an apparent 
controversy must be solved by the following 
analysis. 
 

2.2 Solving the Apparent Controversy 
Due to the Differences between 
Thermal and Energetic Efficiencies in 
the Case of Internally Decoupled 
Engine Structures 

 

The synthesis of the performance of an internally 
decoupled cycle is shown in Fig. 2 from 
information provided by Eqs. (6) and (7), where 
there is a flagrant difference between both 
performance definitions. Therefore, the strategy 
to resolve this controversy consists of the 
following reasoning. From Eqs. (4) and (6), it 
follows that 
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From Eqs. (13) and (14), it follows that 
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In Eq. (17), it is assumed that io wwa  ; in 

Eq. (18), owb  . 
 

Assuming that the thermal and energetic 
efficiencies for internally decoupled machine 
structures are different from each other, the 
objective is to determine which of the two 
efficiency parameters is greater. The starting 
conditions for this purpose are established as 
follows. 
 

wo > wi > 0; wi > 0 → (wo - wi) < wo         (19) 
 

This is the case of a Rankine cycle where the 
output turbine work is greater than the feed pump 
work—or a Brayton cycle where the output 
turbine work is greater than the compressor work 
under steady-state conditions.  
 

Thus, a < b → 
aq

a

o 
 < 
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Therefore,  
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which means that  
 

IF 0 < (wo - wi) < wo THEN Eth           (22) 
 

Thus, the controversy has been resolved 
consistently according to Eqs. (20)-(22). 
 

A very different case is that of a heat                          
pump, where the power of the pump or 
compressor exceeds that of the expander or 
turbine. 
 

Theorem 1: Energetic efficiency is greater than 
thermal efficiency for any thermal engine with an 
internally decoupled structure. 

Table 1. The behaviour of thermal and energetic efficiencies as a function of internally 
mechanical structures (IMS): Coupled or decoupled 
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IMS  Thermal efficiencies Energetic efficiencies comparison 
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Fig. 2. Internally decoupled CPB thermal engine cycle structure 

 
The proof of the theorem has been carried out 
analytically through Eqs. (20)-(22).  
 

The value of the Carnot factor is identical to the 
thermal efficiency of the Carnot cycle. Thus, a 
corollary that connects the energy efficiency of 
the Carnot cycle to the Carnot factor is stated as 
follows. 
 

Corollary 1: The energetic efficiency of a Carnot 
engine is greater than the Carnot efficiency. 
 

This conclusion prompts the search for internally 
decoupled heat engine structures on the basis 
that the energy efficiency is higher than the 
thermal efficiency. This, in turn, highlights the 
fact that the efficiency of an internally decoupled 
Carnot engine can exceed that of the Carnot 
factor. 
 

3. CARNOT CYCLE 
 

Assuming that the Carnot cycle is sufficiently 
mature, this introduction is intended to put into 
context the basic requirements for the structural 
design of an efficient and viable Carnot machine. 
Some thermal cycles designed to operate 
between two temperature levels (TH and TL) are 
characterised by the ability to regenerate a 
fraction of their own residual heat. 
 

There are two conventional thermal cycles 
(characterised by doing work by adding heat or 
rejecting heat) that obey these mentioned 
characteristics: the Stirling cycle and the 
Ericsson cycle. However, the real objective of 
interest is to design a thermal machine capable 

not only of operating between two temperatures 
(high and low) but also of efficiently carrying out 
the processes of the Carnot cycle in an 
irreversible way because there is no physical 
possibility of escaping from the inherent 
irreversibilities. 
 

3.1 Implementation of Feasible Carnot-
like Engines Using a Single-acting 
Reciprocating Machine 

 

Assuming that the modelling of the Carnot cycle 
is well-known, it is considered that it does not 
need any explanation so that it s exhibited as a 
reminder and put into context. Thus, Fig. 3 
depicts the Carnot cycle in T-s and p-V 
diagrams. Also shown are the heats and the 
input and output works of the Carnot engine that 
are associated with the Carnot cycle [20], 
(Chapter 2). 
 

The Carnot heat engine cycle depicted in Fig. 3 
(a) (for the T-s diagram) and Fig. 3 (b) (for the p-
V diagram), is implemented using the four 
reversible closed processes for an ideal single-
acting reciprocating engine depicted in Fig. 4 (a)-
(c). Thus, a complete cycle is composed of two 
strokes: the compression stroke and the 
expansion stroke, which are summarised as 
follows: 
Upward stroke: Compression, Fig. 3 (a) and (b): 
 

4-1 isothermal compression with heat extraction 
at TL  
1-2 adiabatic (isentropic) compression. 
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Fig. 3. The reversible Carnot cycle: (a) T-s diagram and (b) p-V diagram 

 
Fig. 4. Closed processes-based single-acting reciprocating engine structured to support a 

Carnot cycle and equipped with the cooling and heating temperature control devices 
necessary to implement isothermal processes: (a) General structure associated with forced 

convection heat (R. Ferreiro 2020 [20], Chapter 3,4,5) transfer devices, and temperature 
control; (b) internally coupled structure and (c) internally decoupled structure (by means of a 

hydraulic input-output work converter)
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Downward stroke: Expansion Fig. 3 (a) and (b): 
 
2-3 isothermal expansion with heat addition at TH  
3-4 adiabatic (isentropic) expansion. 
 
Fig. 5 depicts the physical structure of a 
reversible open processes-based Carnot          
engine. This structure is intended for 
implementation in an open processes-based 
Carnot cycle. This plant represents a         
closed-circuit gas turbine composed of open 
processes. 
 
The energy input-output energy balance for the 
plant structures depicted in Fig.5 is represented 
in Fig.6. 
 

3.2 Analysis of a Carnot Cycle 
Considering Both Performance 
Criteria 

 

3.2.1 Thermal efficiency  
 
Carnot cycle transformations 
 

With reference to Fig. 3 and Fig. 4, the 
transformations carried out along the 
compression and the expansion strokes 
composed by reversible closed processes 
include isothermal compression process 4-1, 
adiabatic compression 1.2, isothermal expansion 
2-3, and adiabatic expansion 3-4, (modelled by 
the below equations). 
 

 
Fig. 5. Open processes-based rotary closed-circuit thermal engine structured to support a 

Carnot cycle, equipped with the cooling and heating temperature control devices necessary to 
implement isothermal processes: (a) internally decoupled and (b) internally coupled. 
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Fig. 6. The energy balance of the ideal Carnot cycle (losses are neglected). 

  
Isothermal compression work 
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The isothermal compression work requires heat 
to be extracted along process 4-1 to keep the 
temperature constant at T1 
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Adiabatic compression work along process 1-2 
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Isothermal expansion work 
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The isothermal expansion work requires heat to 
be added along process 2-3 to keep the 
temperature constant at T2 
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Adiabatic expansion work along process 3-4 
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3.2.2 Cycle analysis  
 
Based on Fig. 6, the cycle analysis is carried out 
as follows.  
 
Input heat  
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Output heat  
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For open processes (according to Figs. 5 and 6),  

 

)()( 121411241 TTCpssTwww iii  (34) 

 

)()( 432323423 TTCpssTwww ooo  (35) 

 
Net cycle work  
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As expected, Eq. (31) = Eq. (36). These results 
are based on the fact that  
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(37) 
 
3.2.3 Carnot cycle performance 
 
According to the first law (represented in Fig. 6), 
the change in internal energy for a cycle is zero. 
Thus, for a reversible cycle (i.e. a cycle for which 
all losses are neglected), the balance between 
heat and work satisfies the following condition:  
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0 uwqwq ooii ; 

ooii wqwq            (38) 

 
The net work, from (31) and (34), is 
 

niooi wwwqq          (39) 

 
3.2.3.1 Thermal efficiency 
 
The thermal efficiency for closed processes—
which, in this case, coincides with the thermal 
efficiency of a Carnot cycle or Carnot factor—is 
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Thus, the Carnot theorem is validated through 
the formulation of (38), which is supported by 
Eqs. (29)-(39). 
 
3.2.3.1 Energetic efficiency 
 
Since losses have been neglected, all inlet 
variables (heat and work) depicted in Fig. 6 
represent a cost, which is assumed as an 
economic effort. Meanwhile, all outlet variables 
depicted in Fig. 6 represent the work done and 
rejected heat. According to a second law 
statement (Kelvin-Planck), the rejected heat 
cannot reach zero, although this condition is 
desirable. This means that the more useful work 
there is in the output energy factor, the lower the 
rejected heat and vice versa. So, under the given 
conditions, the goal is to reject the lowest amount 
of energy possible to maximise the benefits of 
the net work. Thus, according to the first law for 
the Carnot engine cycle (see Fig. 5) for which an 
internally decoupled engine is considered, it 
follows from Eq. (3) that 
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Particularly for the Carnot cycle (according to 
Figs. 3-6), it follows that 
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where  
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and  
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Then, the energy effort in terms of cost Ei is  
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and the output useful work wn in a reversible 
case is  
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The energetic efficiency E, then, is the ratio of 
output useful work wn to the cost of added 
energy Ei, per Eq. (47) below. 
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Thus, using the Carnot cycle formulation of heat 
and work—considering the data from Eq. (7), 
Table 1, and Table 2(b), the energetic efficiency 
can be expressed as 
 

sTusT

usT

TTCvssTssT

TTCvssT

E

w

i

o
E











1212

342

12411232

43232

)()()(

)()(


(48) 
 

For the case of open processes (according to 
Figs. 5 and 6), where the Carnot engine is 
implemented under a compressor and turbine 
that are internally decoupled from each other, the 
energetic efficiency is 
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Tables 1 and 2(b) show that the energetic 
efficiency is greater than thermal efficiency. In 
other words, the result of Eq. (40) is lower than 
the result of Eqs. (48 and (49), according to the 
proposed theorem 1 and corollary 1, or   
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This relevant result will be analysed in the next 
section through the study of cases on a Carnot-
based machine. 
 

4. CASE STUDY 
 
This section concerns the validation study        
carried out on a viable real Carnot engine 
considering two significant performance indexes 
where both a Carnot engine operating with 
closed processes and one operating with open 
processes under a Carnot thermal cycle are 
considered. The study consists of a series of 
cases carried out on two real Carnot machine 
structures e operating with the Carnot cycle, 
where water, helium and dry air are considered 
as real working fluids. Such structures consist of 
the following: 
 
- an engine structure based on a single-acting a 
reciprocating cylinder internally coupled (see Fig. 
4) 
- an engine structure based on an internally 
decoupled set of compressor-expander engines 
(see Fig. 5) 
 
The obtained results are compared to determine 
the behaviour of a real Carnot machine operating 
in both physical structures under two different 
performance criteria. 
 

4.1 Performance Results 
 
The data corresponding to the cycle 
computations of the five cases considered in the 
case study are depicted in Tables A1, A3, and 
A5 of Appendix 1. The computations were made 
at different top temperatures, with water, helium, 

and air used as the real thermal working fluid  
[21].  
 

State point variables corresponding to the values 
of temperature (K), pressure (bar), specific 
volume (m

3
/kg), internal energy (kJ/kg), and 

entropy (kJ/kg.K) as a function of the top 
temperatures considered are also depicted in 
Tables A1, A3, and A5. 
 

Performance results are achieved by processing 
the data in Tables A1, A3, and A5 (shown in 
Appendix 1) to achieve the results depicted in 
Tables A2, A4, and A6, where the top 
temperatures TH (K), lowest temperatures TL (K), 
added heat qi (kJ/kg), rejected heat qo (kJ/kg), 
and net work wn (kJ/kg) are depicted. Graphical 
results are presented in Fig. A7 when water was 
used as the real working fluid. Similar results are 
presented in Fig. A9 (for helium as the real 
working fluid) and Fig. A11 (for dry air as the real 
working fluid). Furthermore, thermal efficiency 
th=eff (%) (which is the ratio of the net output 
work to the input heat) is depicted for the case 
where the Carnot cycle coincides with the Carnot 
factor CF (%), as well as the energetic efficiency 
E, (which is the ratio of the net output work to 
the input added energy and which includes 
added heat and added work). Graphical results 
are presented in Fig. A8 (for real water as the 
real thermal working fluid), Fig. A10 (for helium 
as the real thermal working fluid), and Fig. A12 
(for dry air as the real thermal working fluid). 
 

The top temperature in all studied cases is 
limited to 1000 (K). The low temperature limit is 
fixed at 300 (K) for the cases of helium and air as 
the working fluid, while this value is 460 (K) for 
the case of water as the working fluid.

 

 
 

Fig. 7. Depiction of temperature (K), pressure (bar), specific volume (m
3
/kg), internal energy 

(kJ/kg), and entropy (kJ/kg.K) as a function of the top temperatures for real water as the real 
working fluid (based on the data shown in Table A2) 
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Fig. 8. Carnot factor, equivalent to the thermal efficiency th (%) and energetic efficiency E, for 
water as the real working fluid (based on the data shown in Table A2) 

 

 
 

Fig. 9. Depiction of temperature (K), pressure (bar), specific volume (m3/kg), internal energy 
(kJ/kg), and entropy (kJ/kg.K) as a function of the top temperatures for helium as the real 

working fluid (from the data shown in Table A4) 
 

 
 

Fig. 10. Carnot factor, equivalent to the thermal efficiency th (%) and energetic efficiency E, 
for water as the real working fluid (based on the data shown in Table A4) 
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Fig. 11. Depiction of temperature (K), pressure (bar), specific volume (m3/kg), internal energy 
(kJ/kg), and entropy (kJ/kg.K) as a function of the top temperatures for dry air as the real 

working fluid (based on the data shown in Table A6). 
 

 
 

Fig. 12. Carnot factor, equivalent to the thermal efficiency th = eff (%) and energetic efficiency 
E, for water as the real working fluid (based on the data shown in Table A6) 

 

5. DISCUSSION OF RESULTS  
 
In the previous section, five cases were                       
studied for each thermal working fluid (water, 
helium, and air). The results of the resolution of 
mentioned cases are represented in Appendix A 
(Tables A1, A3 and A5). The data shown in these 
tables have been analysed. The results                          
of this analysis are depicted in Tables A2, A4, 
and A6.  
 
From the observation of Tables A1, A3 and A5, it 
can be deduced that the specific works are 
medium for water, high for helium, and low for 
air. Thermal efficiencies (i.e. the ratio of net work 
to added heat) obviously correspond to the 
Carnot factor, and therefore, they turn out to be 
the same at the same temperature. Also, in 
internally coupled structures, the thermal 

efficiency turns out to be equal to the energy 
efficiency. 
 
Regarding the internally decoupled structures 
(see Figures 8, 10, and 12), the energetic 
efficiencies (i.e. the ratio of net work to energy 
added, including any heat and work added to the 
cycle) differ substantially from the Carnot factor, 
which is widely surpassed for all thermal working 
fluids. It should be noted that the lower the limit 
temperature, the greater the difference between 
energy efficiency and thermal efficiency or 
Carnot factor. 
 
In summary, as observed in all studied and 
analysed cases, thermal efficiency differs from 
energetic efficiency for all internal decoupled 
engines. For internally coupled engines, 
including Carnot-like engines, thermal efficiency 



 
 
 
 

Garcia; JENRR, 7(3): 27-45, 2021; Article no.JENRR.67379 
 

    

 
41 

 

is identical to the energetic efficiency. However, 
for internally decoupled engines, thermal 
efficiency is significantly lower than energetic 
efficiency. 
 
6. CONCLUSION 
 
A preliminary study has been carried out on two 
Carnot-like machines structures. The proposed 
Carnot engine structures deal with reciprocating 
single- and double-acting cylinder-based thermal 
engines implemented under a Carnot cycle that 
is characterised by its mechanical structure and 
has been designed with mechanical internally 
coupled and decoupled structures. 
 

Throughout this research, it has been shown that 
when using performance criteria based on first 
law efficiency—consisting of the ratio of net work 
to the added energy—it follows that, for 
reciprocating single and double-acting cylinders, 
forced convection-based isothermal heat transfer 
is feasible and effective. As such, a Carnot 
engine can be implemented if the engine speed 
is adapted to the heat transfer rate capacities.  
 

A theorem and corollary for validating the 
performance of the Carnot engine based on 
internal decoupled structures demonstrated that 
the proposed Carnot engine is feasible and 
efficient in terms of energetic efficiency. It 
surpasses the thermal efficiency or Carnot factor 
for any operating condition within a specific 
range of operating temperatures. This 
characteristic assures us that a real Carnot 
machine is possible and efficient. 
 

The results obtained through the resolution of 
some studied cases (according to Tables A3, A5 
and A7) showed that a decoupled reversible 
Carnot engine structure operating with real 
working fluids surpasses the Carnot factor under 
all operating conditions. Furthermore, for low top 
temperatures, the difference between energetic 
and thermal efficiency is even greater. 
 

This characteristic is interesting since the Carnot 
factor for low top temperatures is very low. Thus, 
this defect can be overcome in cases where the 
heat source provides low temperatures, thereby 
obtaining high performance with an internally 
decoupled Carnot engine structure. 
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APPENDIX 
  

Table A1. Carnot cycle data tables for H2O 
 

sp T(K) p(bar) V(m3/kg) u(kJ/kg) s(kJ/kg-K)  
Case 1 
1 460.00 4.0000 0.51800 2626.00 7.1129  
2 500.00 5.7018 0.39491 2684.60 7.1129  
3 500.00 4.0000 0.56721 2689.90 7.2871  
4 460.00 2.8093 0.74313 2631.10 7.2871  
Case 2 
1 460.00 4.0000 0.51800 2626.00 7.1129  
2 600.00 12.4840 0.21608 2833.50 7.1129  
3 600.00 4.0000 0.68667 2847.60 7.6618  
4 460.00 1.2847 1.64010 2637.30 7.6618  
Case 3 
1 460.00 4.0000 0.51800 2626.00 7.1129  
2 700.00 24.58 0.12777 2986.70 7.1129  
3 700.00 4.00 0.80405 3008.60 7.9822  
4 460.00 0.64931 3.25740 2639.80 7.9822  
Case 4 
1 460.00 4.0000 0.51800 2626.00 7.1129  
2 800.00 44.84 0.07986 3144.40 7.1129  
3 800.00 4.00 0.92060 3175.10 8.2668  
4 460.00 0.35237 6.01260 2640.90 8.2668  
Case 5 
1 460.00 4.0000 0.51800 2626.00 7.1129  
2 1000.00 127.0800 0.03513 3473.70 7.1129  
3 1000.00 4.0000 1.15260 3528.00 8.7634  
4 460.00 0.1207 17.58400 2641.80 8.7634  

 
Table A2. Results of the analysis of the Carnot cycle from data tables for water as working 

fluid 
 

TWF:H2O Case 1 Case 2 Case 3 Case 4 Case 5 
TH (K) 500.00 600.00 700.00 800.00 1000.00 
TL (K) 460.00 460.00 460.00 460.00 460.00 
qi(kJ/kg) 87.10 329.24 608.51 923.12 1650.50 
qo(kJ/kg) 80.13 252.49 400.00 530.80 759.23 
wn(kJ/kg) 138.73 460.00 977.58 1457.32 2536.70 
th=CF (%) 8.00 23.33 34.29 42.50 54.00 

E=eff (%) 64.52 68.01 70.79 73.10 76.69 

 
Table A3. Carnot cycle data tables for He 

 
sp T(K) p(bar) V(m

3
/kg) u(kJ/kg) s(kJ/kg-K) 

Case 1 
1 300.00 10.00 0.62613 940.13 23.2250 
2 500.00 35.91 0.29200 1564.70 23.2250 
3 500.00 10.00 1.04140 1563.50 25.8780 
4 300.00 2.7878 2.23840 939.97 25.8780 
Case 2 
1 300.00 10.00 0.62613 940.13 23.2250 
2 600.00 56.68 0.22255 1877.40 23.2250 
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sp T(K) p(bar) V(m3/kg) u(kJ/kg) s(kJ/kg-K) 
3 600.00 10.00 1.24900 1875.10 26.8250 
4 300.00 1.767 3.52970 939.87 26.8250 
Case 3 
1 300.00 10.00 0.62613 940.13 23.2250 
2 700.00 83.39 0.17695 2190.50 23.2250 
3 700.00 10.00 1.45670 2186.70 27.6250 
4 300.00 1.2022 5.18660 939.86 27.6250 
Case 4 
1 300.00 10.00 0.62613 940.13 23.2250 
2 800.00 116.52 0.14512 2594.00 23.2250 
3 800.00 10.00 1.66430 2498.30 28.3190 
4 300.00 0.86074 7.24300 939.84 28.3190 
Case 5 
1 300.00 10.00 0.62613 940.13 23.2250 
2 1000.00 203.87 0.10426 3132.20 23.2250 
3 1000.00 10.00 2.07970 3121.50 29.4770 
4 300.00 0.4929 12.64600 939.83 29.4770 

 
Table A4. Results of the analysis of the Carnot cycle from data tables for helium as working 

fluid 
 

TWF:He Case 1 Case 2 Case 3 Case 4 Case 5 
TH (K) 500.00 600.00 700.00 800.00 1000.00 
TL (K) 300.00 300.00 300.00 300.00 300.00 
qi(kJ/kg) 1326.50 2160.00 3080.00 4075.20 6252.00 
qo(kJ/kg) 795.90 1080.00 1320.00 1528.20 1875.60 
wn(kJ/kg) 1950.03 3095.23 4326.84 5633.66 8433.67 
th=CF (%) 40.00 50.00 57.14 62.50 70.00 

E=eff (%) 71.03 74.15 76.64 78.94 81.83 
 

Table A5. Carnot cycle data tables for Air 
 

sp T(K) p(bar) V(m3/kg) u(kJ/kg) s(kJ/kg-K) 
Case 1 
1 300.00 10.00 0.08587 338.41 3.2236 
2 500.00 59.76 0.02454 480.18 3.2236 
3 500.00 10.00 0.14400 484.94 3.7460 
4 300.00 1.6517 0.52110 340.08 3.7460 
Case 2 
1 300.00 10.00 0.08587 338.41 3.2236 
2 600.00 114.87 0.01569 552.95 3.2236 
3 600.00 10.00 0.17286 560.44 3.9362 
4 300.00 0.85304 1.00920 340.24 3.9362 
Case 3 
1 300.00 10.00 0.08587 338.41 3.2236 
2 700.00 202.04 0.01075 637.70 3.2236 
3 700.00 10.00 0.20167 638.17 4.0100 
4 300.00 0.65994 1.30460 340.28 4.0100 
Case 4 
1 300.00 10.00 0.08587 338.41 3.2236 
2 800.00 333.36 0.00778 704.68 3.2236 
3 800.00 10.00 0.23044 718.25 4.2457 
4 300.00 0.29632 2.96320 340.35 4.2457 
Case 5 
1 300.00 10.00 0.08587 338.41 3.2236 
2 1000.00 791.77 0.00460 865.79 3.2236 
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sp T(K) p(bar) V(m3/kg) u(kJ/kg) s(kJ/kg-K) 
3 1000.00 10.00 0.28794 885.08 4.4958 
4 300.00 0.12163 7.07960 330.37 4.4958 

 
Table A6. Results of the analysis of the Carnot cycle from data tables for dry air as working 

fluid 
 

TWF:AIR Case 1 Case 2 Case 3 Case 4 Case 5 
TH (K) 350.00 600.00 700.00 800.00 1000.00 
TL (K) 300.00 300.00 300.00 300.00 300.00 
qi(kJ/kg) 261.20 427.56 550.51 817.68 1272.20 
qo(kJ/kg) 156.72 213.78 235.93 306.63 381.66 
wn(kJ/kg) 406.06 647.80 848.40 1195.58 1826.91 
th=CF (%) 40.00 50.00 57.14 62.50 70.00 

E=eff (%) 72.00 75.02 78.27 79.27 82.50 
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