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ABSTRACT
In this paper, we propose clustering algorithms based on finite 
mixture and infinite mixture models of exponential approxima-
tion to the Multinomial Generalized Dirichlet (EMGD), 
Multinomial Beta-Liouville (EMBL) and Multinomial Shifted- 
Scaled Dirichlet (EMSSD) with Bayesian inference. The finite 
mixtures have already shown superior performance in real 
data sets clustering using the Expectation–Maximization 
approach. The proposed approaches in this paper are based 
on a Monte Carlo simulation technique namely Gibbs sampling 
algorithm including an additional Metropolis–Hastings step, 
and we utilize exponential family conjugate prior information 
to construct their posterior relying on Bayesian theory. 
Furthermore, we also present the infinite models based on 
Dirichlet processes, which results in clustering algorithms that 
do not require the specification of the number of mixture 
components to be given in advance and selects it in 
a principled manner. The performance of our Bayesian 
approaches was evaluated in some challenging real-world appli-
cations concerning text sentiment analysis, fake news detection, 
and human face gender recognition.
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Introduction

Clustering count vectors is a challenging task on large data sets considering its 
high dimensionality and sparsity nature (Jain 2010). The bag of words repre-
sentation for text systematically exhibits the burstiness phenomenon, if a word 
appears once in a document, it is much more likely to appear again (Church and 
Gale 1995; Katz 1996). This phenomenon is not limited to text and can also be 
observed in images with visual words (Jegou, Douze, and Schmid 2009).

It also has a sparsity nature that few words show up with high occurrence 
and some are less as often as possible or do not appear at all (Margaritis and 
Thrun 2001). Thus, such data are generally represented as sparse high- 
dimensional vectors, with few thousands of dimensions with a sparsity of 
95–99% (Dhillon and Modha 2001).
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Hierarchical Bayesian modeling frameworks, such as Generalized Dirichlet 
multinomial mixture model (GDM), Beta-Liouville multinomial mixture 
model (MBL) and Shifted-Scaled Dirichlet multinomial mixture model 
(MSSD) (Alsuroji, Zamzami, and Bouguila 2018; Bouguila 2008; Elkan 
2006), have shown excellent performance for high-dimensional count data 
clustering. However, their estimation procedures are very inefficient when the 
data collection size is large (Zamzami and Bouguila 2020a). The exponential 
family of distributions has a finite-sized sufficient statistics (Brown 1986), 
meaning that we can compress the data into a fixed-sized summary without 
loss of information (DasGupta 2011). Efficient exponential family approxima-
tions to the MGD (EMGD), MBL (EMBL) and MSSD (EMSSD) have been 
previously proposed by Zamzami and Bouguila (Zamzami and Bouguila 
2020a, 2022, 2020b). These distributions have shown to address the burstiness 
phenomenon successfully and to be considerably computationally faster than 
their original distribution forms especially when dealing with sparse and high- 
dimensional data (i.e. these exponential approximations are evaluated as 
functions or non-zero counts only as we will see in the next section).

The main problem in the case of finite mixture models is the estimation of 
the model parameters (Brooks 2001). Expectation–maximization (EM) algo-
rithm is a simple and effective approach for model’s parameters estimation 
(Emanuel and Herman 1987). However, the EM algorithm for finite mixtures 
has several drawbacks. For example, the occurrence of local maximum and 
singularities in likelihood function will often cause problems for deterministic 
gradients method (Robert 2007). Moreover, in high dimensional estimation, it 
will be hard to obtain reliable estimates which possess generalization capabil-
ities to predict the densities at new data points (Cai 2010; Dias and Wedel 
2004). Some Bayesian approaches are based on simulation methods, such as 
Gibbs sampling, which explore high-density regions (Roeder and Wasserman 
1997). The stochastic aspect of these simulation methods ensures the escape 
from local maximum (e.g., Bouguila, Ziou, and Hammoud 2009). Tsionas 
(2004) proposed an estimation approach for multivariate t distribution using 
Gibbs sampling with data augmentation. Amirkhani, Manouchehri, and 
Bouguila (2021) presented a fully Bayesian approach within Monte Carlo 
simulation for Multivariate Beta mixture parameters estimation. Bouguila, 
Ziou, and Hammoud (2009) successfully adopted a Bayesian algorithm 
based on Metropolis-within Gibbs sampling for a finite Generalized 
Dirichlet mixture. Najar, Zamzami, and Bouguila (2019) used Monte Carlo 
simulation method for exponential family approximation to the Dirichlet 
Compound Multinomial mixture model (EDCM) parameters estimation and 
shown excellent results in some real applications. Xuanbo, Bouguila, and 
Zamzami (2021) successfully proposed a fully Bayesian approach based on 
Gibbs sampling technique for exponential family approximation to the 
Multinomial Scaled Dirichlet mixture model (EMSD).

e2043526-2516 X. SU ET AL.



Another challenging aspect when using finite mixture model is usually to 
estimate the number of clusters which best describes the data without 
overfitting or underfitting it. For this purpose, many approaches have 
been suggested. These approaches can be divided into two different strate-
gies for mixture models. The first strategy is the implementation of model 
selection criteria. The second strategy is resampling from the full posterior 
distribution with the number of clusters considered unknown. However, 
the majority of these approaches cannot be easily used for high- 
dimensional data (Bouguila and Ziou 2010). The infinite mixture models 
based on Dirichlet process (Antoniak 1974; Korwar and Hollander 1973) 
have recently attracted wide attention, thanks to the development of 
MCMC techniques. Dirichlet process mixture (DPM) models resolve the 
difficulties related to model selection (MacEachern and Muller 1998). 
Rasmussen (1999) successfully applied Dirichlet process on Gaussian mix-
ture model with Gibbs sampling to obtain accurate number of classes. 
Bouguila and Ziou (2010) also presented a clustering algorithm for 
Dirichlet process mixture of Generalized Dirichlet distributions with 
MCMC techniques. Najar, Zamzami, and Bouguila (2020) proposed an 
infinite mixture of exponential family approximation to the Multinomial 
Dirichlet Compound mixture model and showed superior experimental 
results in recognition of human interactions in feature films. Thus, we 
extend these finite mixture models to infinite mixture models based on 
Dirichlet process to tackle model selection in the case of sparse high- 
dimensional vectors.

In this paper, we present clustering algorithms based on finite and infinite 
mixtures of EMGD, EMBL and EMMSD from Bayesian viewpoint using 
Gibbs sampling within M–H steps. These distributions have already shown 
excellent performances in clustering real-world high-dimensional count data 
sets with deterministic approach. The key contributions of this article are as 
following: (1) Determination of conjugate priors to EMGD, EMBL and 
EMSSD by taking into account the fact that these distributions are members 
of the exponential family, and (2) through challenging applications that 
concern text sentiment analysis, text fake news detection and human face 
gender recognition, we show that the proposed algorithms are efficient for 
clustering sparse high-dimensional count data. The learning of the proposed 
finite mixtures and their infinite counterparts will be based on MCMC 
algorithms namely Gibbs sampling and Metropolis–Hastings (M–H) 
(Favaro and Whye Teh 2013).

The rest of this paper is organized as follows. The next two sections, review 
and develop conjugate prior distributions for the EMBL, EMGD and EMSSD 
distributions. Then, we present a Bayesian estimation for their finite mixture 
models parameters using Gibbs sampling, and extend these finite mixture 
models to infinite mixture models while developing complete clustering 
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algorithms. After we exhibit the abilities of the proposed approaches in text 
sentiment analysis, text fake news detection, human face gender recognition. 
The concluding remarks and future work directions are given at the end of the 
paper.

Exponential Approximation of Distributions for Count Data

In this section, we review the approximations to the MGD, the MBL and the 
MSSD to bring them to the exponential family of distributions.

Exponential Family

The exponential family of distributions is widely used in machine learning 
research due to its sufficient property, as the sufficient statistics can give all of 
needed parameter information by the whole sample data set. For a random 
variable X and a distribution with M parameters in exponential family we have: 

pðXj�Þ / HðXÞ expð
XM

l¼1
Glð�ÞÞTlðXÞ þ Φð�ÞÞ (1) 

where Glð�Þ is called the natural parameter, Tl (X) is the sufficient statistic, 
HðXÞ is the underlying measure, and Φð�Þ is called log normalizer used to 
ensure that the distribution integrates to one (DasGupta 2011).

The Exponential Family Approximation to Multinomial Generalized Dirichlet 
(MGD) Distribution

We define X ¼ ðx1; � � � ; xDþ1Þ as a sparse count data vector describing a text 
document, or an image where xd corresponds to the frequency of appearances of 
a word or visual word w. The MGD distribution is defined by (Bouguila 2008): 

MGDðXj�Þ ¼
Γðnþ 1Þ

QDþ1
d¼1:xd�1 Γðxd þ 1Þ

YD

d¼1:xd�1

Γðαd þ βdÞ

ΓðαdÞΓðβdÞ

Γðα0d þ β0dÞ
Γðα0dÞΓðβ

0
dÞ

(2) 

where n ¼
PDþ1

d xd, α0 ¼ αd þ xd, β0 ¼ βd þ xdþ1 � � � þ xDþ1, for d ¼ 1; � � � ;D, 
and � ¼ ðα; βÞ. In count data represented as bag-of-words, Zamzami and 
Bouguila (2020a) found, experimentally, that αd � βd � 1 for almost all words 
w based on different data sets. Moreover, we have for x � 1 (Elkan 2006): 

lim
α!0

Γðαþ xÞ
ΓðαÞ

� αΓðxÞ ¼ 0 (3) 

Then, the exponential family form for MGD can be written as (Zamzami and 
Bouguila 2022):  
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EMGDðXj�Þ/ ð
Q

D:xD�1
x� 1

d Þ
Q

D:xD�1

ΓðzdÞ

ΓðxdþzdÞ
n�fexp

PD

d¼1
Iðxd > ¼ 1Þ log αdβd

αdþβd
g

(4) 

where Iðxd > ¼ 1Þ is an indicator that represents whether a word w shows up 
at any entry in the vector X, and zd ¼ xdþ1 þ � � � þ xDþ1.

The Exponential-Family Approximation to Multinomial Beta-Liouville (MBL) 
Distribution

If a random vector X ¼ ðx1; � � � ; xDþ1Þ follows a Multinomial Beta-Liouville 
distribution, then (Bouguila 2011): 

MBLðXj�Þ ¼
Γðð
PDþ1

d¼1 xdÞ þ 1Þ
QDþ1

d¼1 Γðxd þ 1Þ

�
Γð
PD

d¼1 αdÞΓðαþ βÞΓðα0ÞΓðβ0Þ
QD

d¼1 Γðα0dÞ
Γð
PD

d¼1 α0dÞΓðα0 þ β0ÞΓðαÞΓðβÞ
QD

d¼1 ΓðαdÞ
(5) 

where α0d ¼ αd þ xd, α0 ¼ αþ
PD

d¼1 xd, β0 ¼ βþ xDþ1, and � ¼ ðα; βÞ.
In several real world applications, the MBL mixture model has provided 

good high clustering accuracy, comparably to Multinomial Scaled Dirichlet 
mixture model (MSD) (Zamzami and Bouguila 2019), and Multinomial 
Generalized Dirichlet mixture model (MGD) (Bouguila 2008), it also outper-
forms other widely used mixture models, such as mixtures of Multinomial 
distributions (MM) and Dirichlet Compound Multinomial (DCM) distribu-
tions (Bouguila and Ziou 2007; Madsen, Kauchak, and Elkan 2005). However, 
MBL does not belong to the exponential family, and it is not efficient in high- 
dimensional spaces where many parameters need to be estimated (Zamzami 
and Bouguila 2020a). Approximating MBL to belong to exponential family can 
reduce the computation cost and improve the efficiency of MBL to model 
sparse high-dimensional count data (Elkan 2006).

Zamzami and Bouguila (2020a) found empirically that α� 1 and β ’
1 for real data sets and proposed maximum likelihood method for model 
parameters estimation. Thus, relying on Equation (3), we have the form 
of exponential approximation for multinomial Beta-Liouville distribu-
tion as: 

EMBLðXj�Þ / ð
Y

d:xd >¼1
x� 1

d Þn!
ΓðSÞΓðα0ÞΓðβ0Þα

ΓðSþ nÞΓðα0 þ β0Þ
expf

XD

d¼1
Iðxd � 1Þ logðαdÞg

(6) 

where Iðxd > ¼ 1Þ, the sufficient static, is an indicator whether the word d 
appears at least once in the vector X and S ¼

PD
d¼1 αd.
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2.4. The Exponential-Family Approximation to Shifted Scaled Dirichlet 
Multinomial (MSSD) Distribution

Define a random vector X ¼ ðxd; � � � ; xDÞ that follows a Shifted Scaled 
Dirichlet Multinomial Distribution, then: 

MSSDðXj�Þ �
n!ΓðαþÞ

QD

d:xd�1
xd!ΓðαþτNÞ

YD

d:xd�1

Γðαd þ τxdÞ

βxd
d ΓðαdÞ

(7) 

where αþ ¼
PD

d αd, n ¼
PD

d¼1 xd! and � ¼ ðα; β; τÞ.
For high dimensional data, Zamzami and Bouguila (2020b) found that the 

value of α parameters are really small which combined with some approxima-
tions gave the exponential Multinormial Shifted-Scaled Dirichlet (EMSSD) as: 

EMSSDðXj�Þ / n!
ΓðαþÞτD

Γðαþ þ τNÞ

YD

d:xd�1

α
βxd

d xdτ
(8) 

The Proposed Bayesian Learning Framework

In this section, we propose the algorithms to learn the parameters for finite 
and infinite mixture models of EMBL, EMGD and EMMSD.

Finite Mixture of Distributions

A finite mixture of distributions with M components is defined as (e.g., 
(Bouguila and Fan 2020)): 

PðXj�Þ ¼
XM

j¼1
pðXj�jÞPj (9) 

where the Pj are the mixing weights and pðXj�jÞ is the components distribu-
tion, Θ ¼ ð�; PÞ is the entire set of parameters to be estimated, where 
� ¼ ð�1 � � � �MÞ, �j represents the parameters of distribution j, and P ¼
ðP1; � � � ; PMÞ is the vector of weight parameters. The Pj must 
satisfy: 0 � Pj � 1; j ¼ 1 � � �M;

PM
j¼1 Pj ¼ 1.

Bayesian Learning for Finite Mixture Weight Parameters

Given a set of N independent vectors X ¼ ðX1 � � �XNÞ described by a finite 
mixture model, and M is the number of mixture components, supposed to be 
known, the main problem is to estimate the mixture parameters. In this work, 
we rely on Bayesian techniques to resolve this problem.
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We define an indicator for each Xi in data set X for each class j as: 

Zij ¼
1 if Xi belongs to class j
0 otherwise

�

(10) 

where Z ¼ fZ1; � � � ;ZNg and Zi ¼ ðZi1; � � � ;ZiMÞ. In the Bayesian paradigm 
information brought by the complete data (X ;Z), a realization of (X ;Z) 
,pðX ;ZjΘÞ is combined with prior information about the parameters Θ 
that is specified in a prior distribution with density πðΘÞ and summarized in 
probability distribution πðθjX ;ZÞ called the posterior distribution. This can be 
derived from the joint distribution, pðX ;ZjΘÞπðθÞ (Nizar, Ziou, and 
Hammoud 2009). Thus, we have: 

πð�jX ;ZÞ ¼ πð�ÞpðX ;Zj�Þð

πð�ÞpðX ;Zj�Þd�

/ πð�Þ � pðX ;Zj�Þ
(11) 

where òπð�ÞpðX ;Zj�Þd� is the marginal density of the complete data ðX ;ZÞ. 
We can directly simulate �,πð�jX ;ZÞ with well-known Gibbs sampler rather 
than directly computing it. Gibbs sampling is widely used in Bayesian mixture 
model, especially in the case of incomplete data (Train 2009; Xuanbo, 
Bouguila, and Zamzami 2021). That is, associate with each observation Xi 

a missing multinomial variable Z,Mð1; Ẑi1; � � � ; ẐiMÞ. 

Ẑij ¼
pðXjj�ÞPj

PM
j¼1 pðXjj�ÞPj

(12) 

In fact, the weight parameter is independent of X , P / πðPjZÞ (Samuel, 
Balakrishnan, and Johnson 2000), and we know that the vector P is defined on 
the simplex {(P1; � � � ; PMÞ;

PM� 1
j¼1 Pj < 1}, then the natural prior distribution for 

vector P is the Dirichlet distribution, we determine the prior of P (Lee 2012) as: 

πðPjηÞ ¼
Γð
PM

j¼1 ηjÞ
QM

j¼1 ΓðηjÞ

YM

j¼1
P

ηj� 1
j (13) 

where η ¼ ðη1; � � � ; ηMÞ is the parameters vector of the Dirichlet distribution. 
Moreover, we have: 

πðZjPÞ ¼
QN

i¼1
πðZijPÞ ¼

QN

i¼1
PZi1

1 � � � P
ZiM
M ¼

QN

i¼1

QM

j¼1
PZij

j ¼
QM

j¼1
Pnj

j (14) 

where nj ¼
PN

i¼1 IZij¼1, Having the prior distribution and likelihood distribu-
tion in hand, we can obtain the posterior for weight parameters P by the 
following:  
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πðPjZÞ / πðPÞπðZjPÞ

¼
QM

j¼1
Pnj

j

Γð
PM

j¼1
ηjÞ

QM

j¼1
ΓðηjÞ

QM

j¼1
P

ηj� 1
j

¼
Γð
PM

j¼1
ηjÞ

QM

j¼1
ΓðηjÞ

QM

j¼1
P

ηjþnj� 1
j

/ Dðη1 þ n1 � � � ηM þ nMÞ

(15) 

where D is Dirichlet distribution with parameters ðη1 þ n1; � � � ; ηM þ nMÞ. We 
note that the prior and posterior distributions πðPÞ and πðPjZÞ are both 
Dirichlet distributions. In this case, we say that the Dirichlet is conjugate 
prior for mixture proportions. Therefore, the weight parameters can be 
sampled from Dirichlet distribution. We selected ηj ¼ 1; j ¼ 1; . . . ;M in our 
experiments.

The Bayesian Learning for Infinite Mixture Weight Parameters

In finite mixture model, we have considered M to be fixed finite quantity. In 
this section, we will explore the limit M!1 and present the conditional 
posteriors for the indicators and weight parameters based on Dirichlet process. 
We take ðη1; � � � ; ηMÞ ¼ ðη=M; � � � ; η=MÞ for Equation (11), thus we obtain 
a simpler form for prior probability of infinite mixture weight parameters: 

πðPinf jηÞ ¼
ΓðηÞ

Γðη=MÞM
YM

j¼1
πη=M� 1

j (16) 

where we have Pinf ¼ ðPinf 1 ; � � � ;Pinf MÞ. From Equation (12), we have the prior 
distribution for the Z parameter that corresponds to multinomial distribution. 
Using the standard Dirichlet integral, we could marginalize out the Pinf 

parameter to get the following probability for the prior directly in terms of 
the indicators (Rasmussen 1999): 

pðZjηÞ ¼
ð

PðZjPinf ÞPðPinf jηÞ

¼
ΓðηÞ

Γðη=MÞM

ð
QM

j¼1
πnjþη=M� 1dπj

¼
ΓðηÞ

ΓðNþηÞ
QM

j¼1

Γðnjþη=MÞ
Γðη=MÞ

(17) 

Based on Bayes principle, we obtain the conditional posterior distribution for 
the mixing weight vector:  
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πðPinf jZÞ ¼
pðPinf jηÞpðZjPinf Þ

pðZjηÞ

¼
QM

j¼1
Pnj

inf j

Γð
PM

j¼1
ηÞ

QM

j¼1
ΓðηjÞ

QM

j¼1
Pη=M� 1

inf j

¼
Γð
PM

j¼1
η=MÞ

QM

j¼1
Γðη=MÞ

QM

j¼1
Pη=Mþnj� 1

inf j

/ Dðη=M þ n1 � � � η=M þ nMÞ

(18) 

In order to be able to use Gibbs sampling for the indicators Zi, we need the 
conditional prior for a single indicator given all the others: this is easily 
obtained from Equation (17) by keeping all but a single indicator fixed 
(Najar, Zamzami, and Bouguila 2020): 

pðZi ¼ jjZ i; ηÞ ¼
n i;j þ η=M
N � 1þ η

(19) 

where the subscript � i indicates all except i and n i;j is the number of 
observations, excluding Xi, that are associated with component j.

Lastly, we choose inverse Gamma as prior for parameters η: 

pðηj#; ρÞ ¼ ρ# expð� ρ=ηÞ
Γð#Þη#þ1 (20) 

The likelihood for η can be derived from Equation (17), which together with 
the prior from Equation (19) gives: 

pðηj#; ρ;M;NÞ ¼
ρ# expð� ρ=ηÞ

Γð#Þη#þ1 �
ηMΓðηÞ

ΓðN þ ηÞ
(21) 

We selected ð#; ρÞ ¼ ð4; 2Þ in our experiments. These values were previously 
used in Bouguila and Ziou (2010), because they allow a diffuse range of values 
of the number of clusters M (more details and discussions can be found in 
Escobar and West 1995). For the indicators, letting M !1 in Equation (19), 
the conditional prior reaches the following limits (Rasmussen 1999): 

pðZi ¼ jjη;Z iÞ ¼

n i;j
N� 1þη ifn ij > 0

η
N� 1þη ifn ij ¼ 0

8
<

:
(22) 

Having this prior distribution, we can obtain the conditional posterior by 
multiplying the model likelihood: 

pðZi ¼ jjη;Z iÞ ¼

n i;j
N� 1þη pðXj�Þ ifn ij > 0
ð

η
N� 1þη pðXj�Þpð�Þd� ifn ij ¼ 0

8
><

>:
(23) 
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Unfortunately, this integral is not analytically tractable in Equation (23), 
hence, we consider a Monte Carlo sampling approximation.

Learning Algorithm for Finite Mixture Model of EMGD

Define πð�Þ as the prior distribution for the parameters of the EMGD 
distribution. We use the fact that EMGD belongs to the exponential 
family. In fact, if a S-parameters density ρ belongs to the exponential 
family then we can rewrite it in the exponential form which has been 
shown in Equation (1).

Writing the EMGD in the exponential form gives: 

HðXÞ ¼ ð
Q

W:xW�1
x� 1

w Þ
Q

W:xW�1

ΓðzwÞ

ΓðxwþzwÞ
n!

Gwð�Þ ¼ log αwβw
αwþβw

TwðXÞ ¼
PW

w¼1
Iðxw > ¼ 1Þ

ϕð�Þ ¼ 0

(24) 

In this case, a prior of � is given by (Lee 2012) as: 

πð�Þ / expð
XW

w¼1
ρlGwð�Þ þ kΦð�ÞÞ (25) 

where ρ ¼ ðρ1; � � � ; ρwÞ, and k> 0 are referred as hyperparameters.
The prior for EMGD can be written as following: 

πðα; βÞ / expð
XW

w¼1
ρl log

αwβw
αw þ βw

Þ (26) 

Having the prior in hand, the mixture model posterior is (see Appendix A): 

πð�jjM;XÞ / πð�jÞ
Q

Zij¼1
EMGDðXij�jÞ

/ exp½
PW

w¼1
log αwβw

αwþβw
ðρw þ

PN

Zij¼1
Iðxiw � 1ÞÞ�

�
QN

Zij¼1
ð
Q

w:xiw�1
x� 1

iw
ΓðziwÞ

ΓðxiwþziwÞ
n!Þ

(27) 

According to the posterior hyperparameters, following (Nizar, Ziou, and 
Hammoud 2009), once the sample X is known, we can use it to get the prior 
hyperparameters. Then, we held ðρ1; � � � ; ρWÞ and ðη1; � � � ; ηMÞ fixed at: ηj ¼ 1, 
j ¼ 1 � � �M, ρw ¼ 1, w ¼ 1 � � �W. 
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______________________________________________________________ 
Algorithm 1 Finite EMGD (FinEMGD) learning algorithm 
______________________________________________________________

Initialization: Using MOM and K-means method to initialize model 
parameters

Input: A data set X ¼ fX1 � � �XNg, each is W-dimensional sparse count 
vector, the number of clusters M

output: Θ
for t ¼ 1 � � � :
(1) Generate Zt,Mð1; Ẑt� 1

i1 � � � Ẑt� 1
iM Þ

(2) Generate weight parameters Pt from Equation 13
(3) Generate model �t from Equation 11 using M–H algorithm
M–H algorithm:
(1) Generate ~�j from qð~�jj�

t� 1
j Þ and u,U½0; 1�

(2) compute r ¼
πð~�jjM;XÞqð�t� 1

j j
~�jÞ

πð�t� 1
j jM;XÞqð~�jj�

t� 1
j Þ

(3) if r< u then: �t ¼ ~� else: �t ¼ �t� 1 

______________________________________________________________
In Algorithm 1, �j ¼ ðαj1; βj1; � � � ; αjW; βjWÞ, and we take the K-means 

(Hartigan and Wong 1979) and the method of moments (MOM) (Wong 
2010) for initializing the model parameters. In the M–H step, the major factor 
is choosing proposal distribution q (Sorensen and Gianola 2002; Train 2009). 
As the model parameters are satisfied 0< αjw � βjw � 1, we choose the 
Gamma distribution as the proposal distribution for αjw and βjw. 

αjw,Gðα; σ1Þ; βjw,Gðβ; σ2Þ (28) 

The complexity of an algorithm is determined by the size of data set (i.e., 
number of observations N), and the number of mixture components K. The 
algorithm computation complexity for one iteration is OðNKÞ where σ1 and σ2 
are scale parameters of the Gamma distributions. The complete algorithm for 
estimating the EMGD parameters using the proposed approach is presented in 
Algorithm 1.

Learning Algorithm for Infinite Mixture Model of EMGD

We know that the model parameters α and β in EMGD satisfy 
0< αjw � βjw < 1, then appealing flexible choice as prior is the Beta distribu-
tion, with shape parameters: δ; and $; ρ, then: 

pðαjÞ /
ΓðδþÞ

ΓðδÞΓðÞ
αδ� 1

j ð1 � αjÞ
� 1 (29) 
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pðβjÞ /
Γð$þ ρÞ
Γð$ÞΓðρÞ

β$� 1
j ð1 � βjÞ

ρ� 1 (30) 

where αj ¼ ðαj1; � � � ; αjDÞ, βj ¼ ðβj1; � � � βjDÞ.
Then, the conditional posterior distributions for αj and βj are: 

pðαjjX ;ZÞ / pðαjÞ
Q

Zij¼1
EGDMðXij�jÞ

ΓðδþÞ
ΓðδÞΓðÞ α

δ� 1
j ð1 � αjÞ

� 1 Q

Zij¼1
fð

Q

W:xW�1
x� 1

w Þ
Q

W:xW�1

ΓðzwÞ

ΓðxwþzwÞ
n

�fexp
PW

w¼1
Iðxw > ¼ 1Þ log αwβw

αwþβw
gg

(31) 

pðβjjX ;ZÞ / pðβjÞ
Q

Zij¼1
EGDMðXij�jÞ

Γð$þρÞ
Γð$ÞΓðρÞ β

$� 1
j ð1 � βjÞ

ρ� 1 Q

Zij¼1
fð

Q

W:xW�1
x� 1

w Þ
Q

W:xW�1

ΓðzwÞ

ΓðxwþzwÞ
n

�fexp
PW

w¼1
Iðxw > ¼ 1Þ log αwβw

αwþβw
gg

(32) 

In order to have more flexible model, we introduce an additional hierarchical 
level by allowing the hyperparmeters to follow some selected distributions. 
The hyperparmeters δ; and $; ρ associated with α and β respectively are given 
Beta distribution and exponential distribution: 

pðδjς; υÞ ¼
Γðςþ υÞ
ΓðςÞΓðυÞ

δς� 1ð1 � ςÞυ� 1 (33) 

pðjλÞ ¼ λ expð� λÞ (34) 

pð$jκ;ωÞ ¼
Γðκþ ωÞ

ΓðκÞΓðω$κ� 1ð1 � κÞω� 1 (35) 

pðρj�Þ ¼ � expð� �ρÞ (36) 

For those hyperparameters δ; and $; ρ, the prior of α and β is considered as 
likelihood. Thus, the conditional posterior can be obtained (see Appendix C).

Then, we have the learning algorithm 2 for infinite mixture model of 
EGDM:  
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______________________________________________________________ 
Algorithm 2 Infinite EGDM (InfEGDM) learning algorithm 
______________________________________________________________

Initialization: Using MOM to initialize model parameters
Input: a data set X ¼ fX1 � � �XNg, each is W-dimensional sparse count data
output: Θ
for t ¼ 1 � � � :
(1) Generate Zt from Equation (23) with Monte Carlo sampling 

approximation
(2) Update the number of represented components
(3) Generate weight parameters η from Equation (20) with adaptive reject 

sampling (ARS)
(4) Generate weight parameters Pt from Dirðη=M þ n1; � � � ; η=M þ nMÞ

(5) Update α; β in M–H algorithm
M–H algorithm:
for γj in (αj; βj):
(1) Generate ~γj from qð~γjjγ

t� 1
j Þ and u,U½0; 1�

(2) compute r ¼
pð~γjjM;XÞqðγt� 1

j j~γjÞ

pðγt� 1
j jM;XÞqð~γjjγt� 1

j Þ
from Equation (31) or Equation (32) 

(3) if r< u then: �t ¼ ~� else: �t ¼ �t� 1

Update the hyperparameters δ; and $; ρ with MCMC sampling in their 
conditional posterior 
______________________________________________________________

Learning Algorithm for Finite Mixture Model of EMBL

EMBL also belongs to the exponential family. We define X ¼ fX1; � � � ;XNg, 
where Xi ¼ ½xi1 � � � xiW�. We can show following Equation (1), that: 

HðXÞ ¼ ð
Q

W:xW�1
x� 1

w Þn!

Gwð�Þ ¼ logðαwÞ

TwðXÞ ¼
PW

w¼1
Iðxw > ¼ 1Þ

ϕð�Þ ¼ logfΓðα0ÞΓðsÞΓðβ0ÞΓðαÞα
ΓðsþnÞΓðα0þβ0Þ g

(37) 

Based on Equation (15), we have a prior as following: 

πðα; βÞ / exp½
XW

w¼1
ρd logðαdÞ þ kðlogð

ΓðsÞΓðα0ÞΓðβ0Þα
Γðsþ nÞΓðα0 þ β0Þ

ÞÞ� (38) 
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From Bayesian theory, the posterior can be written as (see Appendix B):  

πð�jjM;XÞ / πð�jÞ
Q

Zij¼1
EMBLðXij�jÞ

/ exp½
PW

w¼1
logðαwÞðρw þ

PN

Zij¼1
Iðxiw � 1ÞÞ

þkðlogð
Γðα0jÞΓðβ

0
jÞαj

ðSÞ�ðSþ1Þ���ðSþn� 1ÞΓðα0jþβ0jÞ
ÞÞ

þ
P

i¼1;zij¼1
ðlogð Γðα0ÞΓðβ0Þα

ðSÞ�ðSþ1Þ���ðSþn� 1ÞΓðα0þβ0ÞÞÞ�

(39) 

Once the sample X is known, the posterior hyperparameters can be fixed, we 
fix ρw ¼ 1, k ¼ 1 and η ¼ 1 (Bouguila, Ziou, and Hammoud 2009).

In Bayesian approach, choosing an effective proposal prior distribution is 
significant factor for the model parameters estimation and convergence time. 
With many different common proposal distributions attempts, we finally 
select Beta distribution as proposal distribution for αjw, and inv-Gamma 
distribution for β. 

______________________________________________________________ 
Algorithm 3 Finite EMBL (FinEMBL) learning algorithm 
______________________________________________________________

Initialization: Using the MOM and the K-means method to initialize 
model parameters

Input: a data set X ¼ X1 � � �XN , each is W-dimensional sparse count data, 
the number of clusters M

output: Θ
for t ¼ 1 � � � :
(1) Generate Zt,Mð1; Ẑi1

t� 1
� � � ẐiM

t� 1
Þ

(2) Generate weight parameters Pt from Equation (13)
(3) Generate model �t from Equation (39) using M–H algorithm
M–H algorithm:
(1) Generate ~�j from qð~�jj�

t� 1
j Þ and u,U½0; 1�

(2) compute r ¼
πð~�jjM;XÞqð�t� 1

j j
~�jÞ

πð�t� 1
j jM;XÞqð~�jj�

t� 1
j Þ

(3) if r< u then: �t ¼ ~� else: �t ¼ �t� 1 

______________________________________________________________

αjw,Bðα; σ1Þ; β,invGðβ; σ2Þ (40) 

The complete steps for estimating the EMBL model parameters using the 
proposed approach are given in Algorithm 3. Note that the proposed 
Algorithm 3 requires computational cost OðNKÞ per step.
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Learning Algorithm for Infinite Mixture Model of EMBL

As shown empirically, the values of α and β satisfy 0< α� 1 and β ’ 1. Thus, 
we choose the beta distribution and Inverse Gamma distribution as priors for 
α and β with hyperparameters δ; and $; ρ, then 

pðαjÞ,
ΓðδþÞ

ΓðδÞΓðÞ
αδ� 1

j ð1 � αjÞ
� 1 (41) 

pðβjÞ,
ρ$ expð� ρ=βjÞ

Γð$Þβ$� 1
j

(42) 

Having this prior, the full conditional posteriors for αj and βj are: 

pðαjjX ;ZÞ / pðαjÞ
Q

Zij¼1
PEMBLðXij�jÞ

/
ΓðδþÞ

ΓðδÞΓðÞ α
δ� 1
j ð1 � αjÞ

� 1 Q

Zij¼1
fð

Q

d:xd >¼1
x� 1

d Þn!

/
ΓðSÞΓðα0ÞΓðβ0Þα
ΓðSþnÞΓðα0þβ0Þ � exp

PD

d¼1
Iðxd � 1Þ logðαdÞ

� �

g

(43) 

pðβjjX ;ZÞ / pðβjÞ
Q

Zij¼1
PEMBLðXij�jÞ

/
ρ$ expð� ρ=βjÞ

Γð$Þβ$� 1
j

Q

Zij¼1
fð

Q

d:xd >¼1
x� 1

d Þn!

/
ΓðSÞΓðα0ÞΓðβ0Þα
ΓðSþnÞΓðα0þβ0Þ � expf

PD

d¼1
Iðxd � 1Þ logðαdÞgg

(44) 

In order to reduce the sensitivity of parameters, we give priors for the 
hyperparmaeters δ; and $; ρ, by choosing Beta distribution, exponential 
distribution and Inverse Gamma distribution, exponential distribution, 
respectively 

pðδjς; υÞ,
Γðςþ υÞ
ΓðςÞΓðυÞ

δς� 1ð1 � ςÞυ� 1 (45) 

pðjλÞ,λ expð� λÞ (46) 

pð$jκ;ωÞ,
ωκ expð� ω=$Þ

ΓðκÞ$κ� 1
j

(47) 

pðρj�Þ,� expð� �ρÞ (48) 

For those hyperparameters δ; and $; ρ, the prior of α and β is considered as 
likelihood. Thus, the conditional posterior can be obtained (see Appendix C). 
The parameter learning algorithm of this infinite model is similar to the 
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infinite mixture model of EGDM, we only need to replace the posterior 
probability for α; β and δ; ; $; ρ in M–H steps.

Thus, we have the learning algorithm 4: 
______________________________________________________________ 
Algorithm 4 Infinite EMBL (InfEMBL) learning algorithm 
______________________________________________________________

Initialization: Using MOM to initialize model parameters
Input: a data set X ¼ X1 � � �XN , each is W-dimensional sparse count data
output: Θ
for t ¼ 1 � � � :
(1) Generate Zt from Equation (22) with Monte Carlo sampling 

approximation
(2) Update the number of represented components
(3) Generate weight parameters η from Equation (20) with adaptive reject 

sampling (ARS)
(4) Generate weight parameters Pt from Dirðη=M þ n1; � � � ; η=M þ nMÞ

(5) Update α; β in M–H algorithm
M–H algorithm:
for γj in (αj; βj):
(1) Generate ~γj from qð~γjjγ

t� 1
j Þ and u,U½0; 1�

(2) compute r ¼
pð~γjjM;XÞqðγt� 1

j j~γjÞ

pðγt� 1
j jM;XÞqð~γjjγt� 1

j Þ
from Equation (43) or Equation (44)

(3) if r< u then: �t ¼ ~� else: �t ¼ �t� 1

Update the hyperparameters δ; and $; ρ with MCMC sampling in their 
conditional posterior 
______________________________________________________________

Learning Algorithm for Finite Mixture Model of EMMSD

EMMSD can be written following Equation (1), as: 

HðXÞ ¼ n!
QD

w:xw�1
xiw

Gw1ð�Þ ¼ logðαwÞ � logðτÞ
Gw2ð�Þ ¼ logðβwÞ

Tw1ðXÞ ¼
PW

w¼1
Iðxw > ¼ 1Þ

Tw2ðXÞ ¼
PW

w¼1
Iðxw > ¼ 1Þxw

ϕð�Þ ¼ logf ΓðαþÞτD

ΓðαþþτnÞg

(49) 
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Based on Equation (15), we have a prior as following: 

πðα; βÞ / exp½
PW

w¼1
fρ1wðlogðαwÞ � logðτÞÞ þ ρ2w logðβwÞg

þk� logf ΓðαþÞτD

ΓðαþþτnÞg

(50) 

From Bayesian theory, the posterior can be written as 

pð�jjX ;ZÞ / πðα; βÞ
QN

Zij¼1
EMMSDðXj�j;MÞ

¼ exp½
PW

w¼1
fρ1wðlogðαwÞ � logðτÞÞ þ ρ2w logðβwÞg

þk� logf ΓðαþÞτW

ΓðαþþτnÞg
QN

Zij¼1
pEMMSDðXj�j;MÞ

/ expfð
PN

Zij¼1
½Iðxiw � 1Þ þ ρ1wÞð

PW

w¼1
logðαjw � τjwÞÞ

þð
PN

Zij¼1
½Iðxiw � 1Þxiw þ ρ2wÞð

PW

w¼1
logðβjwÞÞ

þk� logf ΓðαþÞτD

ΓðαþþτnÞ þ
PN

Zij¼1

ΓðαþÞτW

ΓðαþþτniÞ
g

(51) 

Once the sample X is known, the posterior hyperparameters can be fixed, we 
fix ρ1w ¼ 1; ρ2w ¼ 1, k ¼ 1 and η ¼ 1. Having the posterior in hand, we can 
propose the algorithm for finite mixture model of EMMSD. 

______________________________________________________________ 
Algorithm 5 Finite EMMSD (FinEMSSD) learning algorithm 
______________________________________________________________

Initialization: Using MOM and K-means method to initialize model 
parameters

Input: a data set X ¼ X1 � � �XN , each is W-dimensional sparse count data, 
the number of clusters M

output: Θ
for t ¼ 1 � � � :
(1) Generate Zt,Mð1; Ẑt� 1

i1 � � � Ẑt� 1
iM Þ

(2) Generate weight parameters Pt from Equation 13
(3) Generate model �t from Equation 11 using M–H algorithm
M–H algorithm:
(1) Generate ~�j from qð~�jj�

t� 1
j Þ and u,U½0; 1�

(2) compute r ¼
πð~�jjM;XÞqð�t� 1

j j
~�jÞ

πð�t� 1
j jM;XÞqð~�jj�

t� 1
j Þ

(3) if r< u then: �t ¼ ~� else: �t ¼ �t� 1 

______________________________________________________________
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In Algorithm (5), �j ¼ ½αj1; βj1:; τj1; � � � ; αjW; βjW; τjW�, and we take the 
K-means and the method of Moment (MOM) (Wong 2010) for initializing 
model parameters α. We initialize β with a constant proportion vector and τ as 
a vector one. Choosing proposal distribution is significant part in M–H steps 
(Sorensen and Gianola 2002; Train 2009). As the model parameters satisfy 
0< αjw � 1 and 0< βjw < 1, we choose the Beta distribution and Gamma 
distribution as the proposal distributions for αjw, βjw and the Inverse 
Gamma distribution for τ. 

αjw,Bðα; σ1Þ; τ,invGðτ; σ2Þ; β,Gammaðβ; σ3Þ (52) 

The algorithm computation complexity for one iteration is OðNKÞ

Learning Algorithm for Infinite Mixture Model of EMMSD

We find that taking the prior (Equation (50)) and the posterior (Equation (51)) 
for EMSSD parameters in infinite mixture model, we can obtain a superior 
performance in real applications. Thus, we directly use them to the infinite 
mixture model. Then, the complete algorithm can be presented: 

________________________________________________________________ 
Algorithm 6 Infinite EMSSD (InfEMSSD) learning algorithm 
________________________________________________________________

Initialization: Using MOM to initialize model parameters
Input: a data set X ¼ X1 � � �XN , each is W-dimensional sparse count data
output: Θ
for t ¼ 1 � � � :
(1) Generate Zt from Equation (22) with Monte Carlo sampling 

approximation
(2) Update the number of represented components
(3) Generate weight parameters η from Equation (20) with adaptive reject 

sampling (ARS)
(4) Generate weight parameters Pt from Dirðη=M þ n1; � � � ; η=M þ nMÞ

(5) Update α; β; τ in M–H algorithm
M–H algorithm:
(1) Generate ~�j from qð~�jj�

t� 1
j Þ and u,U½0; 1�

(2) compute r ¼
πð~�jjM;XÞqð�t� 1

j j
~�jÞ

πð�t� 1
j jM;XÞqð~�jj�

t� 1
j Þ

(3) if r< u then: �t ¼ ~� else: �t ¼ �t� 1 

______________________________________________________________
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Experimental Results

In this section, we aim at comparing the proposed algorithms and their 
corresponding finite mixture models learned in a deterministic way using 
EM algorithm in different data clustering applications. The first experi-
ment and second one concentrate on textual data for sentiment analysis 
and fake news detection. The last one considers images data for distin-
guishing male and female faces. All experiments were conducted using 
optimized python code on Inter (R) Core (TM) i7-9750 H processor PC 
with Windows 10 Enterprise Service Pack 1 operating system with a 16 
GB main memory. The results that we will present in the following 
subsections represent the average over 20 runs of the proposed algo-
rithms. For our proposed algorithm, The empirical assessment of 
MCMC convergence is delicate, especially in high dimensional spaces. In 
our experiments we applied the widely used one-long run technique as 
proposed in Raftery and Lewis (1992).

Text Sentiment Analysis

Sentiment analysis, also called opinion mining, involves analyzing evalua-
tions, attitudes, and emotions, expressed in a piece of text, toward entities 
such as products, services, or movies (Batista and Ratté 2014). In our first 
experiment, we classify whether a whole opinion document expresses 
a positive or negative sentiment. The challenges in sentiment analysis, 
as a text clustering application, include that the reviews are usually 
limited in length, have many misspellings, and shortened forms of 
words. Thus, the vocabulary size is immense, and the count vector that 
represents each review will be highly sparse. The experiment used large 
data set of IMDB movies reviews with two labels: negative and positive, 
and TripAdvisor Hotel reviews with three labels: negative, neutral and 
positive. The experimental results are based on comparing recall, preci-
sion, and F-measure values. We take 50,000 samples from each IMDB 
reviews of different labels with 76,340 unique words in total, and we used 
5,000 samples from TripAdvisor Hotel reviews with 1,000 unique words. 
We compare the proposed algorithms with other methods, such as 
EGDM mixture model (Zamzami and Bouguila 2022), EMBL mixture 
model (Zamzami and Bouguila 2020a), EMSSD mixture model 
(Zamzami and Bouguila 2020b) that have been proposed for modeling 
count data.

The results are shown in Tables 1 and 2. According to the F-measure in 
these tables, we can note that the proposed approaches outperform other 
compared models and approaches, and that infinite models show better 
results, compared with finite mixture models.
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Covid-19 Fake News Detection

This data set contains 947 twitters which are related with Covid-19 infor-
mation, and that have been already divided into two classes, one contains 
real news and the other contains fake news. In this experiment, we take all 
samples and select the most frequently used 1,000 unique words as a count 
data.

From Table 3, our proposed algorithms still show excellent perfor-
mance in the fake news detection task. Compared with other approaches 
and models, InfEMGD-MCMC yields the best accuracy of 87.45 % and 
FinEMGD-MCMC also reaches 86.48 %. Comparing with finite mixture 
models, the performance of our infinite mixture models show higher 
accuracy rate.

Table 1. Experiment results for IMDB movie reviews.
Method Precision Recall F-Measure

FinEMBL-MCMC 84:72� 0:1 87:88� 0:07 86:27� 0:05
FinEMGD-MCMC 85:16� 0:05 88:73� 0:03 87:03� 0:04
FinEMSSD-MCMC 86:14� 0:07 83:84� 0:04 84:96� 0:07
InfEMBL-MCMC 89:18� 0:09 88:93� 0:07 89:06� 0:06
InfEMGD-MCMC 88:68� 0:03 88:49� 0:04 88:58� 0:06
InfEMSSD-MCMC 88:57� 0:05 89:60� 0:07 89:08� 0:05
EMGD-EM 81:36� 0:10 85:55� 0:11 83:59� 0:09
EMBL-EM 83:75� 0:12 84:60� 0:13 84:17� 0:10
EMSSD-EM 82:96� 0:11 83:01� 0:12 82:98� 0:10

Table 2. Experiment results for Tripadvisor hotel reviews.
Method Precision Recall F-Measure

FinEMBL-MCMC 70:23� 0:05 70:31� 0:10 70:16� 0:12
FinEMGD-MCMC 69:94� 0:01 69:88� 0:08 69:84� 0:16
FinEMSSD-MCMC 74:37� 0:17 74:45� 0:04 74:32� 0:23
InfEMBL-MCMC 70:36� 0:09 70:43� 0:07 70:31� 0:06
InfEMGD-MCMC 70:39� 0:13 70:47� 0:34 70:34� 0:26
InfEMSSD-MCMC 74:67� 0:15 74:76� 0:13 74:58� 0:09
EMGD-EM 67:50� 0:17 69:48� 0:15 68:48� 0:12
EMBL-EM 66:73� 0:17 70:68� 0:16 68:65� 0:13
EMSSD-EM 73:39� 0:15 73:39� 0:14 73:39� 0:14

Table 3. The experiment result for 
CON-19 fake news detection.

Method Accuracy

FinEMSSD-MCMC 85:04� 0:05
FinEMGD-MCMC 86:48� 0:07
FinEMBL-MCMC 86:24� 0:10
InfEMSSD-MCMC 86:78� 0:06
InfEMGD-MCMC 87:45� 0:08
InfEMBL-MCMC 86:26� 0:07
EMGD -EM 86:50� 0:10
EMBL-EM 83:75� 0:12
EMSSD-EM 84:54� 0:12
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Human Face Gender Recognition

In this experiment, we use two standard and challenging face recognition 
databases. The first database is the AR face database, which has 4000 color 
images corresponding to 126 people’s faces (70 men and 56 women). Images 
feature frontal view faces with different facial expressions, illumination con-
ditions, and occlusions (sunglasses and scarf). The second database is Caltech 
faces by California Institute of Technology, consists of 450 face images of 
around 27 unique people (both genders) with different lighting/expressions/ 
backgrounds (sample images are shown in Figure 1. We apply bag of feature 
(BOF) for representing the image vectors where SIFT has been used for feature 
extraction, treating the local image patches as the visual equivalent of indivi-
dual words.

Figures 2 and 3 show that our proposed approaches permit good discrimi-
nation. The intraclass performance for the AR using proposed approaches is 
shown in Figure 3. We note that InfEMSSD-MCMC shows superior 

Figure 1. Sample from face recognition database.

Figure 2. Intraclass accuracy for proposed approaches models in Caltech data.
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performance in distinguishing women class (97%) from men class (94%) and 
InfEMBL-MCMC achieves 96:01% in Caltech data set as we can see in 
Figure 2. Overall, all of our proposed models and algorithms ensure an 
accuracy above 85 % in this application. Compared with the EM algorithm, 
our proposed MCMC algorithms show higher accuracy with the correspond-
ing models.

Conclusion

In this paper, we have proposed a novel approach for finite mixtures of 
EMGD, EMBL and EMSSD based on the development of conjugate prior 
distributions and on the Monte Carlo simulation techniques of Gibbs sam-
pling mixed with a M–H step. Generally, with the help of prior information 
and the stochastic aspect of the simulation in Gibbs sampling, our proposed 
algorithms ensure accurate models learning. Moreover, via a Bayesian non-
parametric extension based on these mixtures, we show that the problem of 
determining the number of clusters can be cured and avoided by using infinite 
mixtures which model well the structure of the data. Our proposed approaches 
and infinite models offer excellent modeling capabilities as shown in the 
experimental part, which involves text sentiment analysis, fake news detection 
and human face recognition, compared to the widely used maximal likelihood 
approaches in high-dimensional count data. However, our modeling frame-
work still has some drawbacks as follows. First, the high computational 
complexity of the proposed inference led to slow convergence. A promising 
future work could be replacing the classical M–H by the Scalable M–H 
algorithm proposed in Cornish et al. (2019). This scheme is based on 

Figure 3. Intraclass accuracy for proposed approaches models in AR data.
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combination of factorized acceptance probabilities, procedures of Bernoulli 
processes, and control variate idea. It can be used to reduce the computational 
complexity by discovering in advance the sampling points that may be 
rejected. Second, Gibbs sampling might take a long time to converge. When 
two or more mixture components have similar parameters, the Gibbs sam-
pling method can get stuck in a local mode, resulting in inaccurate data points 
clustering. A possible solution that could be investigated is to consider the 
spilt-merge Markov Chain Monte Carlo procedure for the Dirichlet process as 
described in Jain and Neal (2004). Finally, the proposed approaches may be 
sensitive to the choice of the hyperparameters values. A potential future work 
could be devoted to developing an approach for the automatic selection of 
these values depending on the data to model.
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Appendix A Proof of Equation 17
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Removing the equation parts which is only related with data set X , because it does not have an 
effect on the r calculation in M–H step. 
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Appendix B Proof of Equation 21
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We remove the equations which are only related with data set X .
For the fact that: 

ΓðSþ nÞ ¼ ΓðSÞðSÞ � ðSþ 1Þ � � � ðSþ n � 1Þ (B2) 

So we have this: 
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Appendix C. Conditional Posterior of model hyperparmeters

In EMGD, those conditional posteriors becomes: 
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In EMBL, the form of pðj � � �Þ and pðδj � � �Þ are same in Equation (C1) and Equation (C2). the 
conditional posterior for ρ and $, we have:  
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