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ABSTRACT
Evaluation of biomass is essential in agriculture to delineate 
crop management practices, and this is usually done manually, 
which is time-consuming and destructive. This work proposes 
an artificial neural network and convolutional neural network to 
estimate the above-ground biomass (AGB) of wheat using visi
ble spectrum images captured by an unmanned aerial vehicle. 
The utilized dataset has two Brazilian wheat types, called 
Parrudo and Toruk. Furthermore, the experimental area has 
variability in crop growth by varying the amount of nitrogen. 
To determine AGB, samples of plants were collected at three 
different crop growth stages, approximately a month apart, 
making our database spatial and temporal variability. We have 
shown the feasibility of developing a regression model using 
RGB images for biomass estimation for two wheat types. The 
best results for ANN were 489.5, 826.4, and 0.9056 for MAE, 
RMSE, and R2, respectively. In CNN, MAE = 699.2, 
RMSE = 940.5, and R2 = 0.9065. These results show high accuracy 
in estimation of biomass, and the R2 shows good estimation and 
generalization capacity. The results demonstrate that our meth
odology can be used in precision agriculture to predict the 
spatial and temporal variability of AGB.

ARTICLE HISTORY 
Received 10 October 2020  
Revised 28 February 2022  
Accepted 16 March 2022  

Introduction

Precision agriculture has grown in recent decades, and its importance for 
agricultural production in terms of productivity, environmental impact, 
and sustainability is vital. Biomass measurement, also known as above- 
ground biomass (AGB), is an important measure for yield and grain 
quality. Therefore, AGB is considered one of the most important crop 
parameters, and the correct estimation of AGB can help improve crop 
monitoring and yield prediction (Bendig et al. 2015; Brocks and Bareth 
2018; Yue et al. 2017).
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Traditionally, biomass measurement is done manually, which is time- 
consuming and destructive. In large areas, this measurement is impractical. 
To address these challenges, new technologies can be applied to cope with this 
task, such as unmanned aerial vehicle (UAV) for imaging and artificial intelli
gence for modeling. Despite limitations regarding its scalability for very large 
farms, UAV has been applied as an alternative for acquiring images with lower 
pixel size and higher temporal resolution than satellite (Ballesteros et al. 2018; 
Messinger, Asner, and Silman 2016).

Measuring biomass from imaging in order to improve precision agricul
ture has been demonstrated by several publications. Bendig et al. (2015) and 
Brocks and Bareth (2018) used a combination of selected vegetation indices 
(VIs) and plant height information to estimate the biomass of summer 
barley. According to Ballesteros et al. (2018), the estimation of onion crop 
biomass from high-resolution imaging obtained with UAV was based on 
green canopy cover, crop height and canopy volume as the predictor vari
ables. Messinger, Asner, and Silman (2016) investigated the use of UAVs to 
measure above-ground carbon density in forests to replace expensive or 
labor-intensive inventory methods.

Several works have been published in which an attempt is made to estimate 
wheat biomass from images (Fu et al. 2014; Gaso, Berger, and Ciganda 2019; 
Yue et al. 2017), investigating several regression methods. Yue et al. (2017) 
proposed the estimation of wheat biomass using linear models, hyperspectral 
sensing, and several vegetation indices. Fu et al. (2014) have used the vegeta
tion index NVDI to calculate wheat biomass. They have shown a linear 
relationship between NDVI and measured biomass. However, the results are 
presented with only one manual collected sample of biomass, limiting the 
aspects of temporal variability of the biomass. Furthermore, contrary to their 
research, given the need for a special camera or a specific sensor, we do not use 
VIs, multispectral images, or the NDVI in our work. Based on this, we 
investigate the possibility of using only RGB images. Furthermore, we have 
collected samples of biomass from three different stages of wheat develop
ment, which provides a more reliable model.

In precision agriculture, artificial intelligence (AI) is typically used to 
classify diseases like the work found in Brahimi, Boukhalfa, and 
Moussaoui (2017), where a convolution neural network (CNN) is used to 
classify nine tomato diseases. In that work, they compare two well-known 
architectures of CNN with 99% of accuracy. Zounemat-Kermani (2014) 
proposed predicting the value of chlorophyll, a parameter for estimating 
primary productivity, biomass, and so forth. They have used linear regres
sion and ANN feed-forward networks using the PCA as the network’s data 
input. Wang et al. (2016) investigated the applicability of the Random Forest 
regression algorithm with VIs to remotely estimate (satellite) wheat 
biomass.
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Gopal and Bhargavi (2019) proposed the use of other kinds of features 
for machine learning in Wheat Biomass estimation: the number of fertili
zers, cumulative rainfall, among others. Whereas in our work, only images 
are used for crop yield prediction. Ighalo, Igwegbe, and Adeniyi (2021) 
utilized a multi-layer perceptron artificial neural network (MLP-ANN) 
model to predict the higher heating values (HHV) of biomass based on 
210 lines of combined proximate and ultimate analysis data. In a recent 
survey on deep learning in agriculture (Kamilaris and Prenafeta-Boldú 
2018), 48 works have been reported on agriculture applications, such as 
identification of weeds, fruits counting, and crop-type classification. Most 
applications that use deep learning in the literature are for object classifica
tion. Although there are some previous works with AI applied to agricul
ture precision, estimation of wheat biomass and yield prediction using deep 
learning is still a largely unexplored field.

Motivated by the advances in artificial intelligence and the importance of 
automatic biomass estimation for agriculture precision, we propose in this 
work an application for estimation of wheat biomass based on RGB images 
acquired by a UAV using two paradigms of deep learning. The first one is 
a traditional fully connected artificial neural network (ANN), and the other 
one is a convolutional neural network (CNN). Despite the advance of CNNs 
and their architectures, and thus the availability of various public libraries with 
competent CNN implementations – as shown by Khan et al. (2019) – we have 
implemented our CNN architecture. In so doing, we have control for tuning 
the hyperparameters and finding the most suitable CNN for our task. In 
addition, we have compared the results using a well-known ANN network 
with a CNN.

The contributions of this work are summarized as follows: (a) 
A comparison of two regression models for estimation of wheat biomass 
using Artificial Intelligence; (b) The use of two wheat genotypes for training 
the AI models; (c) The set of data with spatial and temporal variability that 
provides a more realistic scenario. The dataset is available (Schreiber, Amorim, 
and Parraga 2020); (d) The feasibility of developing a regression model using 
visible imaging (RGB), which has the advantage of lower cost for real practice 
in agriculture when compared to hyperspectral cameras.

Material and Methods

This section describes the data acquisition, the models, the preprocessing of 
data, and the metrics to model evaluation. The experimental wheat crop field is 
presented, along with image acquisition and manual biomass measurements 
throughout the crop development.
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Data Acquisition

For this work, an experimental wheat crop field area of 60 m × 20 m was used. 
The experiments were conducted at the Agriculture Experimental farm 
located in the south of Brazil, from May to October in 2018. The study area 
contains several 2.5 m × 1 m rectangular parcels, which are referred to as plots, 
which hold two Brazilians wheat varieties.

The genotypes used were TBIO Toruk and BRS Parrudo (48 Toruk plots 
and 40 Parrudo plot). Variability in the crops growth was created for all test 
areas, where each one received a varying quantity of nitrogen. Different 
nitrogen (N) rates were chosen to generate crop growth variability, to evaluate 
the response of biomass and grain yield to N availability, which we called 
spatial variability. The database consists of images captured by unmanned 
aerial vehicles (UAVs) and biomass manual measured to develop the estima
tion models. A workflow for the database acquisition can be seen in Figure 1.

Biomass Measurement: To train a network and develop a biomass estima
tion model, we collected real biomass to create a ground-truth. This step is 
done manually and in a destructive way, as follows. Shoot dry biomass was 
determined at three growth stages: the stage of six fully expanded leaves, 
referred herein as V6, three nodes, and at flowering by the collecting of plants 
in an area of 0.27 m2 for each plot. This was done to create a temporal 
variability. The plants collected were oven-dried at 65°C until constant weight 
and weighed. Then the weight is extrapolated for kilograms/hectare (kg/ha). 
The average biomass measurements are presented by stage in Table 1.

Figure 1. Workflow for data acquisition.
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UAV-based Data Collection: The images used in this work were 
acquired at the height of 50 m above ground using a camera coupled 
to a DJI Matrice 100 Quadcopter. This camera is a single-channel DJI X3 
Visible (RGB), with 12MB resolution and 8-bit pixel depth. For agricul
ture acquisition, the recommended frontal overlap should be at least 
80%, and the side overlap should be at least 70%. The resulting pixel 
size for the RGB images is 2.14 cm2/px. A total of 30 individual images 
were captured by the UAV using these parameters. Post-processing of 
the acquired images included georeferencing and mosaicking using 
photogrammetric software (Agisoft 2018), where a large set of overlap
ping images are post-processed to produce a single global orthoimage. 
Several ground control points were used around the experimental crop 
field and their geographic coordinates were evaluated using a high pre
cision RTK GPS. The use of ground control points allows the alignment 
of orthoimages obtained from different dates by the generation of 
a georeferenced orthomosaic image. The final orthomosaic image can 
be seen in Figure 2, acquired on August 28, 2018.

Our UAV’s three stages of growth were captured on the dates described in 
Table 2. It is at these stages that the biomass collection (ground truth) occurs.

Table 1. Biomass average in kg/ha by stage.
Parrudo Toruk Both Cultivars

V6 683.5 529.9 606.7
Three nodes 2147.4 1993.6 2070.5
Flowering 6769.4 5728.4 6248.9
Average of all stages 3200.1 2750.6 2975.4

Figure 2. Orthomosaic image showing the experimental area (crop field of 60 m × 20 m), with two 
types of winter Brazilians wheat. Toruk plots are highlighted by the red rectangle and the Parrudo 
plots are highlighted by the green rectangle (acquired on August 28, 2018).
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Preprocessing Data

To feed and train ANN and CNN, the first step is to segment the plots 
from the orthomosaic presented in Figure 2. In this work, data from the 
different plots were obtained using QGIS 3 (Team et al. 2018). Each 
estimation method does not have the same data entry, so each one has 
its data segmentation and data input strategy, as described in the 
sequence.

ANN: From the orthomosaic, regions of interest (ROI) were manually 
delineated from each plot of the orthomosaic, as shown by the red dots in 
Figure 3a. The ROIs were selected in a way that excluded pixels with soil 
exposed. Then from each ROI, an average of pixels was performed in the three 
RGB channels. This triplet of average was used as the input data to train our 
proposed ANN architecture.

CNN: For the CNN approach, each plot was segmented using a mask 
with regular size. This mask was used to provide the entry images with 
the standard size (Long, Shelhamer, and Darrell 2015) and is the same for 
the three different dates and development stages of the wheat.

After segmentation of 88 plots for each day of Biomass manual cutoff, 
according to Table 2, we obtained 264 RGB images with 158 × 110 pixels. 
Figure 3b shows an example of this segmented plot.

Table 2. Crop growth stage, image acquisition dates and number of plot 
samples in each date.

Number Plot Samples

Crop growth stage UAV acquisition Toruk Parrudo

V6 July, 2018 40 48
Three nodes August, 2018 40 48
Flowering September, 2018 40 48

Figure 3. (a) Plot ROI delineation example for the creation of the average pixels array for the entry 
of ANN. (b) Example of wheat plot image input for CNN.
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Proposed Models

The two architectures proposed in this work, ANN and CNN, were imple
mented using Python 3.6 (Van Rossum and Drake 1995), with the Keras 
Library (Chollet et al. 2015) and scikit-learn (Pedregosa et al. 2011). These 
methods have several advantages, such as the ability to capture the nonlinear 
relation among data. Below, we present the details of each architecture 
implemented.

ANN
The ANN structure can be divided into three parts: the input layer, the 
hidden layers, and the output layer. The input layer has the numeric 
values of the inputs, which describe the data being modeled. Figure 4 
shows the global structure proposed in this work that provided the best 
results for biomass estimation. The model of our ANN is

• The input layer has three input neurons, the average of pixel values for 
each of the three channels (R, G and B).

• There are three hidden layers connected, each layer with 50 neurons with 
ReLU activation function.

• The output layer has one neuron with a linear activation function.
A data normalization step is performed in the output of each hidden 

layer to improve the learning rate. Next, a dropout layer is used, 
responsible for random deactivation of a percentage of the neurons 
during the training. The percentage values were 20% for each hidden 
layer. The dropout technique is used to avoid overtraining of the net
work (Nielsen 2015). Finally, the number of training epochs, batch size, 
optimizer, learning rate, loss function, and metrics are given in 
Section 3.1.

Figure 4. ANN Model Proposed.
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CNN
Convolution neural network is a paradigm of deep learning that comprises in 
its structure the process of feature learning, by applying several kernels for 
feature extraction, and a classification with fully connected layers. Therefore, 
a CNN has the ability of learning discriminant features directly from images, 
video, text, or sound (Gavrilov et al. 2018).

CNN layers consist of an input and an output, with multiple hidden layers 
between them. The hidden layers mainly include three types, namely convolu
tional layer, pooling layer, and fully connected layers (Krizhevsky, Sutskever, and 
Hinton 2017). Each layer of a CNN has n filters containing a three-dimensional 
array. The input layer will contain the values of the raw pixels of the images.

We divide the structure for CNN into two parts: the feature extraction and the 
fully connected layers. The architecture proposed for the first one can be seen in 
Figure 5, where the hyperparameters chosen for Feature Extraction of the CNN 
used in this work are shown. The details of the feature extraction implemented are

● Convolution operation is performed in the input image with a kernel that 
seeks for features. In this case, we have used 16 filters;

● A down sampling is done in this group of features using max-pooling with 
parameter 2, that is, we reduce the size of the image by half;

● Another convolution operation is done with 32 new filters, creating a new 
group of features map;

● A down sampling is performed on this new group of characteristics using 
max-pooling again with parameter 2;

● In the last layer of convolution, convolution operation was done using 64 
filters to create the features maps;

● In the last down sampling, max-pooling is used again with parameter 2;
● In the last step of the feature extraction layer, a flattening is made, which 

takes each feature map and creates an array of 15808 values.

After the feature extraction, the flattening array feeds fully connected layers 
to perform the final estimation model, as previously said. These layers are 
extremely similar to the ANN shown in Figure 4. The number of training 
epochs, the steps per epoch, optimizer, learning rate, loss function, and metrics 
can be seen in Section 3.1.

Figure 5. CNN model proposed.
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Experiment Settings

In the training process, different images at different periods were all pooled together 
as inputs to find a general model. To train both deep learning networks, ANN and 
CNN, it is necessary to separate the database into training and testing data sets. To 
train and measure the performance, we have used cross-validation with the k-fold 
method, which is a technique that divides data samples into a training and a test set 
and has an excellent performance to overcome overfitting (Santos et al. 2018).

For the cross-validation, we have used k = 10, where the whole database is 
divided into 10 parts or folds. All k folds are randomly chosen. One fold is left 
out for testing, and the other nine folds for training. As we have used k = 10, it 
means that 10% of the entire database was used for testing, that is, 27 plot images.

For the training, 30 different seeds were used to create a random number 
generator, which means that we have trained the networks 30 times, altering 
the data order. So, each network was trained for each seed exclusively, and this 
result generates a model; at the end of this process, we have 30 ANN and 30 
CNN models. In short, the idea is to validate that regardless of the test and 
training set, the model can converge.

Metrics for Model Evaluation

To evaluate each network architecture’s performance, evaluate each regression 
model, and define a standard of comparison, we established the use of three 
metrics. These metrics are root-mean-square error (RMSE), mean absolute 
error (MAE) and coefficient of determination (R2) (Willmott and Matsuura 
2005). MAE and RMSE metrics are the most common ones to evaluate 
regression and have the same measure of magnitude as the input data, such 
as kilograms per hectare (kg/ha). Results are presented for each metric, show
ing their best values for all sets of the training process, with the mean value and 
the standard deviation for each one.

For all evaluation equations from Equations (1) to (3), n is the total number 
of samples, yj is the measured value (ground truth value), ŷj is the predicted 
value, and �y is the mean of the measured data.

Mean absolute error (MAE): It is the mean of the absolute difference 
between the predicted values and the observed (residual) value, where all 
individual differences are weighted equally on average (Willmott and 
Matsuura 2005). Its value can range from 0 to 1, where smaller values 
indicate that the predicted values are closer to the measured values. 

MAE ¼
1
n

Xn

j¼1
jyj � ŷjj (1) 
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Root mean square error (RMSE): The RMSE is the sample standard deviation 
of the differences between the predicted values and the measured (residual) 
values (Willmott and Matsuura 2005). The RMSE, different from the MAE, 
penalizes the larger differences more strongly (Chai and Draxler 2014). 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Xn

j¼1
ðyj � ŷjÞ

2

v
u
u
t (2) 

Coefficient of determination (R2): It is a statistical measure of how well 
regression forecasts approximate actual data points. This value can be in 
percentage, providing how much the model can explain the observed values. 
Its value can range from 0 to 1, and the higher the R2, the better the data fits the 
model (Montgomery and Runger 2010). 

R2 ¼

Pn

j¼1
ðŷj � �yÞ2

Pn

j¼1
ðŷj � �yÞ2 þ

Pn

j¼1
ðyj � ŷÞ2

(3) 

Table 3 summarizes the range for each metric used and the target value for best 
accuracy.

Results and Discussions

The results are presented in three parts. First, we present the hyperparameters that 
we implemented for the proposed application to estimate the wheat biomass. 
Second, we show the numerical results applied to the real data described in the 
methodology section. In the last part, we show the biomass map for each method. 
It is worth noting that each section has a brief discussion of the results obtained.

Hyperparameters Tuning

The hyperparameter tuning was performed thanks to the Hyperopt library 
(Bergstra, Yamins, and Cox 2013). This library helped to reduce the size of the 
tests. In Table 4, we briefly present each hyperparameter chosen for ANN 
and CNN.

Table 3. Metrics used for regression evaluation.
Metric Min. Max. Obs.

Mean absolute error (MAE) 0 1 Smaller better
Root mean square error (RMSE) 0 1 Smaller better
Coefficient of determination (R2) 0 1 Higher better
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Numerical Results

Table 5 presents the numerical results found for the ANN and CNN networks after 
training 30 times. The first row gives the average and standard deviation for all the 
30 trainings. We also show the best result for each metric in the second row.

As we can see, the models were well-adjusted since we found a high R2 

value for both networks. ANN performed better for MAE and RMSE 
errors in kg/ha. The results in Table 5 are presented together for all 
stages. Suppose we consider the biomass average for all stages and both 
cultivars. In that case, the mean value is 2975:35 kg=ha (see Table 1), 
resulting in a percentage MAE error of approximately 16%, and 
a percentage RMSE of 27:7% for the ANN network. For the CNN, it 
resulted in a percentage MAE error of approximately 23% and 
a percentage RMSE 31:6%

We also presented the outcome by stages to better understand these results, 
which can be important for the agriculture practice. The graphics comparing 
the real value of Biomass and the predicted one are presented in Figures 6 a 
and b. The red lines in these figures represent the real value, and the green lines 
the prediction for each model. The outcome is very promising.

We compare the estimation results for the ANN and CNN architectures by 
samples. We can see that in the initial samples, the networks performed more 
accurately when compared to the final stages. However, both had a higher 
error; this can be explained by the fact that the wheat has flowered in the last 
samples (taken during the flowering stage), and the color pattern starts to 
change. In this case, it is ready to harvest the plantation. In addition, we can 
also see the CNN generalized the biomass growth better than the ANN.

Biomass Map

For a visual comparison, we also created a Biomass Map, which helps under
stand and presenting the results. The idea is to create a sort of heat map, where 
the intensity of the color will represent the predicted biomass for each model. 

Table 5. Average, standard deviation and the best result for both ANN and CNN methods.
MAE (kg/ha) RMSE (kg/ha) R2

ANN Average 506.7 � 6.9 871.7 � 14.3 0.8930 � 0.006
Best result 489.5 826.4 0.9056

CNN Average 786.0 � 27.6 1020.22 � 37.3 0.9013 � 0.005
Best result 699.2 940.5 0.9065

Table 4. Hyperparameters for both models.
Epochs Steps per Epoch Batch Size Optimizer Learning Rate Loss Function Metrics

ANN 1000 – 4096 Adadelta 0.1 MSE R2, RMSE, MAE
CNN 50 30 – SGD 0.002 MSE R2, RMSE, MAE
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Of course, each algorithm needs to generate this map differently, but briefly 
speaking, the idea is to use the whole orthomosaic as input for the algorithms 
and create a new image for each model output.

The ANN Biomass Maps are in Figure 7a,b and c for each crop stage. These 
Biomass maps were created by taking each pixel of the original images and 
putting in the ANN model’s entry for estimating the biomass and creating 
these maps. For both models, the colors indicate the Biomass in kg=ha.

The CNN Biomass Maps are in Figure 8a, b and c for each crop stage. 
Unlike ANN, these Biomass maps were created by using each wheat plot in the 
original image, and this whole piece became a single biomass value, so it seems 

Figure 6. Real Biomass and Biomass Estimation by (a) ANN with an error range, (b) by CNN with an 
error range.

Figure 7. Biomass Map for ANN in the (a) V6 crop stage (b) Three nodes crop stage (c) Flowering 
crop stage. The colors indicate the Biomass in kg=ha.

Figure 8. Biomass Map for CNN in the (a) V6 crop stage. (b) three nodes crop stage. and (c) 
flowering crop stage. The colors indicates the biomass in kg=ha.
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to have a lower resolution and could not be applied to the corners of the image. 
However, using a few meters as input in hectares makes this difference hardly 
noticeable. As said before, the colors indicate the Biomass in kg=ha.

The comparison of the biomass maps between the algorithms is a bit 
difficult. This is because each map has characteristics that stand out between 
them. For example, for ANN, the soil was clearly highlighted when comparing 
the plots, allowing a quick observation of where has or not wheat planted or 
where there might be a problem during growth. However, during the stages, 
the CNN biomass maps better differentiate the value of growth over time.

Conclusions and Future Work

This study has proposed a deep learning approach to build a model for estima
tion of wheat biomass. To achieve that, we implemented two paradigms, ANN 
and CNN, with color images acquired by a UAV. The obtained results demon
strated the feasibility of the proposed approach to model shoot biomass for 
Brazilian wheat varieties. Furthermore, our results show that both deep models 
provided good results and are promising tools for agricultural practice. We have 
observed that both ANN and CNN performed similarly for practical purposes, 
although ANN can be more convenient, since it has a simpler structure.

Our experiments have also validated a different, and less costly, approach to 
automatic biomass estimation, since we have used only RGB images, thus not 
requiring cameras that capture multi-spectral images. To share with all inter
ested parties who wish to work with our data, the access to the Brazilian 
Wheat Dataset (Schreiber, Amorim, and Parraga 2020) developed during this 
work is one of its contributions. This dataset has more than 9 thousand unique 
data and more than 190 MB of images.

As future work, we plan to investigate using more input parameters and 
images to improve the results, develop a comparison between ready and 
validated models, and compare hyperspectral data and images with RGB.
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