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Abstract 
This work extends to fourth-order previously published work on developing 
the adjoint sensitivity and uncertainty analysis of the numerical model of a 
polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics 
benchmark. Previous works showed that the third-order sensitivities of the 
PERP leakage response with respect to these total microscopic cross sections are 
far larger than the corresponding 1st-order and 2nd-order ones, thereby having 
the largest impact on the uncertainties induced in the PERP benchmark’s re-
sponse. This finding has motivated the development of the original 4th-order 
formulas presented in this work, which are valid not only for the PERP bench-
mark but can also be used for computing the 4th-order sensitivities of response of 
any nuclear system involving fissionable material and internal or external neu-
tron sources. Subsequent works will use the adjoint-based mathematical expres-
sions obtained in this work to compute exactly and efficiently the numerical 
values of the largest fourth-order sensitivities of the PERP benchmark’s re-
sponse to the total microscopic cross sections, and use them for a pioneering 
fourth-order uncertainty analysis of the PERP benchmark’s response. 
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1. Introduction 

By applying the 4th-Order Comprehensive Adjoint Sensitivity Analysis Metho-
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dology (4th-CASAM) for linear system [1], this work extends the results reported 
in the accompanying Part I [2] by presenting the derivation of the expressions of 
the 4th-order sensitivities of the leakage response of the polyethylene-reflected 
plutonium (acronym: PERP) OECD/NEA reactor physics benchmark [3] to the 
PERP benchmark’s 180 group-averaged total microscopic cross sections. The 
companion work [4] will present numerical results for the 4th-order sensitivities 
along with their impact on the uncertainties they induce in the PERP leakage 
response, and compare with the contributions stemming from the correspond-
ing 1st-, 2nd- and 3rd-order sensitivities, which have been computed and reported 
in [5] [6]. 

This work is organized as follows: Section 2 presents the methodology for de-
riving the analytical expressions of the exact 4th-order sensitivities of the PERP 
benchmark’s leakage response with respect to the total microscopic cross sec-
tions. This Section also presents comparisons of the CPU-times which would be 
required for computing 4th-order sensitivities using the finite-difference formu-
las—which would provide just approximate values for various sensitivities—or 
the forward sensitivity analysis methodology—which could provide exact values 
for the sensitivities of interest. It is shown that the 4th-CASAM used in this work 
is by far more efficient than any other method, while showing that the metho-
dology is exact, introducing no intrinsic methodological errors in the computa-
tion of sensitivities. Section 3 concludes this work.  

2. Analytical Expressions of the Exact Fourth-Order  
Sensitivities of the PERP Leakage Response to Total  
Microscopic Cross Sections 

This section continuing the work presented in Part I [2] presents the derivation 
of the exact analytical expressions of the 4th-order sensitivities of the leakage re-
sponse of the polyethylene-reflected plutonium (acronym: PERP) metal sphere 
OECD/NEA benchmark [3] with respect to this benchmark’s total microscopic 
cross sections.  

This Section presents the three fundamental deterministic (as opposed to “sta-
tistical”) methods for computing the response sensitivities, namely: 1) finite dif-
ferences; 2) the forward sensitivity analysis method; and 3) the Fourth-Order 
Comprehensive Adjoint Sensitivity Analysis Methodology (4th-CASAM) for li-
near systems, conceived and developed by Cacuci [1]. The main features of ap-
plying these methods for the deterministic computation of the 4th-order sensitivi-
ties of the PERP benchmark leakage response with respect to the group-averaged 
microscopic total cross sections are presented in Section 2.2.  

2.1. Mathematical/Computational Modeling of the PERP  
Benchmark 

The dimensions and material composition of the spherical polyethylene-reflected 
plutonium (acronym: PERP) benchmark considered in this work are presented 
in Table A1 in the Appendix. The quantity of interest in this work, which will 
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be called the “response,” is the leakage of neutrons out of the PERP sphere, 
which has been measured experimentally [3]. The numerical modeling of the 
neutron flux distribution within the PERP benchmark, as well as the computa-
tion of the PERP leakage response has been performed using the multigroup 
discrete ordinates particle transport code PARTISN [7], together with neutron 
sources computed using the code SOURCES4C [8] and the MENDF71X [9] 
618-group cross section data collapsed to 30G =  energy groups. The neutron 
flux distribution within the PERP benchmark, as well as the leakage of neutrons 
through the outer boundary of the PERP benchmark has been modeled using the 
standard multigroup form of the Boltzmann neutron transport equation subject 
to the boundary condition of no incoming flux, with an internal spontaneous 
fission source, which can be written in the following form: 

( ) ( ) ( ), , 1, , ,g g gB r Q g Gϕ = = α αΩ                  (1) 

( ), 0, , 0, 1, , ,g
dr r r g Gϕ =  = ⋅ < =n Ω Ω                (2) 

where dr  is the external radius of the PERP sphere, and where the operator 
( )gB α  and the spontaneous source ( )gQ α  are defined as follows, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )
1 4

, , ,

d , ; , ; ; ,

g g g g g
t

G hh h g g
s f

h

B r r r r

r r r r
π

ϕ ϕ ϕ

ϕ χ ν→

=

⋅∇ + Σ

 ′ ′ ′− Σ → + Σ  ∑ ∫

α

α α α

Ω Ω Ω Ω

Ω Ω Ω Ω
   (3) 
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42 d e sinhe
g
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g
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E Eλ ν +
−

=
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 
 π 

∑ ∫α ,   (4) 

where fN  denotes the total number of spontaneous-fission isotopes. For an 
actinide nuclide k, the spontaneous source depends on the following parameters: 
1) the decay constant kλ ; 2) the atom density kN ; 3) the average number of 
neutrons per spontaneous fission SF

kν ; 4) the spontaneous fission branching ra-
tio SF

kF ; and 5) the evaluated parameters ka  and kb , which are used in a 
Watt’s fission spectrum to approximate the spontaneous fission neutron spec-
trum. The PERP benchmark has 2fN =  spontaneous-fission isotopes, namely 
“isotope 1” (239Pu) and “isotope 2” (240Pu). Thus, the index 1k =  refers to “iso-
tope 1” (239Pu) while 2k =  refers to “isotope 2” (240Pu). The vector α , which 
appears in the arguments in Equation (1), is defined as follows: 

[ ]† †
1, , ; ; ; ; ; ; ,

where .

α α

χ

  
+ + + + + +

TP s t fq N p

TP JQ I JSX JTX JFX JNU J

  



σ σ σ να
           (5) 

The components of the TP-dimensional vector α  are the uncertain model 
and response parameters, and are described in the Appendix. In Equation (5) 
and throughout this work, the dagger will be used to denote “transposition.” The 
nominal values of the parameters in Equation (5), as well as of all other quanti-
ties in this work, will be denoted using the superscript “zero,” e.g.,  

†0 0 0
1 , , TPα α   α . The meanings of other quantities appearing in Equations (1) 

through (4) are described in the Appendix and in the Nomenclature. 
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The mathematical expression of the PERP benchmark’s leakage response, de-
noted as ( )L α , is provided below: 

( ) ( )
1 0

d d ,
b

G
g

gS

L S rϕ
= ⋅ >

⋅∑∫ ∫
n

nα
Ω

Ω Ω Ω ,                 (6) 

where bS  is the external surface area of the PERP sphere. 
For the mathematical derivations to follow in this work, it will be convenient 

to use the matrix-form of Equations (1) and (2), which is as follows: 

( ) ( ) ( ), ,r =B Qα ϕ αΩ                         (7) 

( ), , , 0,dr r r=  = ⋅ <n0ϕ Ω Ω                      (8) 

where 
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with components defined below: 
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In Equation (10), the notation ,g hδ  denotes the Kronecker delta-functional, 
which is defined as usual, i.e., , 1g hδ = , if g h=  and , 0g hδ = , if g h≠ .  

2.2. Computation of ( ) j j j jL t t t t4
1 2 3 4α∂ ∂ ∂ ∂ ∂ , j JTX1 1, ,=  ;  

=j j2 1, , 1 ; =j j3 1, , 2 ; =j j4 1, , 3  

Since this work aims at applying the 4th-Order Comprehensive Sensitivity Anal-
ysis Methodology (4th-CASAM) to obtain the closed form expressions of the 
4th-order sensitivities of the PERP leakage response with respect to the group- 
averaged total microscopic cross sections, the proliferation of indices, super-
scripts and subscripts is unavoidable. Nevertheless, “subscripted-subscripts” can 
be avoided by using subscripts of the form ; 2 1, ,1 1, , 1j JTX j j==   , where 
the index j1 will be used to index the 1st-order sensitivities, and where the index 
j2 will be used (in addition to j1) to index the 2nd-order sensitivities. Further-
more, the index j3 will be used (in addition to j1 and j2) to index the 3rd-order 
sensitivities; the index j4 will be used (in addition to j1, j2 and j3) to index the 
4th-order sensitivities. As described in the Appendix, 180JTX I G= × =   
represents the total number of components ,

g
t iσ  in the vector  

[ ] †† 1 2 1
1 , 1 , 1 , 1 , , ,, , , , , , , , , , ,G g G

JTX t i t i t i t i t i I t i It t σ σ σ σ σ σ= = = = =  t        , for  
1, , 6i I= = ; 1, , 30g G= = .  
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Finite-difference formulas that can be used to compute approximately the 
fourth-order response sensitivities with respect to the model parameters will be 
discussed in Subsection 2.2.1. The Forward Sensitivity Analysis Methodology 
will be discussed in Subsection 2.2.2. The 4th-CASAM will be discussed in Sub-
section 2.2.3, while Subsection 2.2.4 will present a comparative discussion of the 
computational resources and times (CPU) which are required by these three de-
terministic methods. 

2.2.1. Re-Computations with Finite-Difference Approximation 
The 4th-order unmixed sensitivities, ( )4 4

jL α∂ ∂α , of the leakage response, 
( )L α , with respect to all the model parameters, can be approximately computed 

by re-computations using the well-known finite-difference formula presented 
below: 

( )
( )

( ) ( )
4

2
2 1 1 24 4

1 4 6 4 , 1, ,j j j j j j
jj

L
L L L L L h j TP

hα
+ + − −

∂
≈ − + − + + Ο =

∂


α
,  (11) 

where ( )2 2j j jL L hα+ + , ( )1j j jL L hα+ + , ( )1j j jL L hα− − ,  

( )2 2j j jL L hα− −  and jh  denotes a “judiciously-chosen” variation in the 
parameter jα  around its nominal value 0

jα . The 4th-order mixed sensitivities, 
( )4

1 2 3 4j j j jL α α α α∂ ∂ ∂ ∂ ∂α , can be calculated by using the following finite-dif- 
ference formula: 

( ) (
4
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1 2 3 4 1 2 3 4
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1
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j j j j j j j j

j j j j j j j j j j j j j j j j
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where ( )1 1, 2 1, 3 1, 4 1 1 1 2 2 3 3 4 4, , ,j j j j j j j j j j j jL L h h h hα α α α+ + + + + + + + , etc. The finite 
difference formulas introduce their intrinsic “methodological errors” of order 

( )2 2 2 2
1 2 3 4, , ,j j j jh h h hΟ  which are in addition to, and independent of, the errors that 

might be incurred in the computation of ( )4
1 2 3 4j j j jL α α α α∂ ∂ ∂ ∂ ∂α .  

2.2.2. Forward Sensitivity Analysis Methodology (FSAM) 
The fourth-order partial sensitivity of ( )L α  to four generic model parameters, 

1 2 3 4, , ,j j j jα α α α , has the following expression: 

( ) ( )4 4

14 3 2 1 4 3 2 10

,
d d ,

1 1, , ; 2 1, , 1; 3 1, , 2, 4 1, , 3.
b

gG

gj j j j j j j jS

L r
S

j TP j j j j j j

ϕ
α α α α α α α α= ⋅ >

∂ ∂
⋅

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= = = =

∑∫ ∫
n

n

   

α

Ω

Ω
Ω Ω

    (13) 

In turn, the fourth-order derivative ( )4
1 2 3 4,g

j j j jrϕ α α α α∂ ∂ ∂ ∂ ∂Ω  is the so-
lution of the fourth-order G-derivative of Equations (1) and (2) with respect to 

1 2 3 4, , ,j j j jα α α α , namely:  

https://doi.org/10.4236/ajcm.2021.112010


D. G. Cacuci, R. X. Fang 
 

 

DOI: 10.4236/ajcm.2021.112010 138 American Journal of Computational Mathematics 
 

( ) ( ) ( )44

4 3 2 1 4 3 2 1
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where 

( ) ( )4 3

4 3 2 1 4 3 2 1

, , , , , ,
.

g g g g

j j j j j j j j

S r r S r rϕ ϕ

α α α α α α α α

    ∂ ∂∂     =  
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

Ω Ω Ω Ω
        (16) 

Note that a “place-holder,” denoted as [], has been explicitly used on the left- 
side of Equation (14) to indicate that the operator ( )gB α  acts (linearly) on the 
function that appears in this place-holder. Evidently, the computations of all of 
the fourth-order sensitivities ( )4

4 3 2 1j j j jL α α α α∂ ∂ ∂ ∂ ∂α  require  
( )( )( )1 2 3 4!TP TP TP TP+ + +  large-scale computations to solve Equations (14) 

and (15), followed by ( )( )( )1 2 3 4!TP TP TP TP+ + +  small-scale computations 
for performing the integration represented by Equation (13).  

2.2.3. Fourth-Order Adjoint Sensitivity Analysis Methodology  
(4th-CASAM) 

In contradistinction to the FSAM, the 4th-CASAM does not use Equation (13) 
for computing 4th-order response sensitivities but instead uses the total G-dif- 
ferential of the expression that resulted from the application of the 3rd-CASAM, 
namely Equation (91) or, equivalently, Equation (92) from Ref. [2], which is re-
produced below, for convenience: 
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Ω Ω

Ω Ω

Ω Ω

        (17) 

The 1st-, 2nd- and 3rd-level adjoint functions ( )1ψ , ( )2ψ  and ( )3ψ , which ap-
pear in Equation (17) are the solutions of the following systems which have been 
derived in [2]:  

1) The 1st-level adjoint function ( )1ψ  is the solution of the 1st-Level Adjoint 
Sensitivity System (1st-LASS), which is defined as follows: 

( ) ( ) ( ) ( ) [ ]†1 , ; 1, ,1, ,1dr r rδ = ⋅ − A I n I   α ψ Ω Ω .       (18) 
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( ) ( )1 , , , 0,dr r r=   = ⋅ >n0ψ Ω Ω                     (19) 

where ( )A α  denotes the operator adjoint to ( )B α , having components  
( ) ( ) *

gh hgA B  α α , where the symbol [ ]*  indicates “formal adjoint operator.” 
2) The 2nd-level adjoint function  
( ) ( ) ( ) ( ) ( ) ( )

†2 2 2
1 21; , 1; , , 1; ,j r j r j r 

 ψ ψ ψΩ Ω Ω  is the solution of the 2nd-Level 
Adjoint Sensitivity System (2nd-LASS), which is defined as follows: 
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2 1; , , , 0; 1 1, , ,dj r r j Xr JT= = ⋅ < =n 0ψ Ω Ω            (23) 

where, for each 1 1, ,j JTX=  , ( )1;jS α  is a G G×  diagonal matrix having 
non-zero elements of the form ( ) 1 , 1, ,g

t jt g G∂Σ ∂ = α  on its diagonal, i.e.,  
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3) The 3rd-level adjoint function  
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  ψ ψ ψΩ Ω Ω  is the solution of 
the 3rd-Level Adjoint Sensitivity System (3rd-LASS), which is defined as follows: 
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( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

0

3
1

3
2
3

3
3

4

2
1

2
2

1

2; 1; ,1;
2; 1; ,1;

2; 1; ,

2; 1; ,

2; 1; ,

2; 1; ,
2; ,

2; ,

j j rj
j j rj

j j r

j j r

j j r

j j r
j r

j r

                        

  
  
  

= −   
 
 
 

A S
B S

B
A

S

S
S

S

0 0
0 0
0 0 0
0 0 0

α

ψα α
ψα α

α ψ
α ψ

α ψ

α ψ
α ϕ

α ψ

Ω

Ω

Ω

Ω

Ω

Ω
Ω

Ω 0

, for 1 1, , ; 2 1, , 1,j JTX j j= =




 

α

  (25) 

where ( )2;jS α  is a matrix having the same elements as ( )1;jS α , except that 
the index j1 is replaced by the index j2. The boundary conditions for the com-
ponents of ( ) ( )3 2; 1; ,j j rψ Ω  are as follows:  

( ) ( )
( ) ( )

3

3

2; 1; , , ; 0; 2,3; 1 1, , ; 2 1, , 1;

2; 1; , , ; 0; 1, 4; 1 1, , ; 2 1, , 1.
i d

i d

j j r r r i j JTX j j

j j r r r i j JTX j j

= = ⋅ < = = =

= = ⋅ > = = =

n

n

 

 

0

0

ψ

ψ

Ω Ω

Ω Ω
 (26) 

The 4th-order sensitivities of the PERP leakage response with respect to the 
group-averaged microscopic total cross sections are obtained after determining 
the total first-order G-differential of the expression of the 3rd-order sensitivities 
provided in Equation (17). By definition, this G-differential is obtained as fol-
lows: 
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( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

0

0

1 2 33

3 2 1

1 1 2 2 3 33

3 2 1

1 2 2 1 2 23 3

3 2 1 3 2 1

, ; ; ;

, ; ; ;d
d

, ; ; ; , ; ; ;

for 1 1, ,

j j j

j j j

j j j j j j
dir ind

L

t t t

L

t t t

L L

t t t t t t

j

δ

εδ εδ εδ εδ εδ

ε

δ δ

 ∂ 
 

∂ ∂ ∂  

 ∂ + + + + + =  
∂ ∂ ∂  

   ∂ ∂   = +   
∂ ∂ ∂ ∂ ∂ ∂      

= 

α

α

α ϕ ψ ψ ψ

α α ϕ ϕ ψ ψ ψ ψ ψ ψ

α ϕ ψ ψ ψ α ϕ ψ ψ ψ

; 2 1, , 1; 3 1, , 2,JTX j j j j= = 

 (27) 

where the “direct-effect” term is defined as follows: 

( ) ( ) ( )( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

( )

0

0

0

1 2 33

3 2 1

3
1

1

3 1
2

1

3 2
3 1

1

3
4

, ; ; ;

3;
2; 1; , , ,

3;
2; 1; , , ,

3;
2; 1; , , 1; ,

2; 1;

j j j
dir

L

t t t

j
j j r r

j
j j r r

j
j j r j r

j j r

δ

δ

δ

δ

 ∂ 
 

∂ ∂ ∂  

 ∂  −   ∂   

 ∂  −   ∂   

 ∂  −   ∂   

−

S

S

S



α

α

α

α ϕ ψ ψ ψ

α
ψ α ϕ

α

α
ψ α ψ

α

α
ψ α ψ

α

ψ

Ω Ω

Ω Ω

Ω Ω

( ) ( ) ( ) ( )
( ) 0

2
2

1

3;
, , 1; , ,

j
j rδ

 ∂  
  ∂   

S

α

α
α ψ

α
Ω Ω

       (28) 

and the “indirect-effect” term is defined as follows: 

( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ) 0

1 2 33

3 2 1

8
4 4

11

, ; ; ;

2; 1; , , 3; 2; 1; , .

j j j
ind

i i
i

L

t t t

j j r j j j r

δ

=

 ∂ 
 

∂ ∂ ∂  

 
 
 
∑ v r

α

α ϕ ψ ψ ψ

Ω Ω

           (29) 

The quantities appearing on the right side of Equation (29) are defined as fol-
lows: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

†4 4 4
1 8

1 2 2 3 3
1 2 1 2

†3 3
3 4

2; 1; , 2; 1; , , , 2; 1; ,

, , 1 , 1 , 2; 1 , 2; 1 ,

2; 1 , 2; 1 ,

j j r j j r j j r

j j j j j j

j j j j

δ δ δ δ δ δ

δ δ

 
 







v v v 

 ϕ ψ ψ ψ ψ ψ

ψ ψ

Ω Ω Ω

     (30) 

( ) ( ) ( ) ( ) ( ) ( )
†4 4 4

1 83; 2; 1; , 3; 2; 1; , , , 3; 2; 1; , ,j j j r j j j r j j j r 
 r r r Ω Ω Ω   (31) 

with components defined as follows: 
( ) ( ) ( ) ( ) ( )4 3

1 13; 2; 1; , 3; 2; 1; , ,j j j r j j j r−r S α ψΩ Ω            (32) 
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( ) ( ) ( ) ( ) ( )4 3
2 23; 2; 1; , 3; 2; 1; , ,j j j r j j j r−r S α ψΩ Ω           (33) 

( ) ( ) ( ) ( ) ( )4 3
3 33; 2; 1; , 3; 2; 1; , ,j j j r j j j r−r S ψ αΩ Ω           (34) 

( ) ( ) ( ) ( ) ( )4 3
4 43; 2; 1; , 3; 2; 1; , ,j j j r j j j r−r S α ψΩ Ω           (35) 

( ) ( ) ( ) ( )4
5 3; 2; 1; , 3; , ,j j j r j r−r S α ϕΩ Ω              (36) 

( ) ( ) ( ) ( ) ( )4 1
6 3; 2; 1; , 3; , ,j j j r j r−r S α ψΩ Ω             (37) 

( ) ( ) ( ) ( ) ( )4 2
7 13; 2; 1; , 3; 1; , ,j j j r j j r−r S α ψΩ Ω            (38) 

( ) ( ) ( ) ( ) ( )4 2
8 23; 2; 1; , 3; 1; , .j j j r j j r−r S α ψΩ Ω            (39) 

The components of the vector ( ) ( )4 2; 1; ,j j rv Ω  defined in Equation (30) are 
the solutions of the following 4th-Level Variational Sensitivity System (4th-LVSS):  

( ) ( ) ( ) ( ) ( ) ( )4 4 42; 1; , 2; 1; , 2; 1; , ,j j r j j r j j r=F v qΩ Ω Ω        (40) 

satisfying the following boundary conditions: 

( ), , , 0,dr r rδ =  = ⋅ <n0ϕ Ω Ω                  (41) 

( ) ( )1 , , , 0,dr r rδ =   = ⋅ >n0ψ Ω Ω                 (42) 

( ) ( )2
1 1; , , , 0; 1 1, , ,dj r r r j JTXδ = = ⋅ > =n 0ψ Ω Ω          (43) 

( ) ( )2
2 1; , , , 0; 1 1, , ,drj r r j JTXδ = = ⋅ < =n 0ψ Ω Ω          (44) 

( ) ( )
( ) ( )

3

3

2; 1; , , ; 0; 2,3; 1 1, , ; 2 1, , 1,

2; 1; , , ; 0; 1, 4; 1 1, , ; 2 1, , 1.
i d

i d

j j r r r i j JTX j j

j j r r r i j JTX j j

δ

δ

= = ⋅ < = = =

= = ⋅ > = = =

n

n

 

 

0

0

ψ

ψ

Ω Ω

Ω Ω
 (45) 

In Equation (40), the block-matrix ( ) ( )4 2; 1; ,j j rF Ω and the block-vector 
( ) ( )4 2; 1; ,j j rq Ω  are defined as follows: 

( ) ( )

( )
( )

( ) ( )
( ) ( )

( )
( )

4

1
1

2; 1; , ,
2 1

2 1
2

2

j
j

j j r
j j

j j
j

j

 
 
 
 
 
 
 
 
 
 
 
 
 

B
A

S A
S B

F
S A S

S B S
S B

S A

      

      

     

     



    

    

     

     

Ω (46) 

( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ){

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) }

4

1 2 1 3 1 2
1 1

3 2 4 1 2 3
2 2 1

4 1 2 3
2

4 1 2 3
3

†
4 1 2 3

4

2; 1; ,

, ; , ; 1 ; ,

; 1 ; , ; 1 ; 2; 1 ; ,

; 1 ; 2; 1 ; ,

; 1 ; 2; 1 ; ,

; 1 ; 2; 1 ; .

j j r

j

j j j j

j j j

j j j

j j j

δ δ δ

δ δ

δ

δ

δ

 
 

   
   
 
 
 
 

 
 

q

Q Q Q

Q Q

Q

Q

Q

 α ψ α ψ ψ α

ϕ ψ α ψ ψ ψ α

ψ ψ ψ α

ψ ψ ψ α

ψ ψ ψ α

Ω

     (47) 

https://doi.org/10.4236/ajcm.2021.112010


D. G. Cacuci, R. X. Fang 
 

 

DOI: 10.4236/ajcm.2021.112010 142 American Journal of Computational Mathematics 
 

In order to enhance the visibility of the structure of the 8 × 8 matrix 
( ) ( )4 2; 1; ,j j rF Ω  defined in Equation (46), the zero-valued block-matrix com-

ponents of this matrix have been represented by dots, while the dependence of 
the non-zero matrices on the vector of parameters α  has been suppressed. In 
Equation (47), the source-terms ( ) ( )1 δQ α , ( ) ( )( )2 1 ;δQ ψ α , 

( ) ( ) ( ) ( ) ( )3 1 2; , ; 1; , ; , 1, 2i ir j r iδ  = Q α ψ ψ αΩ Ω  are as follows [2],  

( ) ( )
( ) ( ){ }

0

1
,

, ; ,
r

δ δ
    ∂

∂
−  

  

B
Q 

α

α ϕ
α ϕ α α

α

Ω
           (48) 

( ) ( )( )
( ) ( ) ( ){ }

0

1

2 1
,

, ; ,
r

δ δ
  ∂  −  

∂  

A
Q 

α

α ψ
α ψ α α

α

Ω
          (49) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
0 0

3 1 2
1 1

1 2
1

; , ; 1; , ;

1;
, 1; , ,

r j r

j
j r

δ

δ δ

 
 
   ∂ ∂      − −      ∂ ∂         

Q

S A
r

α α

α ψ ψ α

α α
α ψ α ψ

α α

Ω Ω

Ω Ω
   (50) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0 0

3 2
2 2

2
2

; , ; 1; , ;

1;
, 1; , .

r j r

j
j r

δ

δ δ

 
 
   ∂ ∂      − −      ∂ ∂         

Q

S B
r

α α

α ϕ ψ α

α α
α ϕ α ψ

α α

Ω Ω

Ω Ω
    (51) 

The source-terms ( ) ( ) ( ) ( ) ( ) ( )4 1 2 3; 1 ; 2; 1 ; , 1, 2,3, 4i j j j iδ  = Q ψ ψ ψ α  have the 
following expressions: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

4 1 2 3
1

3 3
1 4

2
1

; 1 ; 2; 1 ;

1;
2; 1 2; 1

2;
1; , ,

j j j

j
j j j j

j
j r

δ

δ δ

δ

 
 
∂ ∂   

− −   ∂ ∂   
∂ 

−  ∂ 

Q

A S

S



ψ ψ ψ α

α α
α ψ α ψ

α α

α
α ψ

α
Ω

       (52) 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

4 1 2 3
2

3 3
2 3

2
2

; 1 ; 2; 1 ;

1;
2; 1 2; 1

2;
1; , ,

j j j

j
j j j j

j
j r

δ

δ δ

δ

 
 
∂ ∂   

− −   ∂ ∂   
∂ 

−  ∂ 

Q

B S
α

S



ψ ψ ψ α

α α
α ψ ψ

α α

α
α ψ

α
Ω

       (53) 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

4 1 2 3
3

3
3

; 1 ; 2; 1 ;

2;
2; 1 , ,

j j j

j
j j r

δ

δ δ

 
 
∂ ∂   

− −   ∂ ∂   

Q

B S
ψ

ψ ψ ψ α

α α
α α ϕ

α α
Ω

         (54) 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

4 1 2 3
4

3 1
4

; 1 ; 2; 1 ;

2;
2; 1 , .

j j j

j
j j r

δ

δ δ

 
 
∂ ∂   

− −   ∂ ∂   

Q

A S


ψ ψ ψ α

α α
α ψ α ψ

α α
Ω

       (55) 

https://doi.org/10.4236/ajcm.2021.112010


D. G. Cacuci, R. X. Fang 
 

 

DOI: 10.4236/ajcm.2021.112010 143 American Journal of Computational Mathematics 
 

When only the total microscopic cross sections are considered, the source-terms 
( ) ( )1 δQ α , ( ) ( )( )2 1 ;δQ ψ α , ( ) ( ) ( ) ( ) ( )3 1 2; , ; 1; , ; , 1, 2i ir j r iδ  = Q α ψ ψ αΩ Ω  and 
( ) ( ) ( ) ( ) ( ) ( )4 1 2 3; 1 ; 2; 1 ; , 1, 2,3, 4i j j j iδ  = Q ψ ψ ψ α , which appear in the definition 

provided in Equation (47), reduce to the following expressions: 

( ) ( ) ( ) ( )1
4

4 1
4; , ,

JTX

j
j

j r tδ δ
=

− ∑Q Sα α ϕ Ω                  (56) 

( ) ( )( ) ( ) ( ) ( )2 1 1
4

4 1
; 4; , ,

JTX

j
j

j r tδ δ
=

− ∑Q Sψ α α ψ Ω              (57) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 1 2 2
1 1 1 4

4 1
; , ; 1; , ; 4; 1; , ,

JTX

j
j

r j r j j r tδ δ
=

  −  ∑Q Sα ψ ψ α α ψΩ Ω Ω  (58) 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 2
2 2 2 4

4 1
; , ; 1; , ; 4; 1; , ,

JTX

j
j

r j r j j r tδ δ
=

  −  ∑Q Sα ϕ ψ α α ψΩ Ω Ω   (59) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 1 2 3 3
1 1 4

4 1
; 1 ; 2; 1 ; 4; 2; 1 ,

JTX

j
j

j j j j j j tδ δ
=

  −  ∑Q Sψ ψ ψ α α ψ   (60) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 1 2 3 3
2 2 4

4 1
; 1 ; 2; 1 ; 4; 2; 1 ,

JTX

j
j

j j j j j j tδ δ
=

  −  ∑Q Sψ ψ ψ α α ψ   (61) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 1 2 3 3
3 3 4

4 1
; 1 ; 2; 1 ; 4; 2; 1 ,

JTX

j
j

j j j j j j tδ δ
=

  −  ∑Q Sψ ψ ψ α α ψ   (62) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 1 2 3 3
4 4 4

4 1
; 1 ; 2; 1 ; 4; 2; 1 .

JTX

j
j

j j j j j j tδ δ
=

  −  ∑Q Sψ ψ ψ α α ψ   (63) 

The huge amounts of large-scale computations that would be needed to solve 
Equation (40) make it impractical to solve it. To avoid the need for solving Equ-
ation (40), the appearance of the vector ( ) ( )4 2; 1; ,j j rv Ω  will be eliminated 
from appearing in the expression on the right-side of Equation (29). This will be 
accomplished by recasting the inner products that involve ( ) ( )4 2; 1; ,j j rv Ω  in 
terms of equivalent inner products; but these equivalent inner products will in-
volve the solutions of a 4th-Level Adjoint Sensitivity System (4th-LASS) instead of 
the components of ( ) ( )4 2; 1; ,j j rv Ω . Furthermore, the solutions of the 4th-LASS 
will not depend on the parameter variations. The 4th-LASS will be constructed by 
following a sequence of operations which is similar to the construction of the 
3rd-LASS [2], and which is described below.  

Consider a Hilbert space, denoted as ( )4H , comprising elements denoted ge-
nerically as ( ) ( ) ( )

4
4,r ∈u Ω H , which have an “eight-component block-vector” 

structure of the form ( ) ( ) ( ) ( ) ( ) ( )
†4 4 4

1 8, , , , ,r r r 
 u u u Ω Ω Ω , with each of the 

eight vector-components having the following structure:  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

†4 4 ,1 4 , 4 ,, , , , , , , , , 1, ,8g G
i i i ir u r u r u r i  = u    Ω Ω Ω Ω .  

1) Define the inner product in ( )4H , denoted as ( ) ( ) ( ) ( )
( )

4 4

4
, , ,r ru wΩ Ω ,  

of two arbitrary elements in ( )4H , denoted as ( ) ( ) ( )
4

4,r ∈u Ω H  and  
( ) ( ) ( )
4

4,r ∈w Ω H , and having the block-vector structures  
( ) ( ) ( ) ( ) ( ) ( )

†4 4 4
1 8, , , , ,r r r 

 w w w Ω Ω Ω  and, respectively,  
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( ) ( ) ( ) ( ) ( ) ( )
†4 4 ,1 4 ,, , , , , , 1, ,8G

i i ir w r w r i  = w   Ω Ω Ω , as follows:  

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

8
4 4 4 4

4 11

8
4 , 4 ,2

1 1 0 4

, , , , , ,

4 d d , , .
d

i i
i

rG
g g

i i
i g

r r r r

r r u r w r

=

= = π

π=

∑

∑∑ ∫ ∫

u w u wΩ Ω Ω Ω

Ω Ω Ω
       (64) 

2) Apply the definition provided in Equation (64) to form the inner product 
of Equation (40) with a yet undefined vector  

( ) ( ) ( ) ( ) ( ) ( ) ( )
†4 4 4

1 8 43; 2; 1; , 3; 2; 1; , , , 3; 2; 1; ,j j j r j j j r j j j r  ∈  ψ ψ ψΩ Ω Ω H , to 
obtain the following relation, evaluated at 0α : 

( ) ( ) ( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( )
( ){ }

0

0

4 4 4

4

4 4

4

3; 2; 1; , , 2; 1; , 2; 1; ,

3; 2; 1; , , 2; ,

 

1; .

j j j r j j r j j r

j j j r j j r=

F v

q

α

α

ψ

ψ

Ω Ω Ω

Ω Ω
    (65) 

3) Use the customary definition of the adjoint operator in ( )4H , endowed 
with the inner product defined in Equation (64) to recast the left side of Equa-
tion (65) into the following equivalent form: 

( ) ( ) ( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

4 4 4

4

*4 4 4

4

4 1 2 3 4

3; 2; 1; , , 2; 1; , 2; 1; ,

2; 1; , , 2; 1; , 3; 2; 1; ,

, ; 1 ; 2; 1 ; 3; 2

 

; 1 ,

j j j r j j r j j r

j j r j j r j j j r

P j j j j j jδ δ δ δ

   =     

 +  

F v

v F

α

α

ψ

ψ

ϕ ψ ψ ψ ψ

Ω Ω Ω

Ω Ω Ω  (66) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 1 2 3 4, ; 1 ; 2; 1 ; 3; 2; 1P j j j j j jδ δ δ δ 
 ϕ ψ ψ ψ ψ  denotes the cor-

responding bilinear concomitant evaluated on the PERP sphere’s outer boundary 

bS , at dr r= , and where the block-matrix operator ( ) ( )
*4 2; 1; ,j j r 

 F Ω  is the 
formal adjoint of the block-matrix operator ( ) ( )4 2; 1; ,j j rF Ω , having the fol-
lowing structure: 

( ) ( )

( ) ( )
( ) ( )

( )
( )

( )
( )

*4 2; 1; ,

1 2
1 2

2
2

.

1
1

j j r

j j
j j

j
j

j
j

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

F

A S S
B S S

B S
A S

B
A

S A
S B

    

    

     

     



      

      

     

     

Ω

   (67) 

4) Require the first term on the right-side of Equation (66) to represent the 
same functional as the indirect-effect term defined in Equation (29). This re-
quirement will be satisfied by requiring that the following relations be satisfied 
by the components of the function ( ) ( )4 3; 2; 1; ,j j j rψ Ω : 
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( ) ( ) ( ) ( ){ } ( ) ( )
0

*4 4 42; 1; , 3; 2; 1; , 3; 2; 1; , ,

1 1, , ; 2 1, , 1; 3 1, , 2.

j j r j j j r j j j r

j JTX j j j j

  = 

= = =

F r

  

α
ψΩ Ω Ω

   (68) 

5) Use in Equation (66) the boundary conditions shown in Equations (41), 
(42), (43), (44) and (45). Furthermore, set to zero the remaining terms in the bi-
linear concomitant ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 1 2 3 4, ; 1 ; 2; 1 ; 3; 2; 1P j j j j j jδ δ δ δ 

 ϕ ψ ψ ψ ψ  in 
Equation (66) by requiring the components of the function ( ) ( )4 3; 2; 1; ,j j j rψ Ω  
to satisfy the following boundary conditions: 

( ) ( )

( ) ( )

4

4

3; 2; 1; , , ; 0;
2,3,5,8; 1 1, , ; 2 1, , 1; 3 1, , 2;

3; 2; 1; , , ; 0;
1, 4,6,7; 1 1, , ; 2 1, , 1; 3 1, , 2.

i d

i d

j j j r r r
i j JTX j j j j

j j j r r r
i j JTX j j j j

= = ⋅ <

= = = =

= = ⋅ >

= = = =

n

n

  

  

0

0

ψ

ψ

Ω Ω

Ω Ω
          (69) 

6) The boundary conditions shown in Equation (69) complete the well-posed 
definition of the 4th-level adjoint function ( ) ( ) ( )

4
43; 2; 1; ,j j j r ∈ψ Ω H  as the 

solution of Equations (68) and (69), which are called “the Fourth-Level Adjoint 
Sensitivity System (4th-LASS)”. The reason for calling this system “Fourth-Level” 
(as opposed to “Fourth-Order”) stems from the fact that this system does not 
involve any 2nd-, 3rd- and/or 4th-order differentials or derivatives of the depen-
dent variables (i.e., state functions) even though the solution of the 4th-LASS is 
used for computing, efficiently and exactly, the 4th-order sensitivities of the re-
sponse with respect to the model parameters.  

7) Use Equations (66) through (69) in Equation (29) to obtain the following 
alternative expression for the indirect-effect term  

( ) ( ) ( )( ){ }1 2 33
3 2 1, ; ; ; j j j

ind
L t t tδ ∂ ∂ ∂ ∂α ϕ ψ ψ ψ  in terms of the 4th-level adjoint func-

tion ( ) ( ) ( )
4

43; 2; 1; ,j j j r ∈ψ Ω H : 

( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( )( )
0

0

1 2 33

3 2 1

8
4 4

11

1 2 34

4
4 1 4 3 2 1

, ; ; ;

3; 2; 1; , , 2; 1; ,

, ; ; ;
,

1 1, , ; 2 1, , 1; 3 1, , 2.

j j j
ind

i i
i

TP

j
j j j j j

L

t t t

j j j r j j r

L

t t t

j JTX j j j j

δ

δα
α

=

=

 ∂ 
 

∂ ∂ ∂  

=

 ∂ =  
∂ ∂ ∂ ∂  

= = =

∑

∑

q

  

α

α

α ϕ ψ ψ ψ

ψ

α ϕ ψ ψ ψ

Ω Ω
           (70) 

8) The differential expression for the indirect-effect term  
( ) ( ) ( )( ){ }1 2 33

3 2 1, ; ; ; j j j
ind

L t t tδ ∂ ∂ ∂ ∂α ϕ ψ ψ ψ  provided in Equation (70) comprises  

all of the 4th-order partial sensitivities that involve the group-averaged micro-
scopic total cross sections, i.e., 4th-order partial response sensitivities with re-
spect to the total microscopic cross sections (indexed by 1j , 2j  and 3j ) and 
with respect to the other model parameters (indexed by 4j ). 
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9) In particular, if only the variations in the total microscopic cross sections 
are considered, then the direct-effect term defined in Equation (28) vanishes and 
the indirect-effect term in Equation (70) reduces to the following particular 
form:  

( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( )( )
0

0

1 2 33

3 2 1

8
4 4

11

1 2 34

4
4 1 4 3 2 1

, ; ; ;

3; 2; 1; , , 2; 1; ,

, ; ; ;
,

1 1, , ; 2 1, , 1; 3 1, , 2.

j j j
ind

i i
i

JTX

j
j j j j j

L

t t t

j j j r j j r

L
t

t t t t

j JTX j j j j

δ

δ

=

=

 ∂ 
 

∂ ∂ ∂  

=

 ∂ =  
∂ ∂ ∂ ∂  

= = =

∑

∑

q

  

α

α

α ϕ ψ ψ ψ

ψ

α ϕ ψ ψ ψ

Ω Ω
           (71) 

10) Identifying the specific quantity that multiplies the specific variation 

4jtδ  provides the following expression for the 4th-order response sensitivities 
which involve only the group-averaged total microscopic cross sections: 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( ) ( )
( ){ }

0

0

0

0

0

1 2 3 44

4 3 2 1

4
1 1

4 1
2 1

4 2
3 1 1

4 2
4 2 1

, ; ; ; ;

3; 2; 1; , , 4; ,

3; 2; 1; , , 4; ,

3; 2; 1; , , 4; 1; ,

3; 2; 1; , , 4; 1; ,

j j j j

L

t t t t

j j j r j r

j j j r j r

j j j r j j r

j j j r j j r

 ∂ 
 

∂ ∂ ∂ ∂  

= −

−

−

−

S

S

S

S

α

α

α

α

α

α ϕ ψ ψ ψ ψ

ψ α ϕ

ψ α ψ

ψ α ψ

ψ α ψ

Ω Ω

Ω Ω

Ω Ω

Ω Ω

 

( ) ( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( ) ( )
( ){ }

0

0

0

0

4 3
5 1 1

4 3
6 2 1

4 3
7 3 1

4 3
8 4 1

3; 2; 1; , , 4; 2; 1; ,

3; 2; 1; , , 4; 2; 1; ,

3; 2; 1; , , 4; 2; 1; ,

3; 2; 1; , , 4; 2; 1; , ,

for 1 1, , ; 2 1, , 1; 3 1, , 2; 4 1, , 3,

j j j r j j j r

j j j r j j j r

j j j r j j j r

j j j r j j j r

j JTX j j j j j j

−

−

−

−

= = = =

S

S

S

S

   

α

α

α

α

ψ α ψ

ψ α ψ

ψ α ψ

ψ α ψ

Ω Ω

Ω Ω

Ω Ω

Ω Ω

  (72) 

where the 4th-level adjoint function ( ) ( )4 3; 2; 1; ,j j j rψ Ω  is the solution of the 
4th-LASS defined by Equations (68) and (69). In component form, the 4th-LASS 
is solved in the following sequence: 

( ) ( ) ( ){ } ( ) ( ){ } 00

4
5 3; 2; 1; , 3; , ,j j j r j r= −B S

αα
α ψ α ϕΩ Ω       (73) 

( ) ( )4
5 3; 2; 1; , , ; 0;
1 1, , ; 2 1, , 1; 3 1, , 2;

dj j j r r r
j JTX j j j j

= = ⋅ <

= = =

n
  

0ψ Ω Ω            (74) 
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( ) ( ) ( ){ } ( ) ( ) ( ){ }0 0

4 1
6 3; 2; 1; , 3; , ,j j j r j r= −A S

α α
α ψ α ψΩ Ω       (75) 

( ) ( )4
6 3; 2; 1; , , ; 0;
1 1, , ; 2 1, , 1; 3 1, , 2.

dj j j r r r
j JTX j j j j

= = ⋅ >

= = =

n
  

0ψ Ω Ω             (76) 

( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ){ }

0

0 0

4
7

4 2
6 1

3; 2; 1; ,

1; 3; 2; 1; , 3; 1; , ,

j j j r

j j j j r j j r= − −

A

S S
α

α α

α ψ

α ψ α ψ

Ω

Ω Ω
   (77) 

( ) ( )4
7 3; 2; 1; , , ; 0;
1 1, , ; 2 1, , 1; 3 1, , 2.

dj j j r r r
j JTX j j j j

= = ⋅ >

= = =

n
  

0ψ Ω Ω             (78) 

( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ){ }

0

0 0

4
8

4 2
5 2

3; 2; 1; ,

1; 3; 2; 1; , 3; 1; , .

j j j r

j j j j r j j r= − −

B

S S
α

α α

α ψ

α ψ α ψ

Ω

Ω Ω
  (79) 

( ) ( )4
8 3; 2; 1; , , ; 0;
1 1, , ; 2 1, , 1; 3 1, , 2;

dj j j r r r
j JTX j j j j

= = ⋅ <

= = =

n
  

0ψ Ω Ω             (80) 

( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ){ }

0

0 0

4
3

4 3
5 3

3; 2; 1; ,

2; 3; 2; 1; , 3; 2; 1; , ,

j j j r

j j j j r j j j r= − −

B

S S
α

α α

α ψ

α ψ α ψ

Ω

Ω Ω
 (81) 

( ) ( )4
3 3; 2; 1; , , ; 0;
1 1, , ; 2 1, , 1; 3 1, , 2;

dj j j r r r
j JTX j j j j

= = ⋅ <

= = =

n
  

0ψ Ω Ω             (82) 

( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ){ }

0

0 0

4
4

4 3
6 4

3; 2; 1; ,

2; 3; 2; 1; , 3; 2; 1; , ,

j j j r

j j j j r j j j r= − −

A

S S
α

α α

α ψ

α ψ α ψ

Ω

Ω Ω
 (83) 

( ) ( )4
4 3; 2; 1; , , ; 0;
1 1, , ; 2 1, , 1; 3 1, , 2.

dj j j r r r
j JTX j j j j

= = ⋅ >

= = =

n
  

0ψ Ω Ω             (84) 

( ) ( ) ( ){ } ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ){ }

0 0

0 0

4 4
1 4

4 3
7 1

3; 2; 1; , 1; 3; 2; 1; ,

2; 3; 2; 1; , 3; 2; 1; , ,

j j j r j j j j r

j j j j r j j j r

= −

− −

A S

S S
α α

α α

α ψ α ψ

α ψ α ψ

Ω Ω

Ω Ω
 (85) 

( ) ( )4
1 3; 2; 1; , , ; 0;
1 1, , ; 2 1, , 1; 3 1, , 2.

dj j j r r r
j JTX j j j j

= = ⋅ >

= = =

n
  

0ψ Ω Ω             (86) 

( ) ( ) ( ){ } ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ){ }

0 0

0 0

4 4
2 3

4 3
8 2

3; 2; 1; , 1; 3; 2; 1; ,

2; 3; 2; 1; , 3; 2; 1; , ,

j j j r j j j j r

j j j j r j j j r

= −

− −

B S

S S
α α

α α

α ψ α ψ

α ψ α ψ

Ω Ω

Ω Ω
 (87) 

( ) ( )4
2 3; 2; 1; , , ; 0;
1 1, , ; 2 1, , 1; 3 1, , 2.

dj j j r r r
j JTX j j j j

= = ⋅ <

= = =

n
  

0ψ Ω Ω             (88) 

Thus, as indicated by Equations (73)-(88), computing the components of the 
4th-level adjoint function ( ) ( )4 3; 2; 1; ,j j j rψ Ω  requires four forward-like PAR- 
TISN computations and four adjoint-like PARTISN computations. 

2.2.4. Comparison of Computational Requirements 
The numbers of sensitivities of the PERP leakage response with respect to the 
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total microscopic cross sections are as follows: 1) 180 first-order sensitivities; 2) 
32,400 second-order sensitivities, of which 16,290 are distinct; and 3) 5,832,000 
third-order sensitivities, of which 988,260 are distinct; 4) 1,049,760,000 fourth- 
order sensitivities, of which 45,212,895 are distinct. 

Using a DELL computer (AMD FX-8350) with an 8-core processor, the CPU- 
time for a typical adjoint computation using PARTISN with an angular quadra-
ture of S32 (ISN = 32) is ca. 20 seconds, while the CPU-time computing the inte-
grals over the various adjoint functions which appear in the definition of the re-
spective sensitivity in Equation (72) is ca. 0.003 seconds.  

The comparison of the CPU-times for all of the distinct 4th-order sensitivities 
required by applying the 4th-CASAM, versus using the FSAM or the FD-ap- 
proximations is presented in Table 1. Based on Equations (11) and (12), the 
number of forward computations needed to obtain all of the 45,212,895 distinct 
4th-order sensitivities using the FD-approximation method is 723,404,160 [= 
180 × 4 forward PARTISN computations for the unmixed 4th-order sensitivities 
+ (45,212,895 − 180) × 16 forward PARTISN computations for the mixed 
4th-order sensitivities]. 

Based on Equations (14) and (15), the total number of forward computations 
needed to obtain all of the distinct 4th-order sensitivities ( ) 4

4
3 2 1j j j jt t t tL∂ ∂ ∂ ∂ ∂α  

using the FSAM method is 46,217,625, which is the result of  
( ) ( )( ) ( )( )( )180 180 180 1 2 180 180 1 180 2 3! 180 180 1 180 2 180 3 4!+ + + + + + + + + . 

Based on Equations (73)-(88), a total number of 2,075,341 adjoint computa-
tions is needed to obtain all of the distinct 4th-order sensitivities  

( ) 4
4

3 2 1j j j jt t t tL∂ ∂ ∂ ∂ ∂α  by the 4th-CASAM method, comprising the following 
large-scale computations:  

1) 33,301 adjoint PARTISN computations to obtain ( ) ( )1 ,rψ Ω , ( ) ( )2
1 1; ,j rψ Ω ; 

( ) ( )2
2 1; ,j rψ Ω , ( ) ( )3

1 2; 1; ,j j rψ Ω , ( ) ( )3
2 2; 1; ,j j rψ Ω , ( ) ( )3

3 2; 1; ,j j rψ Ω  and 
( ) ( )3
4 2; 1; ,j j rψ Ω , as described in [2]; 
2) 988,260 adjoint-like PARTISN computations to obtain ( ) ( )4

1 3; 2; 1; ,j j j rψ Ω ; 
3) 988,260 forward-like PARTISN computations to obtain ( ) ( )4

2 3; 2; 1; ,j j j rψ Ω ; 
4) 16,290 forward-like PARTISN computations to obtain ( ) ( )4

3 3; 2; 1; ,j j j rψ Ω ; 
5) 16,290 adjoint-like PARTISN computations to obtain ( ) ( )4

4 3; 2; 1; ,j j j rψ Ω ; 
6) 180 forward-like PARTISN computations to obtain ( ) ( )4

5 3; 2; 1; ,j j j rψ Ω ; 
7) 180 adjoint-like PARTISN computations to obtain ( ) ( )4

6 3; 2; 1; ,j j j rψ Ω ; 
8) 16,290 adjoint-like PARTISN computations to obtain ( ) ( )4

7 3; 2; 1; ,j j j rψ Ω ; 
9) 16,290 forward-like PARTISN computations to obtain ( ) ( )4

8 3; 2; 1; ,j j j rψ Ω . 
 

Table 1. CPU-times for computing ( ) ( ) ( ) ( )( )1 2 3 44
4 3 2 1, ; ; ; ; j j j jL t t t t∂ ∂ ∂ ∂ ∂α ϕ ψ ψ ψ ψ  for  

1 1, , ; 2 1, , 1; 3 1, , 2; 4 1, , 3j JTX j j j j j j= = = =    . 

FD-approximation FSAM 4th-CASAM 

Nr. Forward comp. = 723,404,160 
ISN = 32 

Nr. Forward comp. = 46,217,625 
ISN = 32 

Nr. Adjoint comp. = 2,075,341 
ISN = 32 

CPU time ≈ 9,042,442 Hours CPU time = 577,720 Hours CPU time ≈ 11,568 Hours 
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As shown in Table 1, the 4th-CASAM method (which is by far the most effi-
cient method) needs ca. 11,568 hours CPU-time for obtaining all of the distinct 
4th-order sensitivities ( ) 4

4
3 2 1j j j jt t t tL∂ ∂ ∂ ∂ ∂α . The computations of these sensi-

tivities must therefore be prioritized, in the order of their magnitudes. Based on 
the magnitudes of the 1st-, 2nd- and 3rd-order sensitivities, which were computed 
in previous works [2] [10], the most important 4th-order sensitivities are ex-
pected to include the 180 unmixed 4th-order sensitivities, namely,  

( ) ( )44 , 1, ,jt j JTL X∂ ∂ = α , and the mixed 4th-order sensitivity that corres-
ponds to the largest 3rd-order one, namely, for  

( ) ( )3 30 30 30 5
, 1 , 6 , 6, , 1.88 10g g g

t i t i t iS σ σ σ= = =
= = = = − ×  [10]. The total number of adjoint com-

putations needed for computing the 180 unmixed fourth-order sensitivities is 
2521, comprising the following large-scale computations: 

1) 1 adjoint computations for computing ( ) ( )1 ,rψ Ω ; 
2) 180 × 2 adjoint computations for computing  
( ) ( )2 ; , , 1, ,180; 1,2i j r j i= =ψ Ω ; 
3) 180 × 4 adjoint computations for computing ( ) ( )3 ; ; ,i j j rψ Ω , where  

1, ,180; 1,2,3,4j i= = ; 
4) 180 × 8 adjoint computations for computing ( ) ( )4 ; ; ; ,i j j j rψ Ω , where  

1, ,180; 1, ,8j i= =  . 
Similarly, a total number of 14 adjoint computations are needed for compu-

ting the mixed 4th-order sensitivity that corresponds to the largest 3rd-order one. 
The total CPU-time is approximately 14 Hours for computing: 1) the 2535 (= 
2521 + 14) adjoint functions using PARTISN with an angular quadrature of S32; 
and 2) the integrals over the various adjoint functions to obtain the 181 (i.e., 180 
unmixed and 1 mixed) fourth-order sensitivities. 

3. Concluding Remarks 

This work has presented the derivation of the exact mathematical expressions of 
the fourth-order sensitivities of the PERP leakage response with respect to the 
total microscopic cross sections. The formulas derived in this work are valid not 
only for the PERP benchmark but can also be used for computing the 4th-order 
sensitivities of the leakage response of any nuclear system involving fissionable 
material and internal or external neutron sources. Subsequent work [4] will use 
the mathematical expressions obtained in this work to compute exactly and effi-
ciently the numerical values of the unmixed and the largest mixed fourth-order 
sensitivities of the PERP leakage response with respect to the total microscopic 
cross sections, and use them for a fourth-order uncertainty analysis of the PERP 
benchmark’s leakage response.  
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Appendix 

The spherical polyethylene-reflected plutonium (acronym: PERP) benchmark 
comprises a metallic inner sphere (“core”) containing the following 4 isotopes: 
Isotope 1 (239Pu), Isotope 2 (240Pu), Isotope 3 (69Ga) and Isotope 4 (71Ga). This 
core (which is designated as “material 1”) is surrounded by a spherical shell of 
polyethylene (designated as “material 2”), containing two isotopes, designated as 
Isotope 5 (C) and Isotope 6 (1H), respectively. The dimensions and material 
composition of the polyethylene-reflected plutonium (PERP) metal sphere con-
sidered in this work are presented in Table A1 of Ref. [2]. For convenient refer-
ence, it is reproduced as below. 

The PARTISN [7] computations of the neutron flux used the MENDF71X [9] 
618-group cross section data collapsed to 30G =  energy groups, as well as a P3 
Legendre expansion of the scattering cross section and a fine-mesh spacing of 
0.005 cm (comprising 759 meshes for the plutonium sphere of radius of 3.794 
cm, and 762 meshes for the polyethylene shell of thickness of 3.81 cm). The first- 
and second-order response sensitivities were computed using an angular qua-
drature of S256. The 3rd- and 4th-order sensitivities of the leakage response with 
respect to the total cross sections were computed using an angular quadrature of 
S32. The group boundaries of the 30G =  energy groups are provided in the 
Appendix of Ref. [2]. The scattering and fission terms in Equation (1) contain 
implicitly a factor 1 4π , to conform to the convention used in PARTISN [7]. 

The quantities appearing in Equations (1) and (2) are defined as follows:  
1) The quantity ( ),g rϕ Ω  is the customary “group-flux” for group  
, 1, ,g g G=  , and is the unknown state-function which is obtained by solving 

Equations (1) and (2). 
2) The source ( )gQ q  depends on the vector of model parameters q , de-

fined as follows: 

1 2 1 2 1 2 1 2 1

††
1 2, ; , ; , ; , ; ,, , , 10.SF SF

J
S SF

Q
FF F a Ja bq q b Qλ λ ν ν  =    q       (89) 

 
Table A1. Dimensions and material composition of the PERP benchmark [2] 

Materials Isotopes 
Weight 
Fraction 

Density 
(g/cm3) 

Zones 

Material 1 
(plutonium metal) 

Isotope 1 (239Pu) 9.3804 × 10−1 

19.6 

Homogeneous sphere of radius 

1 3.794 cmr = , designated as 

“material 1” and assigned to zone 
1 

Isotope 2 (240Pu) 5.9411 × 10−2 

Isotope 3 (69Ga) 1.5152 × 10−3 

Isotope 4 (71Ga) 1.0346 × 10−3 

Material 2 
(polyethylene) 

Isotope 5 (C) 8.5630 × 10−1 

0.95 

Homogeneous spherical shell of 
inner radius 1 3.794 cmr =  and 

outer radius 2 7.604 cmr = , 

designated as “material 2” and 
assigned to zone 2 

Isotope 6 (1H) 1.4370 × 10−1 
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3) As indicated in Table A1, the PERP benchmark comprises 2 materials: 
“material 1” comprises 4 isotopes, numbered 1 through 4, while “material 2” 
comprises 2 isotopes, numbered 5 and 6. In principle, PARTISN allows the same 
isotope to appear in different materials, in which case the atomic number densi-
ty ,i mN  of an isotope i in a material m would be computed by using the formu-
la , ,i m m i m A iN w N Aρ= , where mρ  denotes the mass density of material m, 

1,2m = , ,i mw  denotes the weight fraction of isotope i in material m; iA  de-
notes the atomic weight of isotope i, and AN  denotes Avogadro’s number. 
However, the two materials in the PERP benchmark contain only isotopes that 
are distinct from each other, so the subscript m will not be needed if the formula 
for the atomic number density iN  of an isotope i, 1, , 6i I= = , is interpreted 
as follows:  

1 ,1 2 ,2; for 1,2,3,4; ; for 5,6.i A i A
i i

i i

w N w N
N i N i

A A
ρ ρ

= =          (90) 

The atomic number densities 1, , 6,iN i I= =  will be considered to be com-
ponents of the vector N , defined below: 

[ ]†
1 2 3 4 5 6, , , , , .N N N N N NN                      (91) 

4) The scattering transfer cross section from energy group , 1, ,g g G′ ′ =   
into energy group , 1, ,g g G=   is denoted as ( ); ,g g

s r′→ ′Σ →α Ω Ω  and is 
computed in terms of the l-th order Legendre coefficient , ,

g g
s l iσ ′→  using the fol-

lowing 3rd-order expansion in Legendre functions: 

( ) ( ) ( ), ,

6 3

1 0
; , 2 1 , , 1, ,s l i

I ISCT
g g g g
s i l

i l
r N l P g g Gσ

= =
′ ′→ →

= =

′ ′ ′Σ → = + ⋅ =∑ ∑ α Ω Ω Ω Ω , (92) 

where 3ISCT =  denotes the order of the expansion in Legendre polynomials. 
The microscopic scattering cross sections , ,

g g
s l iσ ′→  for isotope i, and from energy 

group g ′  into energy group g, are tabulated parameters. The zeroth-order (i.e., 
0l = ) scattering cross sections must be considered separately from the higher 

order (i.e., 1l ≥ ) scattering cross sections, since the former contribute to the 
total cross sections (as noted below), while the latter do not. Aiming at reducing 
the proliferation of superscripts and subscripts when defining response sensitivi-
ties with respect to the microscopic scattering cross sections , ,

g g
s l iσ ′→ , these cross 

sections will be considered to be components of a vector sσ  defined below:  

[ ]

( ) ( )

†
1

†1 1 2 1 1 1 2 2 2
, 0, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 1 , , , ,

, ,

, , , , , , , , , ,

0, , ; 1, , ; , 1, , ; 1 .

s JSX

g g g g g G g g g g g g g G G
s l i s l i s l i s l i s l i s l i s ISCT i I

s s

l ISCT i I g g G JSX G G I ISCT

σ σ σ σ σ σ σ′ ′ ′ ′ ′ ′= → = = → = = → = = → = = → = → →
= = = = = = = = = = =  

′= = = = × × × +

 

   

  

σ

(93) 

5) The total cross section for energy group , 1, ,g g G=   is denoted as  
( )g

tΣ α  and is computed using the following expression: 

( ) , , , , , 0,
11

; .
G

g g
t i t i f i c i s

I
g g

l i
g

g

g g
t i

i
N σ σ σ σ σ ′→

=
′==

 
Σ = +


+=  


∑∑α             (94) 

In Equation (94), the quantities ,
g
t iσ , ,

g
f iσ  and ,

g
c iσ  denote, respectively, the 
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total microscopic cross section, the tabulated group microscopic fission, and the 
neutron capture cross sections for isotope i and group g. Other nuclear reactions 
in the PERP benchmark are negligible. The total microscopic cross sections ,

g
t iσ  

involve three indices, which will proliferate exponentially when determining the 
higher-order (up to and including the 4th-order) sensitivities of the PERP leakage 
response with respect to these cross sections. In order to reduce as much as 
possible the proliferation of indices, it is useful to consider that the cross sections 

,
g
t iσ  are the components of a vector t , having T G I×  components and de-

fined as follows: 

[ ] †† 1 2 1
1 , 1 , 1 , 1 , , ,, , , , , , , , , , , ,

for 1, , 6; 1, , 30; .

G g G
JTX t i t i t i t i t i I t i It t

i I g G JTX I G

σ σ σ σ σ σ= = = = =  
= = = = ×

t       

  

 (95) 

6) PARTISN [7] computes the quantity ( ) ( );g
f rνΣ α  for each isotope i and 

energy group g, as follows: 

( ) ( )
1

,

2
1, ,; 3, 0g

f i
i

NF
g g
f i i g Gr N σν ν

=

=

= =Σ = ∑ α ,          (96) 

where ,
g
f iσ  denotes the microscopic fission cross section for isotope i and 

energy group g, g
iν  denotes the average number of neutrons per fission for 

isotope i and energy group g, and NF  denotes the total number of fissionable 
isotopes.  

[ ]† †1 2 1
, 1 , 1 , 1 , , , 1, , , , , , , , , , , ,

1, , ; 1, , ; ;

σ σ σ σ σ σ= = = = =  
= = = ×

      

 

G g G
f f i f i f i f i f i NF f i NF JFXf f

i NF g G JFX G NF

σ (97) 

[ ]
† †1 2 1

1 1 1 1, , , , , , , , , , , ,

1, , ; 1, , ; .
f

G g G
i i i i i N i NF JFX JFX JNUf f

i NF g G JNU G NF

ν ν ν ν ν ν= = = = = + +
 
 

= = = ×

      

 

ν
 (98) 

7) The quantity ( );g rχ α  quantifies the fission spectrum in energy group g. 
The fission spectrum is considered to depend on the vector of parameters p , 
defined as follows: 

†† 1 2
1 1 1 1, , , , , , , , , ,

for 1, , ; 1, , ; .

g g G g G
J i i i i NFp p

i NF g G J G NF
χ χ χ χ χ χ

χ

= =
= = =     

= = = ×

p      

 

      (99) 

8) In summary, the model parameters characterizing the PERP benchmark 
can all be considered to be the components of the following “vector of model 
parameters” denoted as [ ]†

1, , TPα α α , where the subscript “TP” stands for 
“Total number of model and response Parameters”, and is defined below: 

[ ]† †
1, , ; ; ; ; ; ; ,

where .
TP s t f

TP JQ I JSX JTX JFX JNU J

α α

χ

  
+ + + + + +

c N p  



σα σ σ ν
         (100) 

9) The numerical model of the PERP benchmark contains 7477 parameters 
which have nonzero values and are subject to uncertainties, as follows: 1) 10 ex-
ternal neutron source parameters jq ; 2) 6 isotopic number densities iN ; 3) 
7101 group-averaged microscopic scattering cross sections , ,

g g
s l iσ ′→ ; 4) 180 grou-
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paveraged microscopic total cross sections ,
g
t iσ ; 5) 60 group-averaged micro-

scopic fission cross sections ,
g
f iσ ; 6) 60 average-number of neutrons per fission 

g
iν ; 7) 60 group-averaged fission spectrum parameters g

iχ . The vector α , 
which appears in the expression of the Boltzmann-operator ( )gB α , represents 
the “vector of uncertain model parameters.” The nominal values of the model 
parameters are denoted by using the superscript “zero”, i.e., 

†0 0 0
1 , , TPα α   α . 

Nomenclature 

Symbols 
A : adjoint operator; 

iA : atomic weight of isotope i; 

ka , kb : parameters used in Watt’s fission spectra approximation for isotope 
k; 

B: forward operator; 
gE : boundary of energy group g; 
SF

kF : fraction of isotope k decays that are spontaneous fission events; 
G: total number of energy groups; 
I : number of isotopes; 
J χ : total number of parameters in vector p ; 
JQ : total number of parameters in vector c ; 
JFX : total number of parameters in vector σ ; 
JSX : total number of parameters in vector sσ ; 
JTX : total number of parameters in vector t  
JNU : total number of parameters in vector ν ; 
l : variable for the order of Legendre-expansion of the microscopic scattering 

cross sections, 1, ,l ISCT=  ;  
( ),L L α : total neutron leakage from the PERP sphere; 

m: materials;  

AN : Avogadro’s number; 

fN : total number of fissionable isotopes;  

iN : atomic number density for isotope i; 
( )lP ′ ⋅Ω Ω : spherical harmonics 
( )gQ r : source term in group g; 

r : spatial (radial) variable; 

dr : external radius of the PERP benchmark; 

bS : outer surface of the PERP sphere; 

1 2,j jt t : parameters in vector tσ  indexed by j1 and j2;  
TP: total number of parameters in vector α ; 

,i mw : weight fraction of isotope i in material m;  
Vectors and Matrices 
α : vector of imprecisely known model parameters; 

0α : nominal values of the parameters in the vector α ; 
q : vector of uncertain source parameters; 
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t : vector of uncertain parameters characterizing the microscopic total cross 
sections;  

sσ : vector of uncertain microscopic scattering cross sections; 

fσ : vector of uncertain microscopic fission cross sections;  
ν : vector of uncertain average number of neutrons per fission; 
N : vector of uncertain atomic number densities; 
n : the outward unit normal vector at each point on the sphere’s outer boun-

dary;  
p : vector of uncertain fission spectrum parameters;  

Greek symbols 
,i jα α : parameters in vector α  indexed by i and j; 

δ : variations; 

kλ : decay constant for isotope k;  
g
iν : average number of neutrons produced per fission by isotope i and group 

g; 
SF
kν : spontaneous emission of an average neutron of an isotope k 

( )g
fνΣ : macroscopic fission cross section for energy group g; 

mρ : mass density of material m; 
σ : cross sections; 

,
g
c iσ : microscopic capture cross section in group g of isotope i; 

,
g
f iσ : microscopic fission cross section in group g of isotope i;  

, ,
g g
s l iσ ′→ : the thl  order Legendre-expanded microscopic scattering cross sec-

tion from energy group g ′  into energy group g for isotope i;  

,
g
t iσ : microscopic total cross section in group g of isotope i;  
g
tΣ : macroscopic total cross section for energy group g;  
g
fΣ : macroscopic fission cross section for energy group g; 

( );g g
s

′→ ′Σ →s Ω Ω : macroscopic scattering transfer cross section from energy 
group g ′  into energy group g; 

( ),g rϕ Ω : forward angular flux in group g at point r in direction Ω ; 
gχ : fission spectrum in energy group g; 
( ) ( )1 , ,g rψ Ω : adjoint angular flux in group g at point r in direction Ω ;  
( ) ( ) ( ) ( )2 2
1 2; , , , ; ; ,g j r g j rψ ψΩ Ω : 2nd-level adjoint functions in group g at 

point r in direction Ω  associated with the parameter indexed by j (e.g., jt ); 
, ′Ω Ω : directional (solid angle) variables; 

Subscripts, superscripts 
f: fission; 

,g h : energy group variable , 1, ,g h G=  ;  
i: variable index; 
j: variable index; 

1, 2, 3, 4j j j j : variable index; 
k: variable index; 
l : order of Legendre expansion associated with the microscopic scattering 

cross section; 
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m: index variable for materials, 1,2m = ;  
t: total; 
s: scattering; 
Abbreviations 
1st-CASAM: 1st-Order Comprehensive Sensitivity Analysis Methodology; 
1st-LASS: 1st-Level Adjoint Sensitivity System;  
2nd-CASAM: 2nd-Order Comprehensive Sensitivity Analysis Methodology; 
2nd-LASS: 2nd-Level Adjoint Sensitivity System; 
3rd-CASAM: 2nd-Order Comprehensive Sensitivity Analysis Methodology; 
3rd-LASS: 3rd-Level Adjoint Sensitivity System; 
4th-CASAM: 4th-Order Comprehensive Sensitivity Analysis Methodology; 
4th-LASS: 4th-Level Adjoint Sensitivity System; 
FD: finite-difference; 
FSAM: Forward Sensitivity Analysis Methodology; 
ISCT: order of the finite expansion in Legendre polynomial; 
PERP: polyethylene-reflected plutonium. 
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