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Distributed Intelligent Model for Privacy and Secrecy in 
Preschool Education
Guoqiang He

Zhengzhou Preschool Education College, Preschool Education Institute, Zhengzhou, China

ABSTRACT
Mobile devices, including phones, tablets, and smartwatches, 
have revolutionized the way we compute and have seamlessly 
integrated into education systems. These versatile devices store 
vast amounts of valuable personal data due to their rich user 
interactions and advanced sensor capabilities. By harnessing the 
potential of this data through model training, we can greatly 
enhance the functionality and effectiveness of smart applica-
tions, providing educators with invaluable insights for making 
informed decisions. However, it is crucial to acknowledge the 
significant risks and responsibilities associated with handling 
such sensitive information. One notable breakthrough in this 
field is distributed machine learning, which enables improved 
accuracy and scalability by employing a multi-node system. This 
approach is particularly advantageous for processing larger 
input data sizes, allowing for enhanced performance and 
reduced errors. Moreover, it facilitates assisting individuals in 
making well-informed choices and effectively analyzing exten-
sive datasets. This work introduces an advanced distributed 
intelligent model that leverages fully distributed machine learn-
ing techniques. Through a consensus mechanism and the 
exchange of gradients, we ensure the utmost integrity of private 
data pertaining to sports activities, education, training, and the 
health of preschoolers. The robust privacy and security features 
of this model make it an ideal solution for preschool organiza-
tions and educational institutions seeking to harness the power 
of machine learning while upholding the strictest standards of 
data privacy and security.
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Introduction

Preschool education is an industry that is constantly evolving, and profes-
sionals are increasingly turning to technology to provide the best possible 
learning environment for young children (Ma et al. 2020). Wearable sensors 
have the potential to create significant opportunities for the development of 
early childhood education and training. By continuously monitoring physi-
cal signals, these devices can track various parameters and identify 
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biomarkers indicating potential health issues in children. They can also assist 
with fall detection, posture, and sleep analysis (Aira et al. 2019).

Traditionally, collecting data on a child’s performance was a time- 
consuming process for educators. With the widespread commercializa-
tion of smart mobile devices, there has been an increase in the devel-
opment of innovative applications that allow for real-time processing, 
high reliability, and connectivity even when no network connection is 
available (Fan et al. 2021).

The use of wearable sensors and mobile devices may raise concerns regard-
ing the privacy and protection of sensitive data, such as health information. 
However, as with any technology, there are risks associated with collecting and 
processing personal data (Weinberg et al. 2015). The data collected may 
include information about a child’s medical history, family background, med-
ication usage, and other personal information, which can put them at risk of 
social stigma or other potential harm (Cai et al. 2020).

To address these concerns, it is essential to create a system that allows for 
the intelligent analysis and processing of preschoolers’ data while ensuring 
their privacy. This work proposes an advanced distributed intelligent model 
that employs fully distributed machine learning through a consensus mechan-
ism and exchange of gradients (Alzubaidi et al. 2021) ensures the integrity of 
private data related to preschool activities, education, training, and children’s 
health (Mingxiao et al. (2017, October). A Review on Consensus Algorithm of 
Blockchain. In 2017 IEEE International Conference on Systems, Man, and 
Cybernetics (SMC) (Pp. 2567–2572). IEEE.).

While technology presents opportunities for significant improvements in 
preschool education and training, it is essential to balance these benefits with 
the need to protect personal data and ensure privacy. Through innovative 
technologies and advanced data management systems, we can create an 
environment that maximizes the potential benefits while minimizing the 
risks associated with the collection and processing of personal data.

The rapid proliferation of mobile devices, such as phones, tablets, and 
smartwatches, has transformed the way we interact with technology and has 
also made its way into the field of education. These devices possess vast storage 
capacities and collect a wealth of valuable data through user interactions and 
advanced sensors. This data presents an opportunity to train models and 
enhance the functionality of smart applications, ultimately benefiting educa-
tors in making informed decisions. However, the sensitive nature of this data 
also raises concerns regarding its use and disposal, necessitating the develop-
ment of robust privacy and security measures.

The primary contribution of this work lies in the utilization of distributed 
machine learning to address the challenges associated with mobile device data. 
By employing a multi-node system, the approach significantly improves the 
accuracy and scalability of machine learning models when processing large 
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volumes of input data. This enhancement leads to more efficient performance, 
reduces errors, and enables the analysis of extensive datasets.

Furthermore, this work presents an advanced distributed intelligent model 
that incorporates fully distributed machine learning techniques. The model 
ensures the integrity and privacy of private data related to sports activities, 
education, training, and the health of preschoolers through the implementa-
tion of a consensus mechanism and the exchange of gradients. These robust 
privacy and security features make it an ideal solution for preschool organiza-
tions and educational institutions aiming to leverage the power of machine 
learning while safeguarding the confidentiality of their data.

In summary, this work acknowledges the potential benefits of utilizing 
mobile device data in education and addresses the associated risks through 
the application of distributed machine learning. The advanced distributed 
intelligent model presented herein not only enhances the usability and 
power of smart applications but also ensures the privacy and security of 
sensitive data, thereby making it valuable for educational institutions and 
preschool organizations.

Review Publications

The literature about privacy and secrecy concentrates on the Internet of 
Things (Karunarathne, Saxena, and Khurram Khan 2021). We can say that 
the preschool field lacks a scientific approach, especially in the holistic way the 
current study provides.

(Jain et al. 2021), investigated the present status of the Internet of Things 
and wearable technology, as well as the influence that wearable devices would 
have on the future of the IoT. They predicted that in the future, accessibility 
would play a significant role in promoting accessibility for additional pre-
schoolers, including the deaf and the blind. Wearable e-textiles provide char-
acteristics and functions such as thermal regulation, brightness, contact, and 
sensitivity. In contrast, on-body smart clothing offers real-time tracking and 
biometric record keeping evaluating people’s effectiveness, including breath-
ing and cardiovascular system rates, body heat, fluid intake, and tense muscles.

Weinberg et al. (2015) brought the Internet of Things to the management 
community and examined one of its core tensions: utility vs. privacy and 
secrecy. They emphasized the distinctions between IoT and Web 2.0 before 
highlighting potential problems and management advice. Moreover, they 
investigated the primary topic of confidentiality and anonymity. Due to con-
siderable growth in user data quantities and their openness, as well as possible 
tradeoffs in IoT advantages and consumer impression personhood features, 
the management problem of privacy has reached an unprecedented degree.

Sharma and Park (2018) suggested a revolutionary hybrid network design 
for the intelligent city by utilizing the power of upcoming Software Defined 
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Connectivity and ledger technologies to deliver low delay, minimize band-
width consumption, and enhance protection, confidentiality, and scalability. 
To improve efficiency and overcome existing constraints, their design was 
separated into two sections, the core structure, and the edge network. Their 
suggested method inherits the strengths of both controlled and dispersed 
network topologies via building a hybrid framework. Their solution used 
a memory-hardened Proof of Work technique to assure security and privacy 
and prevent information manipulation by attackers. To assess the viability and 
effectiveness of their approach, they simulated it and evaluated it using several 
performance measures. The outcome of the assessment demonstrated the 
efficiency of the model. There are still certain constraints in the model, such 
as the effective usage of edge nodes and the activation of caching approach at 
the edge nodes. Therefore, they will do further work in this area in the future.

Shen et al. (2022) described the environment and most recent advance-
ments in associative training data confidentiality and security. They feel that 
transfer learning is an essential trend for developing decentralized and colla-
borative deep learning due to its capacity to offload calculations from the 
central server. They recognized the various privacy and security approaches, 
including differential privacy, safe multiparty computing, and strong aggrega-
tion. In addition, they examined the existing attack models, finding the zones 
of weakness and the tactics attackers use to compromise federated systems. 
The study ended with a review of the unresolved difficulties and possible 
future lines of work in this gaining popular learning style.

In fog computing, Zhou et al. (2020) suggested a federated learning 
approach that protects anonymity. As a member, each fog node can acquire 
data from Internet-of-Things devices and execute the assigned learning job. 
This strategy successfully improves the poor learning efficiency and model 
precision caused by the unequal data allocation and the high computing power 
disparity. They allowed IoT device data to comply with differential protection 
to withstand data assaults and used the mix of blind and Paillier elliptic curve 
cryptography versus model intrusions, which allowed the secure grouping of 
design variables. In addition, they explicitly confirmed that our approach not 
only ensures data protection and model security but also withstands collusion 
attempts made by several malevolent groups. Their trials demonstrate that 
their method is very effective at handling different data distributions. Future 
efforts may focus on increasing the scheme’s efficacy and lowering its comput-
ing cost, making it more valuable and secure.

Ismagilova et al. (2022) evaluated a multitude of crucial topics in smart 
cities findings, including privacy and assurance of mobile devices and 
services, smart city transport systems, power technologies, healthcare, 
frameworks, algorithms, and procedures to enhance safety and privacy, 
operational dangers for smart cities, utilize and usage of smart services by 
citizens, blockchain use, and social media use. The results offered an 
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instructive study methodology and comparison point for researchers and 
practitioners but are somewhat restricted owing to the emphasis on 
security and privacy, which may have omitted a variety of human-cen-
tered aspects that may influence the implementation of smart cities in the 
future. Their analysis gave a helpful perspective on a few of the most 
important topics and provided essential guidance for future research.

The proposed approach introduces several innovative aspects in the field 
of mobile device data analysis and distributed machine learning. These 
include:

(1) Integration of Mobile Devices into Education: The paper recognizes the 
growing importance of mobile devices in education and highlights their 
potential as primary computing devices. By incorporating these devices 
into the educational context, the paper demonstrates an innovative 
approach to enhancing the learning experience and decision-making 
for educators.

(2) Utilization of Mobile Device Data: The paper explores the rich user 
interactions and robust sensor capabilities of mobile devices, emphasiz-
ing the vast amounts of valuable private data they can store. The 
innovative aspect lies in harnessing this data to train models and 
improve the usability and power of smart applications, ultimately ben-
efiting educators in making efficient decisions.

(3) Distributed Machine Learning: The paper introduces the concept of 
distributed machine learning as a significant development in the field. 
This approach utilizes a multi-node system to increase accuracy and 
scale to larger input data sizes. The innovative aspect lies in the ability to 
improve performance, reduce errors, and analyze large amounts of data 
through the collaborative effort of multiple nodes.

(4) Consensus Mechanism and Gradient Exchange: The paper proposes 
a consensus mechanism and gradient exchange as means to ensure the 
integrity of private data related to sports activity, education, training, 
and the health of preschoolers. This innovative approach enables the 
protection of sensitive information while leveraging the benefits of 
distributed machine learning, providing a robust privacy and security 
framework.

(5) Privacy and Security Features: The paper emphasizes the importance 
of privacy and security when handling sensitive data. The innovative 
aspect lies in the development of a model with robust privacy and 
security features specifically tailored for preschool organizations and 
educational institutions. This ensures that the power of machine 
learning can be harnessed while maintaining the privacy and security 
of the data.
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Overall, the paper’s innovation lies in its recognition of the potential of mobile 
devices in education, the utilization of mobile device data, the application of 
distributed machine learning, and the development of privacy and security 
measures. These aspects collectively contribute to the advancement of the field 
and offer valuable insights for educational institutions and preschool 
organizations.

Distributed Intelligent Model

The entire distributed learning architecture can be seen as an evolutionary step 
beyond the parameter server architectures (Guo et al. 2022; Shen et al. 2022). 
For various reasons, the involvement of the parameter server is not desirable, 
and in other applications, it may not be feasible. The parameter server 
mechanism provides a relatively simple mechanism that ensures the consensus 
of all collaborators on a universal network-wide machine learning model. In 
the case of fully distributed learning, his participation is not possible. 
Nevertheless, mechanisms can still control the learning process and reach 
a consensus between the agents. In the conditions of fully distributed learning, 
the concept of the universal model does not exist (Guo et al. 2022).

Now the interest turns to algorithms that control the learning process in 
such a way that the local model of each collaborating agent converges toward 
the desired solution. The communication topology of a fully distributed 
learning network is quite different from the star created by the existence of 
the parameter server. The set of nodes V of the graph G ¼ V; Eð Þ describes the 
cooperating agents, and the group of edges E represents the communication 
channels between the agents. Now, cooperating agents rely only on commu-
nication with usually a small number of other cooperating agents (peer-to- 
peer communications) with which there is a communication channel. This 
leads primarily to communication topologies described by sparse graphs with 
a small maximum degree (Conti, Donadel, and Turrin 2021; Halabi, Bellaiche, 
and Abusitta 2018; Zhou et al. 2020)

Although the theoretical description below generalizes to the case of non- 
connected graphs, the focus will be on connected undirected graphs. In other 
words, it is implied that the communication between the agents for which 
a communication channel exists is two-way. Finally, recall that for any pair of 
nodes ni; nj

� �
2 V of a connected graph, there is a path between ni and nj:

Due to the nature of the fully distributed learning problem, it is helpful to 
define some additional concepts which are of particular importance for the 
description of the proposed algorithm. Initially, for each node k 2 V, the 
neighborhood of node k is defined as the subset N k � V of nodes with 
which node k is joined by edges (Goldreich and Goldreich 2011).

Figure 1 includes a graphical representation of a network of ten agents, with 
edges showing which agents can communicate.
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The degree of each node k is represented by the plurality of its neighbor-
hood deg kð Þ ¼ N kj j. Specifically, in the example of Figure 1 
deg 3ð Þ ¼ N 3j j ¼ 4. Finally, a different class of algorithms (e.g., the family of 
Consensus algorithms) use a different version of the set N k which will be 
denoted as N �k. The set N �k includes all neighbors of node k, excluding node k. 
In the example of Figure 1 the group N �k ¼ 1; 2; 5f g.

As mentioned, the graph’s edges refer to two-way communications between 
the nodes they join. However, this two-way relationship does not automati-
cally imply that the flow of information is also symmetrical. For this reason, 
weights assigned by node k can be used to combine the information it receives 
from its neighborhood. This is how the coefficient αlk is defined, which defines 
the weight given to the information of node l by node k. Consequently, the 

Figure 1. Graphical representation of a network with 10 nodes. Edges represent which nodes can 
communicate. The red area depicts the node’s neighborhood N 3 � V;N 3 ¼ 1; 2; 3; 5f g.

Figure 2. Graphical representation of application and peers on the distributed intelligent model.
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indices l; k also show the flow of information. In this coefficient, the data flows 
from node k to node l. Accordingly, the coefficient αkk symbolizes the flow of 
information from node k to node l. Therefore, the weights αlk; aklf g can differ 
from each other or can be zero. A particular case is the coefficient αkk which 
describes the weight given by the node k to the information it has (Shivaprasad 
and Shetty 2017).

In this work, an approach is proposed that aims to ensure the integrity of 
personal data while simultaneously speeding up the distributed learning pro-
cess (Figure 2). To achieve this object, it is chosen to significantly increase the 
volume of exchanged messages in the network since, in addition to the 
exchange of parameters, it also requires the interaction of gradients during 
the learning process.

Initially, in the first step, the aggregation formula of the Consensus algo-
rithm is used to calculate an intermediate model ψk;t consisting of the local 
model of agent k and the models received from its neighbors (Aggarwal 2016; 
Goldreich and Goldreich 2011).

In networks of collaborating agents, the systems studied in this paper, the 
concept of consensus means that all collaborating agents will end up agreeing 
on a set of parameters of common interest. In learning problems, the standard 
set of parameters is learning model parameters (e.g., neural network weights) 
that cooperating agents learn through local data processing and sharing local 
parameters with their neighbors. This problem is more difficult now that no 
parameter server mechanism is available. Calculating a global model for the 
entire network is no longer feasible. The goal is for all local models to converge 
to the desired solution. The general form of the Consensus algorithm, specially 
adapted as an entire distributed learning algorithm, is described by the follow-
ing equations, which respectively represent the local processing (adapt) and 
communication (combine) steps (Deka 2016; He et al. 2011): 

ψt;k ¼Wt;k þ et
P

i2N �k

ai;k Wt;i � Wt;k
� �

combineð Þ

Wtþ1;k ¼ ψt;k � μtÑ̂Ft;k ψt;k

� �
adaptð Þ

(1) 

whereas Ñ̂Ft;k ψt;k

� �
denotes a stochastic approximation of the real gradient of 

the function Ft;k ψt;k

� �
;ÑFt;k ψt;k

� �
.

The provided equations describe the consensus algorithm, which is adapted 
as a distributed learning algorithm. The algorithm consists of two main steps: 
local processing (adapt) and communication (combine).

In the local processing step (adapt), each node or device in the distributed 
system performs local computation on its own data. This computation involves 
updating its local model parameters, based on the previous state and the 
stochastic approximation of the gradient. This step allows each node to adapt 
its model based on the available data and the current estimate of the gradient.
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In the communication step (combine), the nodes exchange information 
with their neighbors. This exchange is done by combining their local model 
parameters with the weighted difference between their neighbors’ parameters. 
The weights can be determined based on network topology or other factors. 
This step allows nodes to share information and learn from the collective 
knowledge of the network.

Together, these two steps, adapt and combine, form the consensus algo-
rithm for distributed learning. The local processing step ensures that each 
node updates its model based on its own data, while the communication step 
enables nodes to exchange information and collectively improve the overall 
model. This iterative process continues until convergence, resulting in 
a distributed learning algorithm that leverages the collaborative effort of 
multiple nodes to train models and solve complex tasks while preserving 
data privacy and security.

The gradient estimation is a crucial step in the distributed learning algorithm 
as it allows each node to update its local model based on an approximation of 
the true gradient, even though the node may not have direct access to the entire 
dataset or the complete information required to compute the exact gradient.

The specific method used to estimate the gradient depends on the algorithm 
and the problem at hand. Common techniques include stochastic approxima-
tion methods, such as stochastic gradient descent, where the gradient is 
estimated based on a randomly selected subset of the available data.

In the context of distributed learning, the gradient estimation typically takes 
into account the data available at each node and may involve local computa-
tions or aggregations of partial gradients. The exact details of the gradient 
estimation process can vary depending on the specific algorithm and the 
distribution of data across the network.

The accuracy and efficiency of the gradient estimator are crucial factors in 
the performance of the distributed learning algorithm. The estimator should 
provide a reasonably accurate approximation of the true gradient to ensure 
effective learning. Additionally, the estimation process should be computa-
tionally efficient to allow for scalability in large-scale distributed systems.

Overall, the gradient estimator in the algorithm is responsible for approx-
imating the true gradient of the function being optimized based on the 
available data and the local information at each node. Its accuracy and 
efficiency significantly impact the convergence and performance of the dis-
tributed learning algorithm.

Before starting the cooperative learning, it is assumed that the agents have 
prior knowledge of various parameters such as the number of epochs E and the 
number of communication cycles per epoch T. Initially, all cooperating agents 
in the network initialize the parameters of the local models Wk;0. They 
assumed that they have agreed on its characteristics (e.g., type of neural 
network, number of hidden layers, dimensions of weight vectors) at an earlier 
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time period. Then in each round of communication (which is denoted by the 
index t the agent k sends the parameters of its local model to its neighbors 
N �kð Þ and will receive from them their local models Wi;t

� �

i2N �k
.

Using the parameter vectors obtained by each agent from its neighborhood, it 
performs a first intermediate update of its model using the combined equation. 
Then, the final update of agent k’s local model is performed using its local 
dataset, specifically by performing one or more update steps via the Stochastic 
Gradient Descent (SGD) algorithm (Bottou 2010). More specifically, agent 
k shuffles its data set and divides it into mini-batches which are used at each 
step of SGD to compute a stochastic approximation of the gradient of the 
function Ft;k ψk;t

� �
. Therefore, it is assumed that several updates are performed 

through the SGD algorithm, using several mini-batches. Finally, the updated 
model W_(t,k) is sent to the neighbors. This event marks the end of a cycle of 
processing and communication and the beginning of a new one, at which point 
the steps are repeated (Wu and Khalil 2021).

The key feature of the algorithm for fully distributed learning through 
consensus and gradient exchange is that before using the ψk;t model to update 
its local model, it introduces a gradient exchange step. More specifically, 
before using ψk;t it is sent to the neighbors of node k who use ψk;t to calculate 

the gradient ÑFi;t ψt;k

� �
; i 2 N �k. In other words, each neighbor calculates the 

above gradient using ψk;t to minimize its local cost function. In the next step, 
the computed gradients are sent back to node k (node k receives the set 

ÑFi;t ψt;k

� �n o

"i2N �k 

from its neighbors). This step allows agent k to exploit 

more gradients with information about its neighbors’ data to then update its 
local model according to the following equation (Cheng, Wang, and Xin  
2018): 

ψ̂k;t ¼ ψk;t � μt

X

i2N �k

ck;iÑFk;i ψk;t

� �
(2) 

where the weights Ck;i are used to blend the gradients obtained from the 
neighborhood. After the step of exchanging the gradients, the step of local 
renewal follows as follows: 

Wk;tþ1 ¼ ψ̂k;t � μtÑFk;t ψ̂k;t

� �
(3) 

The Combine & Adapt equations of this particular method are as follows: 

ψk;t ¼
P

l2N k

clkWk;t� 1

Wk;tþ1 ¼ ψk;t � μ
P

l2N k

clkÑ̂Fl ψk;t

� � (4) 
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To lighten the communication load of the gradient exchange step, with the 
ultimate goal that each agent does not have to wait for the gradients from its 
neighborhood to perform the local update, the implementation proposed in 
work modifies the gradient exchange step in such a way, so that agentk does 
not need to get back the estimates of the gradients from its neighbors to 
proceed to the step of locally updating its model parameters. More specifically, 
it implements and uses an estimate for them, instead of agent k waiting to 

receive the neighboring gradients ÑFt;k ψt;i

� �
, it implements and use an 

estimate for them, �ÑFk;t ψt� 1;i

� �
. The estimator used is inspired by techniques 

that use momentum information and uses past models received from its 
neighbors to estimate the gradient it will receive in the current round accord-
ing to the following formula (Hou et al. 2021; Lv et al. 2019): 

�ÑFk;t ψt� 1;i

� �
¼ ρÑFk;t ψt� 1;k

� �
þ 1 � ρð Þ�ÑFk;t� 1 (5) 

where the parameter ρ 2 0; 1ð � controls whether the above terms in the sum 

are considered to calculate the estimate for the gradient �ÑFk;t ψt� 1;i

� �
.

According to the above relation, the solution of the neighboring gradients is 
replaced by an estimate based on the model ψt� 1;i, i.e., of this previous round 
(the most recent one available). Based on the above modification, the steps of 
the algorithm are transformed as follows: 

ψt;k ¼Wt;k þ et
X

i2N �k

ak;i ψt;i � Wt;k

� �
(6) 

While the refresh step using the neighboring gradients transforms into the 
form below: 

ψ̂t;k ¼ ψt;k � μt

X

i2N �k

ck;i �ÑFi;t ψt� 1;k

� �
(7) 

Finally, the last remaining step is the local update step described by the above 
relationship (Axelsson and Nylander 2018).

The measurement of the communication complexity of the specific method 
will be done as a function of the messages exchanged during learning. More 
specifically, it is assumed that the machine learning model stored locally in 
each agent consists of a total of M parameters (e.g., the weights of a Neural 
Network). The specific method requires each agent to exchange the local 
parameters ψt;k and the gradient �ÑFk;t ψt� 1;i

� �
"i 2 N �k. Consequently, the 

communication load of each agent now depends on the size of its neighbor-
hood and is of the order of O M N �kj jð Þ.

Next, we present the proposed Proximal Stochastic Gradient Descent 
(PSGD) method (T. Papastergiou and V. Megalooikonomou, “A Distributed 
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Proximal Gradient Descent Method for Tensor Completion,” 2017 IEEE 
International Conference on Big Data (Big Data), 2017, Pp. 2056–2065, Doi: 
10.1109/BigData.2017.8258152.) to solve the problem of computing the elliptic 
values of a tensor through a decomposition. The PSGD algorithm requires the 
proximity operator to be applied to the current point of the optimization, 
producing the next point, starting from a random point (e.g., from a random 
initialization of the decomposition factors U0,V0,W0).

So, the proximity operator, in the case of a deconstruction, takes the 
following form (Ganzfried 2021; Sreelakshmi et al. 2019): 

proxgL eU; eÑ; eW
� �

¼ argmin
U;V;W

L U;V;Wð Þ þ
1

2g
k U � eU k2

F

�

þ k V � eV k2
F þ kW � eW k2

FÞ (8) 

Therefore, an optimization problem should be solved at each step of the 
algorithm. The objective function that should be optimized at each step is (Dai 
et al. 2016): 

L U;V;Wð Þ ¼ kW � X �
XR

r¼1
U�;rV�;rWþ;r

 !

k

2

F

þ
1

2g
k U � eU k2

F þ k V � eV k2
F þ kW � eW k2

F

� �
(9) 

where U,V,W are the degradation factors, which have been calculated in the 
previous step of the algorithm. In our approach, we will use the SGD method 
to solve these optimization problems, and for this purpose, we should express 
the objective function as the sum of the local errors of the observed values of 
the X tensor. To arrive at such an analytical form, we should write the second 
part of the Equation as a sum of the observed values of X. We will prove the 
formula for the first term of the sum k U � ~D k2

F0 as the other terms are 
generated similarly (Bellare and Oded 2011): 

XI

i¼1

XJ

j¼1

XK

k¼1
J i; j; kð Þ 2 Ω½ �

k Ui;� � U2
i;kF

Ni;�
¼

X

i;j;kð Þ2X

k Ui;� � Ui;� k
2
F

Ni;;�
(10) 

where Ni,*,* is the number of observed values in the i front part of the tensor 
X and J[(i,j,k) ∈ Ω] is the indicator function of the set of indicators of the 
observed values of X (J(i,j,k) = 1, ∀(i,j,k) ∈ Ω and zero everywhere else). 
Combining the equations, we can arrive at the following objective function, 
expressed as the sum of the observed values of the tensor (Berger 2013): 
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L U;V;Wð Þ ¼
X

i;j;kð Þ2Ω

xijk �
PR

r¼1
U��;rV�;rW�;r

� �2

þ 1
2g

Ui;�� ~Ui;�
2
F

N i;�;�
þ
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2
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þ
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2
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� �

2

6
6
6
4

3

7
7
7
5

¼
X

i;j;kð Þ2Ω
Lxijk U;V;Wð Þ

(11) 

Optimizing the objective function at each step is essential in the 
context of machine learning and optimization algorithms for several 
reasons:

(1) Convergence: The objective function represents the goal or task that the 
machine learning algorithm aims to optimize. By continuously optimiz-
ing the objective function at each step, the algorithm iteratively 
approaches the optimal solution or the best possible outcome. 
Optimization ensures that the algorithm converges toward a point 
where the objective function is maximized or minimized, depending 
on the specific problem.

(2) Model Improvement: The objective function typically quantifies the 
performance or quality of the model being learned. By optimizing the 
objective function, the algorithm seeks to improve the model’s perfor-
mance, accuracy, or generalization capabilities. This iterative optimiza-
tion process helps refine the model and achieve better predictive or 
decision-making abilities.

(3) Learning from Data: The objective function is constructed based on the 
available data and the desired learning task. By optimizing the objective 
function, the algorithm leverages the information in the data to update 
the model’s parameters and make it more representative of the under-
lying patterns and relationships present in the data. This enables the 
model to make better predictions or decisions based on new, unseen data.

(4) Adaptation to Changing Environments: In some cases, the objective 
function may need to be optimized continuously to adapt to changing 
environments or evolving data distributions. By updating the objective 
function at each step, the algorithm can adapt the model to new patterns 
or dynamics in the data, ensuring that it remains relevant and performs 
well in real-world scenarios.

(5) Decision-Making and Utility: In certain applications, the objective 
function represents a utility function or a measure of the value or 
benefit derived from the decisions made by the model. By optimizing 
the objective function, the algorithm aims to maximize the utility or the 
desired outcome of the decisions made by the model. This is particularly 
relevant in reinforcement learning or decision-making tasks.
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In summary, optimizing the objective function at each step is crucial for 
convergence, model improvement, learning from data, adaptation to changing 
environments, and achieving the desired utility or outcome. It allows the 
algorithm to refine the model, make better predictions or decisions, and 
align its behavior with the underlying task or problem being solved.

The partial derivatives of ÑLxijk #ð Þ, for the objective function, for the 
parameters uρl; vel;welare given in the following equations (Demertzis, 
Iliadis, and Anezakis 2017; Demertzis, Iliadis, and Bougoudis 2020): 

@Lxijk U;V;Wð Þ
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¼

� 2 xijk
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r� 1
uirvjrwkr

� �
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<
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@uel
¼

� 2 xijk
PR

r� 1
uirvjrwkr

� �

iilwkl þ
2

N�i� vjl � ~vjl
� �

;Q ¼ j

0;Q�j

8
<

:
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� 2 xijk
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2
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wkl � ~wklð Þ;Q ¼ k

0;Q�k

8
<

:

(12) 

To also ensure the confidentiality of the process described above, RSA 
encryption is used. This scheme owes its widespread use, not so much to its 
efficiency, as to the fact that it is nothing more than an implementation of the 
RSA cryptosystem with the role of the keys reversed (public-private). More 
specifically, if we denote by EncryptK mð Þ the RSA encryption function for 
a plaintext m and a key K and by DecryptK cð Þ the corresponding decryption 
function for the ciphertext c. Obviously (by the definition of cryptosystem) it 
does (Alshalali, M’Bale, and Josyula 2018): 

DecryptK EncryptK mð Þð Þ ¼ m (13) 

Suppose A wants to send B the weights of a Neural Network m digitally 
signed with RSA. The key K is a fifth: 

K ¼ n; eð Þ; p; q; dð Þð Þ : n ¼ pq; p; q : πρ _στO; ed;1 modϕ nð Þð Þ (14) 

The values n, e is the public key, while p, q, and d are the private key. To 
create a signature, A calculates the: 

s ¼ sigK mð Þ ¼
� �

DecryptK mð Þ ¼ md modnð Þ (15) 

s is his digital signature which he sends to B. For signature verification 
B uses A‘s public key to verify signature s while retrieving the original message: 

m1 ¼ EncryptK sð Þ ¼ se modnð Þ (16) 
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It is true that verK m1; sð Þ ¼ 1 as se ¼ mde ¼ m; i.e., m1 is the original 
message, i.e., m.

The additional complexity gained through the operations involved in the 
distributed learning algorithm, such as the local processing (adapt) and com-
munication (combine) steps, can vary depending on several factors, including 
the size of the network, the complexity of the model, the amount of data, and 
the specific implementation details. However, it is important to note that 
distributed learning algorithms often introduce some level of additional com-
plexity compared to traditional centralized learning approaches.

Here are a few factors that contribute to the additional complexity in 
distributed learning:

(1) Communication Overhead: In the communication (combine) step, 
nodes exchange information, which introduces communication over-
head. The amount of communication required depends on the network 
topology, the number of nodes, and the frequency of communication. 
As the size of the network grows, the amount of communication and the 
associated overhead increase, adding complexity to the algorithm.

(2) Synchronization and Coordination: Distributed learning algorithms 
often require synchronization and coordination among nodes to ensure 
that they exchange information and update their models correctly. 
Managing synchronization and coordination in a distributed setting 
can be challenging and adds complexity to the algorithm.

(3) Data Partitioning and Distribution: Data is typically distributed across 
multiple nodes in distributed learning. Partitioning and distributing the 
data among nodes can introduce additional complexity, particularly 
when dealing with imbalanced data or when the data needs to be shared 
or combined in a meaningful way during the communication step.

(4) Fault Tolerance and Robustness: Distributed learning algorithms often 
need to handle failures or nodes leaving the network. Building fault 
tolerance and robustness into the algorithm increases its complexity as 
it requires mechanisms to handle node failures, data inconsistencies, 
and ensure the algorithm can continue functioning even in the presence 
of failures.

(5) Scalability Considerations: Distributed learning algorithms aim to scale 
to large datasets and networks. Achieving scalability requires careful 
consideration of algorithmic design and implementation choices, intro-
ducing additional complexity in terms of managing computational 
resources, load balancing, and efficient utilization of the distributed 
system.

It is important to note that while distributed learning introduces additional 
complexity, the benefits it offers, such as improved performance, scalability, 
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and privacy preservation, often outweigh the added complexity. Continuously 
work to address these complexities by developing efficient algorithms, opti-
mizing communication patterns, and leveraging parallel and distributed com-
puting techniques to mitigate the additional complexity introduced by 
distributed learning.

Applications and Peers

We’ll now demonstrate how client apps communicate with peers, especially 
the suggested architecture that runs on peers to access the Distributed 
Intelligent Model. Queries are basic conversations between an application 
and a peer, while updates (writes) need more steps.

A client application connects to the Distributed Intelligent Model on a peer 
to access data. An API allows applications to submit transaction proposals 
(invoke data), obtain endorsements, receive events, and route approved trans-
actions to the ordering service through a gateway.

Applications may query or change the point of contact using a peer con-
nection on the gateway. A query transaction’s result is returned with simple 
processing, but an update (write) transaction includes a more sophisticated 
workflow amongst applications, peers, and orderers. Let’s go at this update 
procedure in depth.

In collaboration with orderers, Peers guarantees that the procedure is 
consistent and up to date on every peer in a communication channel.

The above illustration depicts companies and their peers in the 
Distributed Intelligent Model. Four companies each contribute 12 peers 
to establish a network. Each channel links the person to their peers in 
each organization. These organizations’ peers have not joined other orga-
nizations’ communication channels, although they usually join at least 
one other channel. An organization’s applications link to peers in the 
same organization and others via a track using the Distributed Intelligent 
Model.

The following three-phase sequence depicts interactions between 
a client application, a peer’s gateway service, orderer nodes, and further 
peer updates.

Phase 1: Transaction Proposal and Approval

The first (write) phase of an update consists of transaction proposal submis-
sion, execution, and endorsement:

(1) Transaction proposal – By connecting to the gateway service on P1, the 
client application presents a signed transaction proposal. A1 must either 
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outsource the choice of endorsing organizations to the gateway service 
or expressly list the organizations that must be supported.

(2) Transaction execution – The gateway service chooses P1 or another 
peer within its organization to carry out the transaction. The assigned 
peer maintains the proposal’s code and creates a proposal response 
(containing the read-write set). The chosen peer signs and returns the 
proposal answer to the gateway.

(3) Transaction endorsement – The gateway repeats transaction execu-
tion for each organization that the code endorsement rules demand. 
The gateway service gathers the signed proposal answers and gen-
erates a transaction envelope, which it then provides to the client for 
signature.

Phase 2: Submission and Ordering of Transactions

The second phase of an update consists of submitting a transaction and 
arranging it into the Distributed Intelligent Model:

(1) Transaction submission – The signed transaction envelope is sent to the 
gateway service by the client. The gateway passes the envelope to an 
ordering node and sends the client a success message.

(2) Transaction ordering – After verifying the signature, the ordering node 
organizes the transaction and bundles it with other ordered transactions 
into blocks. Following that, the ordering service distributes the block to 
all peers in the channel for validation and commitment to the ledger.

Phase 3: Transaction Validation and Commitment

The third phase of an update includes transaction validation, ledger commit-
ment, and a commit event:

(1) Transaction validation – Each peer verifies that the client signature on 
the transaction envelope corresponds to the signature on the original 
transaction proposal. Each peer verifies that all read-write sets and 
status answers are comparable (i.e., all peers’ endorsements match) 
and that the blessings comply with the endorsement rules. Then, for 
commitment to the Distributed Intelligent Model, each peer stamps 
each transaction as legitimate or invalid.

(2) Transaction commitment – Each peer commits to the communication 
channel the ordered block of transactions. The commit is a permanent 
(write) communication channel. The communication channel’s total of 
all legitimate transactions is only updated with the outcomes of valid 
transactions.
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Commit event – When a peer commits to the Distributed Intelligent 
Model, the client receives a commit status event with evidence of the 
modification.

To ensure the effectiveness of the proposed solution, there are several 
measures and considerations that can be taken into account:

(1) Robust Privacy Framework: Implement a robust privacy framework 
that ensures the protection of sensitive data. This can include techni-
ques such as data anonymization, encryption, access controls, and strict 
data handling policies. Adhere to relevant privacy regulations and 
guidelines to ensure compliance and safeguard the privacy of user data.

(2) Secure Communication: Employ secure communication protocols to 
protect the transmission of data and gradients between nodes. Use 
encryption and authentication mechanisms to ensure confidentiality 
and integrity during data exchange. This helps prevent unauthorized 
access or tampering with the exchanged information.

(3) Data Minimization and Purpose Limitation: Minimize the collection 
and storage of personal data to only what is necessary for the learning 
task. Adopt a purpose limitation approach where data is used solely for 
the intended educational or research purposes and not shared or uti-
lized for other unrelated activities.

(4) Consent and Transparency: Obtain informed consent from individuals 
whose data is being used in the learning process. Clearly communicate 
the purpose of data collection, how it will be used, and any potential 
risks involved. Provide individuals with transparency and control over 
their data, allowing them to opt-out or manage their privacy 
preferences.

(5) Regular Risk Assessments and Audits: Conduct regular risk assessments 
to identify potential vulnerabilities in the system and evaluate the 
effectiveness of privacy and security measures. Perform audits to ensure 
compliance with privacy regulations and assess the overall security 
posture of the distributed learning infrastructure.

(6) User Empowerment and Education: Educate users, including educators, 
administrators, and students, about data privacy and security practices. 
Promote awareness of the potential risks and benefits of data sharing 
and distributed learning. Provide resources and guidelines on best 
practices for protecting privacy and securing sensitive data.

(7) Ethical Considerations: Ensure that the proposed solution adheres to 
ethical guidelines and principles. Avoid biases, discrimination, or unfair 
treatment in the learning process. Consider the potential implications 
and consequences of the decisions made by the intelligent model and 
promote fairness, transparency, and accountability.
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(8) Continuous Monitoring and Incident Response: Implement a robust 
monitoring system to detect any security breaches or privacy incidents. 
Establish an incident response plan to quickly respond to and mitigate 
any potential privacy or security breaches. Regularly review and update 
security protocols and procedures to address emerging threats and 
vulnerabilities.

By incorporating these measures into the proposed solution, you can enhance 
the effectiveness, privacy, and security of the distributed learning system while 
ensuring the protection of sensitive data and maintaining the trust of stake-
holders involved.

Conclusion

This study presents an advanced distributed intelligent model that 
employs entirely distributed machine learning while ensuring the security 
of private data linked to preschool education activity, sports education, 
training, and the health of preschoolers through a consensus process and 
exchange of gradients.

The proposed model enables the intelligent analysis and processing of 
athletes’ data while ensuring their privacy. This work presents an advanced 
distributed intelligent model that uses fully distributed machine learning and, 
through a consensus mechanism and exchange of gradients, ensures the 
integrity of private data related to sports activity, education, training, and 
athletes’ health. It is decided to considerably increase the number of messages 
exchanged in the network to accomplish this goal since the learning process 
needs the interaction of gradients and the transmission of parameters.

The suggested approach of protecting personal data privacy while enhan-
cing the distributed learning procedure by increasing the number of 
exchanged messages and incorporating gradient communication opens up 
several potential applications, including:

(1) Healthcare and Medical Research: The method can be applied in 
healthcare settings to enable collaborative analysis of sensitive patient 
data, such as electronic health records or genomic data. By preserving 
data privacy while exchanging gradients, medical researchers and insti-
tutions can collectively train models on a distributed network, leading 
to improved diagnostics, personalized treatment recommendations, 
and advancements in medical research.

(2) Financial Services: In the financial sector, where data privacy is of 
utmost importance, the suggested approach can be utilized to securely 
analyze financial transactions, customer profiles, and fraud detection. 
By leveraging distributed machine learning with enhanced privacy 
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measures, financial institutions can collaboratively detect patterns and 
anomalies, thereby improving risk assessment and fraud prevention 
while safeguarding customer information.

(3) Educational Institutions: The method can be applied within educational 
institutions to protect student privacy while enabling collaborative 
analysis and personalized learning. By securely exchanging gradients 
and preserving the integrity of private data, educational institutions can 
leverage distributed machine learning to enhance student assessment, 
adaptive learning systems, and educational analytics while ensuring 
compliance with data protection regulations.

(4) Smart City and Internet of Things (IoT) Applications: The suggested 
approach can be applied in the context of smart cities and IoT deploy-
ments. By securely exchanging gradients and protecting personal data, 
distributed machine learning can be utilized to analyze data from 
various sources, such as sensors, traffic cameras, and environmental 
sensors. This can enable intelligent decision-making for urban plan-
ning, traffic optimization, energy management, and environmental 
monitoring, while respecting individual privacy.

(5) Collaborative Research and Development: The method can be 
employed in collaborative research and development projects where 
multiple organizations or teams need to analyze sensitive data. By 
securely exchanging gradients and protecting data privacy, distributed 
machine learning can enable collaborative research efforts in fields such 
as drug discovery, climate modeling, or material science, fostering 
innovation while maintaining confidentiality.

These applications demonstrate the potential of the suggested approach to 
address privacy concerns while enabling distributed machine learning in 
various domains, leading to improved insights, decision-making, and innova-
tion while safeguarding sensitive data.

As a continuation of this work, we will focus on developing a model with 
quality elements that will highlight to the effective usage of edge nodes and the 
activation of caching approach at the edge nodes.
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