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ABSTRACT 

This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which 
is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel shape functions 
are to be calculated. These elements are appropriate for Soil-Structure Interaction problems, solved in time or frequency 
domain and can be treated as a new form of the recently proposed elastodynamic infinite elements with united shape 
functions (EIEUSF) infinite elements. Here the time domain form of the equations of motion is demonstrated and used 
in the numerical example. In the paper only the formulation of 2D horizontal type infinite elements (HIE) is used, but 
by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be added. Continuity along the 
artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the pro-
posed elastodynamical infinite elements in the Finite element method is explained in brief. A numerical example shows 
the computational efficiency and accuracy of the proposed infinite elements, based on scaling Bessel shape functions. 
 
Keywords: Soil-Structure Interaction; Wave Propagation; Infinite Elements; Finite Element Method; Bessel Functions; 

Duhamel Integral 

1. Introduction 

Infinite elements are widely used in the numerical simu-
lations of engineering problems if unbounded domain 
exists. Soil-Structure Interaction (SSI) is a typical civil 
engineering problem [1-9]. The infinite elements can be 
integrated in the Finite element method codes [10-12] 
adequately, and then dynamic SSI simulations can be 
obtained. The infinite elements as a computational tech-
nology are widely used due to the fact that their concepts 
and formulations are much closed to those of the finite 
elements. These elements are very effective for models 
of structures containing a near field discretized by finite 
elements and a far field discretized by infinite elements. 

The first infinite elements have been proposed in [4] 
(Bettess) and [11] (Ungless). Classification of the infinite 
elements is proposed in [13]. During the last three dec-
ades many element formulations have been suggested 
[1,13-17]. In the last two decades a lot of dynamic infi-
nite elements were developed, [18-22]. 

2. Elastodynamical Infinite Element with 
United Bessel Shape Functions 

The idea and concept of the elastodynamic infinite ele-
ments with united shape functions (for short EIEUSF 
class infinite elements) are presented in [20,21]. Several 
EIEUSF formulations are discussed and have been dem-
onstrated that the shape functions, related to nodes k and 
l (the nodes, situated in infinity, Figure 1, are not neces-
sary to be constructed, because corresponding to these 
shape functions generalized coordinates or weights, see 
Equation (1), are zeros). The displacements in infinity 
are vanished, and these shape functions must be omitted. 
The theory used for the formulation of the EIEUSF class 
infinite elements has been published in detail in [6], and 
hence only summarize of the basic idea is demonstrated 
here. In [20] is mentioned why the EIEUSF class infinite 
elements are more general and powerful than the stan-
dard infinite elements. 

The displacement field in the elastodynamical infinite  
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Figure 1. Local coordinate system of horizontal infinite 
elements (HIE). 
 
element can be described in the standard form of the 
shape functions based on wave propagation functions as 
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where  , ,iqN x z   are the standard shape displacement 
functions,  iq p

 , ,iqN x z
 is the generalized coordinate associ-

ated with  , n is the number of nodes for the 
element and m is the number of wave functions included 
in the formulation of the infinite element. For horizontal 
wave propagation basic shape functions for the HIE infi-
nite element, the local coordinate system of which is 
shown in Figure 1, can be expressed as: 
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where  ,qW    are horizontal wave functions and 
 iL   are Lagrange interpolation polynomial which has 

unit value at i-th node while zeros at the other nodes. For 
HIE infinite element the ranges of the local coordinates 
are:  1;1   and . Here  0;    , , ,T x z    as- 
sures the geometrical transformations of local to global 
coordinates. 
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Then Equation (1) can be expressed as 

   , ,px z N x zu p              (5) 

For horizontal wave propagation the basic shape func-
tions for the HIE infinite element can be expressed using 
Bessel functions as follows: 

     0, , q
iq iN L J               (6) 

where 0
qJ

    0 0 expq qJ J             (7) 

where  0
qJ   are standard Bessel functions of first 

kind. In Equations (6) and (7)   and   are constants, 
chosen in such a way that the length of the wave and the 
attenuation of the wave respectively, are identical with 
those, if Equation (2) is used. This means that the fol-
lowing two relations are valid: 
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where w  is the wave length if L  ,qW    functions 
are used; π-if Bessel functions of first kind  0J   are 
used (average distance between two zeros) to approxi-
mate the displacements in the infinite element domain, 
and: 
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because the Bessel functions of first kind attenuate pro-
portionally to 1  . The zeros of Bessel functions play 
a dominant role in applications of these functions [23] 
and demonstrate their oscillatory. Although the roots of 
Bessel functions are not generally periodic, except as-
ymptotically for large  , such functions give acceptable 
results for simulation of wave propagation. And what is 
more, using Bessel functions one can approximate 
change of the wave length in the far field region. If the 
element has four nodes and eight DOF (the simplest two- 
dimensional plane element [6]) only four shape functions 
can be used to approximate the displacements, related to 
one frequency. These functions can be written as: 
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  are scaling modified Bessel functions of 
first kind. These functions can be written as       4 0, , , ,v q

q jq jN N L J             (13.b) 
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where in the general case  0 0, 0;st wL      . 
If rotational DOF are used then the element has four 

nodes and 1o DOF. Two additional shape functions must 
be used, written as: 
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and 
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Here  0
qJ   and 1

qJ   are Bessel functions of 
first kind. 

The function  iL   is linear if no mid-nodes. Finally, 
if mid-node on the side i-j is used, then the Lagrange 
interpolation polynomials must be quadratic. Scaling 
modified Bessel functions of first kind, in accordance 
with Equation (6) (  0

qJ   and 1
qJ  ), are illus-

trated in Figure 2. 
The continuity along the artificial boundary (the line 

between finite and infinite elements, see Figure 3 line 

bx  and line bx ) is assured in the same way as between 
two plane finite elements [21]. The application of the 
proposed infinite elements in the Finite element method 
is discussed below. 
 

 

 

Figure 2.  qJ0   and  qJ1   scaling modified Bessel 

functions. 
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Figure 3. Computational model. 
 

Using the procedure, given in details in [6] and briefly 
described here, mapped EIEUSF infinite elements, based 
on scaling modified Bessel functions, can be formulated, 
based on Equation (16) 
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where     0 0 expq qJ J     . 

3. Stiffness and Mass Matrices 

The matrices ij  and ij , related to the near field of 
the Soil-Structure System (SSS) can be written as 
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and those related to the far field g
bK  and g

bM , i.e. ob-
tained for the proposed infinite elements, as 
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where N, B and D are shape function matrix, strain-dis- 
placement matrix and stress-strain matrix, respectively. 

The matrices ijK  and g
bK  are calculated using the 

principle of the virtual work. 
If Bessel functions are used, the first derivative of 
 0

qJ   (The Taylor series indicate that by  1
qJ   
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and 1
qJ   the derivative of 0

qJ  ) can be ex-  

pressed) is      0 1 1 2q q qJ J 
 
d

d



J   . 

The general form of the equations of motion in time 
domain can be written as 
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ness matrices, respectively, and   f t

 
 

  

s

b

t t

t t

a t

 is nodal force 
vector.  

The equations of motion of the entire SSS, using the 
Substructural approach with EIEUSF infinite elements, 
based on scaling modified Bessel functions, transformed 
into time domain by inverse Fourier transformation, are 
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if massless far field is assumed. In Equation (21)  tu  
and  are respectively displacement and force vec-
tors, and 
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can be assumed as a Duhamel integral or more generally 
as a convolution integral, for t  . 

Equation (23) is a standard convolution of two func-
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case of seismic events from seismograms. 

If rotational acceleration of the base is possible, than 
Equation (22) becomes 
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where . t hf m

The matrix    a texptg
b   S  assures the trans- 

formation of the nodal unit displacement impulse vector 
ˆb u , applied at moment  , to a nodal force vector  

 ˆ g
b tf  at moment  and can be treated as a transfor- 

mation matrix, the general form of which can be written 
as 
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teraction forces of the unbounded soil acting at nodes b, 
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at moment t   , the force vector  can be 
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or if t  is small time interval using the approximation 
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       
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t a t t

t a t

t a t t t
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   

 

b t    

   

   





f

S u

S u

S u







 

 

 

f 

 (29) 

If Equation (23) is expressed as 

         
0

sin exp d
t

g g
b b bt t t        f S u  

(30) 

then the trigonometric identity  
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 sin sin cos cos sint t t         

can be used and finally 

 

     

     
0

0

cos sin exp d
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g
b b

t
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b b
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t t

t t

     

     

  

  





f

S u

S u

 (31) 

Using the proposed infinite elements, the resulting 
element stiffness matrices related to the far field are in-
expensive to calculate and the global stiffness matrix has 
relatively small bandwidth. It is reasonable to expect 
similar results in SSI simulations, based on EIEUSF infi-
nite elements with modified Bessel shape functions to 
those when EIEUSF infinite elements are used. 

The nodal displacement vector at moment t can be 
calculated using step-by-step method, applied to Equa-
tion (23), given in time domain. Such a computational 
technology is demonstrated in the next Section. 

4. Numerical Example 

Structure with rigid strip foundation resting on a homo-
geneous half-space is modeled as shown in Figure 3, and 
the far field is descretized by elastic springs with stiff-
ness  (model 1), by elastic springs with stiffness  
(model 2), by massless EIEUSF infinite elements with 
one wave frequency [20] (model 3) and by massless infi-
nite elements with Bessel shape functions [20] (model 4). 

1
bk 2

bk

Horizontal harmonic displacements with period T   
 and amplitude  are applied on the 

nodes as shown in Figure 3. The geometry of the model 
and the material parameters are given in [6]. 

1 s max 0.25 mbu 

The results for the first 4 natural periods, correspond-
ing to the models and max displacement of node S, are 
given in Table 1. The time history of the displacements 
of node S, see Figure 3, between 9.1 s and 9.5 s are il-
lustrated in Figure 4. 

The numerical example shows that, if EIEUSF infinite 
elements or infinite elements with Bessel shape functions 
are used, the position of bx  can be translated starting 
from c3bx L   (see c  in Figure 3) to b cL x L  with-
out significant influence on the results. However, if elas-
tic springs are used, the results are significantly affected. 
Such a reduction of the near field demonstrates the effec-
tiveness of the proposed infinite elements. 

5. Conclusions 

In this paper a formulation of elastodynamical infinite 
element, based on scaled Bessel shape functions, is ap-
propriate for Soil-Structure Interaction problem, and the 
computational concept and the corresponding equations  

 

Figure 4. Time history of the displacements of node S. 
 
Table 1. Natural periods, corresponding to the models and 
max displacements of node S. 

Models model 1 model 2 model 3 model 4

1.5628 1.5584 1.5614 1.5615 

0.7512 0.7395 0.7455 0.7458 

0.5514 0.5377 0.5455 0.5459 

natural periods 
of vibration 

0.2278 0.1985 0.2219 0.2239 

max displacement [m] 0.611 0.572 0.585 0.586 

 
of motion of the entire SSI system are presented. This 
element is a new form of the infinite element, given in 
[6,21]. The base of the development is new shape func-
tions, obtained by modification of the standard Bessel 
functions of first kind  0J   by appropriately chosen 
scale factor. The stiffness matrices of these infinite ele-
ments are calculated by EIEUSF matrix module, and 
developed by the same author. 

The numerical example shows the computational effi-
ciency and accuracy of the proposed infinite elements. 
Such elements can be directly used in the FEM code. The 
results are in a good agreement with the results, obtained 
by EIEUSF infinite elements. Moreover, the use of scal-
ing modified Bessel functions in the construction of the 
shape functions leads to computational efficiency in the 
stage of the calculation of the stiffness and mass infinite 
element coefficients. 

The formulation of 2D horizontal type infinite ele-
ments (HIE) is demonstrated, but by similar techniques 
2D vertical (VIE) and 2D corner (CIE) infinite elements 
can also be formulated. It was demonstrated that the ap-
plication of the elastodynamical infinite elements is the 
easier and appropriate way to achieve an adequate simu-
lation (2D elastic media) including basic aspects of Soil- 
Structure Interaction. Continuity along the artificial 
boundary (the line between finite and infinite elements) 
is discussed as well and the application of the proposed 
elastodynamical infinite elements in the Finite element 
method is explained in brief. 
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