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Abstract
Soil organic matter (SOM) is a key indicator of soil fertility. For accurate measurement
of SOM, a novel method based on an artificial olfactory system (AOS) was proposed. The
response curves of soil volatile organic compounds (VOCs) were measured using a metal-oxide
semiconductor sensor array, and four features (including maximum value, mean differential
coefficient, response area, and the transient value at the 20th second) were obtained from the
curves and used to build olfactory feature space. Then, prediction models were established using
the pattern recognition algorithm. To further enhance the accuracy of AOS measurement, we
used Monte Carlo cross-validation (MCCV) to identify and eliminate the abnormal samples of
the soil olfactory feature space. Then, the dimension reduction method of the genetic algorithm
(GA)back-propagation (BP) was used to find the appropriate feature vectors, and two types of
hybrid models were presented. One was the support vector machine (SVM) and group method
of data handling (GMDH) combined model—SVM-GMDH. The other was a combination of
partial least squares regression (PLSR) and back-propagation neural network (BPNN)—PLSR-
BPNN. The forecasting performances of three single models (BPNN, PLSR, support vector
regression: SVR) and two combined models (PLSR-BPNN, SVM-GMDH) were comparatively
evaluated. The evaluation indices included coefficient of determination (R2), root mean square
error (RMSE), ratio of performance to deviation and relative prediction error (RPE). It was
found that the predictive capabilities of all five tested models were improved after elimination
of abnormal samples and feature reduction. Moreover, PLSR-BPNN performed the best
in predicting SOM concentrations, with R2 = 0.952, RMSE = 1.771, PRD = 4.291, and slight
variation of RPE within 0–0.185, and thus can offer a reference for predicting SOM via AOS.

Keywords: artificial olfactory system, soil organic matter, Monte Carlo cross-validation,
hybrid model, feature optimization
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1. Introduction

Soil organic matter (SOM) is a critical property of soils [1]
and contributes to soil physical property improvement, plant
growth, and crop production [2]. SOM is a key evaluator of
soil fertility, and loss of SOM reflects a decline in soil quality
[1, 3]. Accurate determination of SOM variation is critical for
guidance in crop fertilization and soil quality improvement.

SOM concentrations are usually measured by chemical
detection and analysis of soil samples collected in the field, but
this method is limited by high time/labor consumption, high
costs and destructiveness [4]. Thus, new fast, economical and
nondestructive methods for precise prediction of SOM con-
centrations are increasingly in demand [5]. In recent years,
owing to the universal application of proximal soil remote
sensing, visible and near-infrared diffuse reflectance spectro-
scopy (Vis–NIR DRS) has attracted increasing interest among
soil scientists and has been considered feasible for soil ana-
lysis [6–8]. For instance, Conforti et al predicted the spatial
variation of SOM using laboratory-based Vis–NIR spectro-
scopy [9]. Nawar et al used different Vis–NIR DRS spectra
to detect clay and SOM concentrations [10]. Despite its high
accuracy, Vis–NIR spectroscopy is limited by its susceptibil-
ity to changes in soil humidity [11], soil particle size [12] and
iron oxide [13].

The generation and consumption of soil gases are mainly
related to microbic activities in soils [14, 15]. SOM is the
major substrate of nutrients and energy needed by the vital
activities of soil microbes [16]. The substrate for nutrient and
energy supply can generate abundant volatile organic com-
pounds (VOCs) and gases during microbial degradation [15].
This means that the VOCs and gases in soils inevitably correl-
ate with SOM [17]. Such correlation facilitates the fast and
low-cost detection of SOM. Gas detection can be achieved
at very low costs, especially with methods based on solid-
state chemical sensors [18]. However, soil gases are compos-
itionally complex [19] and difficult to identify with a single
gas sensor. An artificial olfactory system (AOS, also called
electronic nose or e-nose) consisting of non-selective sensor
arrays and a pattern recognition model is considered as an
efficient means of detection of complex gases [18]. Though
the AOS does not present any concrete information or prop-
erty about volatile gaseous compounds [20], its combination
with appropriate pattern recognition algorithms, like artificial
neural networks (ANNs) or statistical methods, can identify
the gas pattern of specific samples and separate them from
other samples [21, 22]. So far, AOS has been extensively
applied in foods [23–25], medicine [26, 27], diseases [28],
the environment [29], beverages [30] and other fields [31–33].
AOS has also reportedly been used for soil characterization.
For instance, Andrzej et al used an e-nose to assess soil humid-
ity and research on ten moisture levels in ten types of soils, and
indicated that it was a very promising tool [34]. Pobkrut et al
integrated an e-nose and robots into detection of soil surface
VOCs and thereby measured soil fertility [35]. However, there
is little research on the use of an AOS in SOM measurement.

Although anAOS has the advantages of low cost, fast detec-
tion speed and being lossless [36], it also has some inevitable

defects, which mainly reflect the construction of sensor arrays
and the selection of pattern recognition algorithm. For dif-
ferent applications, sensor arrays are constructed differently,
and selectivity, sensitivity and operating temperature should
be considered comprehensively. For gases with known com-
ponents to be measured, the most popular method is to select
specific sensors to construct hybrid sensor arrays. However,
the formation mechanism of soil gas is different, and its com-
position is very complex. It is difficult for a specific sensor
to detect an uncertain gas mixture efficiently. Using the same
type of non-specific sensor to construct a difference detection
array by temperature control seems to be an effective measure
to collect uncertain combined gas signals.

The pattern recognition algorithm is a key component of
an AOS [37]. Commonly used pattern recognition algorithms
include the back-propagation neural network (BPNN), support
vector regression (SVR) and partial least squares regression
(PLSR). TheBPNN is themost widely used form of neural net-
work, and has strong nonlinear mapping ability. SVR is pro-
posed based on support vector machine (SVM) theory, which
can effectively simplify the complexity of high-dimensional
space. PLSR is particularly useful for predicting a group of
dependent variables from a large number of independent vari-
ables, especially when there is a linear correlation between
variables. These algorithms are widely used in soil property
modeling. For example, based on Vis–NIR spectra, Ji et al
compared the performances of PLSR and SVR in predicting
soil information in situ in rice fields [38]. Qi et al preprocessed
the hyperspectral Vis–NIR data of 153 soil samples using dif-
ferent methods and assessed the ability of PLSR, SVR and
BPNN in predicting soil available nutrients, including nitrogen
(N), phosphorus (P) and potassium (K) [39]. Santana et al used
the NIR spectral technique and PLSR to minimize the effect
of moisture on SOM detection [40]. Generally, all single pat-
tern recognition algorithms are faced with inherent limitations
[41]. For instance, BPNNs rely on abundant training data; the
parameter selection of SVR is very difficult; and PLSR is not
effective for nonlinear data. Guo et al also confirmed that no
single prediction algorithm can be considered as superior [42].
To solve these problems, researchers have paid much atten-
tion to hybrid models in recent years. Compared with a single
model, an appropriate combined model can yield more accur-
ate results [43].

The hybrid model refers to the appropriate combination of
different pattern recognition algorithms that can comprehens-
ively utilize the useful information of single algorithms and
thereby improves the prediction precision to the largest extent.
Wen et al combined a gray model (GM) (1,1) and BPNN in
grain yield prediction, in which the fluctuation of data series
was weakened by the gray theory and the nonlinear handling
ability of the BPNN was fully utilized [44]. Yin et al com-
bined secondary hybrid decomposition, crisscross optimiza-
tion and an extreme learning machine and thereby predicted
wind power [45]. Wang et al combined a BPNN and genetic
algorithm (GA) for wind speed forecasting [46]. The above
studies suggest these combinations can yield better prediction
results. The complex components of soil gases may correlate
linearly or nonlinearly, or both, with SOM. PLSR is especially
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sensors with the same type.  

 

Sensor arra

Figure 1. Structure of the AOS.

well suited when the characteristic matrix (or matrix of pre-
dictors) has more variables than observations, and whenmulti-
collinearity exists among variables in a characteristic matrix
[47]. BPNNs, because of their strong nonlinear approximation
ability, are widely used in nonlinear modeling [48]. Thus, a
hybrid model combining PLSR and a BPNN can effectively
utilize the advantages of both and improve the predictive pre-
cision. In this study, PLSR and a BPNN were combined for
the first time in SOM detection. This combination is called
PLSR-BPNN.

In our previous study, we mainly built a set of AOS for
SOM, used a metal-oxide semiconductor (MOS) gas sensor
array to detect the response curves of soil gases, extracted
four features (Vmax: maximum value, MDCV: mean differen-
tial coefficient value, RAV: response area value, and V t: tran-
sient value at the 20th second), and thereby constructed a soil
olfactory feature space (SOFS) [49]. Single prediction mod-
els were also assessed, including a BPNN, SVR and PLSR. In
this work, we optimized the SOFS prior to the prediction mod-
eling to further improve the SOM forecasting performance.
Generally, the optimization processes included the elimination
of abnormal samples and the dimension reduction of features.
The abnormal samples mainly originated from misoperation,
errors of the AOS, or temperature, humidity and other external
factors. Abnormal samples largely reduced the precision of the
prediction models. Thus, abnormal samples should be iden-
tified and eliminated. Monte Carlo cross-validation (MCCV)
was confirmed as a very useful method to remove abnormal
samples [50]. The dimension reduction of features is a key
influencing factor on model performances [51], since the ori-
ginal feature space containsmuch redundant information unre-
lated to modeling. The use of an unoptimized feature space in
modeling will enlarge the amount of calculation and decrease
the precision of prediction. The frequently used dimension
reduction methods are based either on statistics (e.g. prin-
cipal component analysis (PCA)) or optimization (e.g. firefly
algorithm, GA) [52]. GA-BP is a combination of a GA and
BPNN, which is used as an optimization algorithm for dimen-
sion reduction to overcome the shortcoming of BPNN con-
vergence to the local optimum. In this paper, on the basis of
the artificial olfactory detection method of SOM, the optim-
ization study of SOFS was carried out, and two new mixed
prediction models were proposed to improve the accuracy of

Figure 2. Basic measuring circuit of the sensor.

soil olfactory detection. The aims of this paper are: (a) to dis-
cuss the modeling effect of SOFS optimized by MCCV and
GA-BP; and (b) to evaluate the performance of three single
models (BPNN, SVR, PLSR) and two hybrid models (SVM-
GMDH, PLSR-BPNN) for SOM prediction.

2. Materials and methods

2.1. Structure and working principle of AOS

A laboratory-based AOS was used to detect volatile soil gases.
The AOS mainly consisted of a sensor array installed in a
closed reaction chamber, a signal processing circuit, and a
laptop PC (figure 1). The sensor array was a monoclass sensor
array, which was composed of multiple sensors of the same
type.

The signal processing circuit includedmultiple temperature
modulation circuits and multiple basic measurement circuits.
Each sensor in the sensor array corresponded to one temperat-
ure modulation circuit and one basic measurement circuit. The
temperature modulation circuit was used to set the sensor’s
working temperature. The basic measuring circuit, as shown
in figure 2, was used to collect the gas response signal.

VOCs during SOM degradation included gaseous hydro-
carbons (CH4, C2H4, C2H6, C3H8), H2S, ammonia, aldehyde,
etc [19]. Therefore, the sensor array was selected on the basis
of their sensitivity to the VOCs in soil. In this study, ten gas
sensors with the same type of IDT SGAS707, purchased from
Integrated Device Technology Inc. (San Jose, CA, USA), were
used to construct an array for the detection of VOCs in soil
gas. The basic metrological parameters of the SGAS707 are
shown in table 1. RAir/RGas in table 1 represents the ratio of air
response to VOC gas response.

These sensors were arranged in a 2 × 5 array at a line spa-
cing of 20mmand column spacing of 10mm. Each sensor con-
tained a resistance element (referred to as the heater) capable
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Table 1. Basic metrological parameters of the sensor.

Sensitive gases
Detection concentra-
tion range

Range of sensor
response

Range of sensor sens-
itivity (RAir/RGas)

VOCs, including: ethanols,
formaldehyde, toluene, xylenes,
acetone, isobutylene, octane, etc

1−1000 ppm 100−100 MΩ 1−100

Figure 3. Relationship between heater voltage (VH) and work
temperature (WT).

of modulating the working temperature, as shown in figure 2.
The working temperature is controlled by the heater voltage
(VH). The selectivity of sensors can be enhanced by temperat-
ure modulation [53]. There are usually two temperature mod-
ulation modes: isothermal modulation and dynamic thermal
modulation [54]. In our study, isothermal modulation was
adopted. To set the working temperature of sensors, we needed
to obtain the relationship between VH and the sensor working
temperature. Since the sensingmaterial of the sensor is located
in the metal protective casing, it is difficult to measure without
damaging the sensor. Therefore, we used the temperature of
the metal casing (WT) instead of the temperature of the sens-
ing material to carry out temperature modulation work. In this
work, the relationship betweenWT and VH was calibrated by a
PT1000 platinum resistance thermometer (precision class B)
attached to the metal casing of the MOS gas sensor, as shown
in figure 3. A polynomial was used to fit the calibration results
of WT and VH, and the calculation formula (1) with a fitting
degree (r2) greater than 0.99 was obtained:

W T = 6.918V2
H − 15.42V H + 43.26 (1)

In the design, the values of VH for each sensor were set with
a step of 0.25 V in a range from 1.25 V to 3.5 V (this range is
limited to temperature modulation circuits [49]). The corres-
ponding working temperatures of each sensor were 34.4 ◦C,
36.0 ◦C, 37.8 ◦C, 40.4 ◦C, 43.0 ◦C, 48.1 ◦C, 52.5 ◦C, 60.0 ◦C,
65.7 ◦C and 74.3 ◦C, respectively, and remained unchanged
during the whole measurement process.

Prior to operation, a vacuum pump extracted inertia helium
to rinse the test chamber. After the output of the sensor array
stabilized, the rinsing was stopped and the pass valve was
closed, so the test chamber was closed. After that, measure-
ment was started. During the measurement, soil gases sealed
in a 200 ml aluminum foil gas sampling bag were extracted by
using a 20 ml injector, and then transferred via the injection
hole to the test chamber. In the meantime, the sensor output
signals processed by the signal processing circuit were collec-
ted at 10 Hz sampling frequency and then stored on hard disks.
The sampling continued for 5 min.

It is necessary to verify the correctness (or selectivity and
sensitivity) of the selected sensors before making large-scale
measurements. Therefore, three typical soil gas samples with
the maximum, moderate and minimum organic matter con-
tents were selected from all soil gas samples to be tested for
verification. The results show that these sensors have different
responses to different soil gas samples and show great differ-
ences. This verifies that the selected sensors can realize SOM
detection based on an artificial olfactory method. After that,
we measured all the gas samples. More information about the
verification test and data collection can be found in our previ-
ous study [49].

2.2. Dataset

The dataset (including a training set and a validation set)
was cited from our previous study [49]. A total of 102 soil
samples were collected in Jilin Province. The SOM concen-
tration of each sample was measured by the potassium dichro-
mate method and regarded as the observed value. The olfac-
tion response curves of all samples were determined using an
AOS device. The SOM concentrations are listed in table 2.
The AOS-detected SOM concentrations were presented in a
102 × 40 olfaction feature space, which consisted of 102
samples and 40 features. The 40 features consisted of Vmax,
MDCV, RAV and V t on the ten curves, and a boxplot of the
feature data is illustrated in figure 4. The Si (i = 1, 2, 3, … ,
10) in figure 4 stood for the ten sensors. As can be seen from
the figure, there were some obvious outliers in the attribute
parameter, indicating the existence of abnormal samples in the
data set. Therefore, it was necessary to remove the abnormal
samples before establishing the prediction model.

2.3. Abnormal sample elimination

Abnormal samples can be produced by many factors such as
unstable instrument status or imperfect operation. MCCV is
proposed based on the basic assumption that the effect of an
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Table 2. Organic matter concentrations in soil samples.

Dataset SOM (g kg–1)
Sample
number

Training
set

20.51; 27.62; 33.50; 20.23; 23.11; 24.43; 28.71; 26.53; 18.88; 26.92; 14.97; 20.48; 17.69; 13.76; 17.38; 19.97;
32.13; 29.87; 28.85; 39.64; 12.37; 17.33; 14.22; 22.85; 15.49; 22.85; 25.27; 22.55; 18.13; 20.52; 25.20; 23.72;
13.44; 16.24; 15.67; 41.10; 22.31; 20.17; 13.29; 19.54; 35.55; 36.28; 43.85; 19.14; 25.42; 19.79; 13.79; 15.90;
30.71; 19.27; 23.16; 30.14; 24.76; 23.80; 27.95; 20.60; 22.88; 24.75; 23.46; 18.67; 35.38; 16.53; 15.32; 16.31;
16.74; 17.78; 22.89; 14.80; 29.65; 38.86; 19.75

1–71

Validation
set

33.77; 12.19; 24.15; 25.11; 34.24; 21.32; 25.86; 18.94; 25.85; 25.10; 19.64; 25.94; 18.96; 17.58; 22.71; 21.50;
23.18; 38.92; 28.58; 48.79; 21.13; 28.62; 20.01; 17.78; 13.64; 21.28; 14.72; 19.37; 15.59; 15.71; 27.89

1–31

Attribute Parameter
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Figure 4. Boxplot of feature data of SOM.

outlier on the model will be different depending on whether it
is selected in the calibration set or in the prediction set [50].
Because the outliers are unstable, they are not applicable for
the models built based on the rest of the samples [54]. Thus,
the outliers can be considered to be abnormal samples. In this
study, theMCCVwas used to identify the outliers in the SOFS.
Firstly, from the training set, 80% of the samples were ran-
domly selected for the establishment of PLSR models, and the
remaining 20% were used for prediction. Secondly, the above
process was repeated multiple times, so several PLSR models
were built. Thirdly, the models were sorted in ascending order
according to the predicted residual sum of squares (PRESS).
Finally, the abnormal samples were identified according to the
accumulative probability ( f ac). PRESS and f ac were defined as
follows:

PRESS=
k∑
i=1

(ŷ− yi)
2 (2)

where ŷ and yi are the predicted value and observed value of
the ith sample respectively, and k is the number of prediction
samples.

f ac (m,n) = 100×
N∑
n=1

fmn/N (3)

wherem is the ordinal number of a sample, and n is the index of
ranked PLSR models. N is the number of training set samples,

and fmn indicates whether sample m in the randomly selected
samples existed in the training set of model n: if yes, fmn = 1;
otherwise, fmn = 0.

According to the definition, f ac represented the probabil-
ity of each sample appearing in good and bad models, since
the models were sorted according to PRESS values. As n
increased, the f ac of normal samples was still kept around 80%,
but the f ac of abnormal samples deviated from those of normal
samples.

2.4. Feature dimension reduction

GA is an evolutionary algorithm that simulates natural selec-
tion. Firstly, a population was randomly generated and after
crossing, mutation and ‘survival of the fittest’ selection, the
suitable individuals remained in the next generation until cer-
tain termination conditions were met [55]. To remove redund-
ant information from the SOFS,we usedGA-BP for dimension
reduction. The concrete procedures are shown in figure 5.

(a) A population of size 20 was randomly generated, and
the chromosome encoding length of each individual
in this population was set as the dimension size of
the original olfaction feature space (namely 40). Then,
the chromosomes were binary-encoded so that each
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Start
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Fitness function 
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Figure 5. Flowchart of GA-BP.

locus gene on each chromosome corresponded to a fea-
ture vector. In each gene, ‘1’ meant the feature vec-
tor participated in BPNN modeling, and 0 meant it did
not take part in modeling. For instance, if the chro-
mosome of a random genetic individual was encoded
‘011001000100110001001100100 1101101000000’, the
corresponding feature vectors involved in modeling were
2, 3, 6, 10, 13, 14, 18, 21, 22, 25, 28, 29, 31, 32, 34.

(b) The feature vectors corresponding to the genetic individu-
als were selected and used in the BPNNmodel. The model
was trained using the training set, and the reciprocal of the
sum of squared errors was validated as the fitness function.
Let the fitness function be f (x); ŷi is the predicted value of
the ith sample in the validation set, and yi is the observed
value of the ith sample in the validation set. Then, f (x) can
be expressed as

f(x) =
1

n∑
i=1

(ŷi− yi)
2

(4)

where n is the number of samples in the validation set.
(c) It was judged whether the relevant parameter (e.g. the

value of f (x) or the number of iterations) met the out-
put condition. If so, the optimal feature vector was expor-
ted and the operation was stopped. Otherwise, the selec-
tion, crossing and mutation of GA were conducted, and
then steps 2 and 3 were repeated until the output condition
was met.

2.5. Single prediction models

As for prediction of soil properties, commonly used regres-
sion prediction algorithms include the BPNN, SVR, PLSR and
ELM, etc [38, 39, 56]. Moreover, a BPNN, SVR and PLSR
were also used in our previous research [49]. For comparison,
these three algorithms were again adopted in this study as pre-
diction models.

The BPNN is a multilayer forward neural network and is
the most widely used neural network. Its topological structure
consists of an input layer, either one or several hidden lay-
ers, and an output layer. The Kolmogorov theory proves that a
three-layer network containing one hidden layer can approx-
imate any nonlinear function. Thus, the number of hidden lay-
ers was set as 1 in this study. However, the BPNN is largely
susceptible to the number of neurons in the hidden layer. In our
work, the number of neurons in the hidden layer was optimized
by the following empirical formulas:

h=
√
n+ p+α (5)

where h, n and p are the numbers of hidden-layer neurons,
input nodes and output nodes respectively, and α is a positive
integer number from 1 to 10. In the BPNN model, the activ-
ation function of neurons in the hidden layer was an s-typed
transfer function (tansig), and that in the output layer was a
linear transfer function purelin. The number of iteratiosn for
training was set as 1000, the learning rate was 0.01, and the
target error was 0.001.

SVR, with highly similar structures to ANNs, can learn
from experimental data [57]. It is one of the most import-
ant predictive statistical models. The LIBSVM toolbox offers
two types of regression methods, including ε-SVR and ν-SVR
[58]. Here ε-SVR was used with the radial basis function
(RBF) as the kernel function. The penalty factor c (c > 0) and
the kernel parameter g are two major influencing factors on
the performance of SVR. Here the SVRmodel was optimized.
The parameter combination (c, g) was determined through
the mesh search method and five-fold cross-validation, which
were also used in our previous studies.

PLSR is very effective in predicting a group of depend-
ent variables from a number of independent variables [59].
This is a multivariable statistical data analytical method that
integrates PCA and multivariable linear analysis. When the
variables are highly linearly correlated, PLSR can return a
very effective prediction. The number of principal compon-
ent factors (PCFs) is the major cause of over-fitting or under-
fitting of PLSR [39]. Here, leave-one-out cross-validation was
used to determine the number of PCFs in the PLSR model.

2.6. Hybrid prediction models

2.6.1 SVM-GMDH. SVM is an efficient way to solve non-
linear classification problems [60]. In order to make full use
of this advantage of SVM, we put forward a prediction model
of pre-classification and later regression. Firstly, the training
set was classified into several sub-training sets according to
the SOM classification standard, and then an SVM cluster-
ing model was established and used to cluster the validation
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set. Finally, several regression models were built based on the
sub-training sets to predict the values of the clustered valid-
ation set. Considering that the number of sub-training sets is
small, it can be a challenge to establish a reliable prediction
model. For this problem, the group method of data handling
(GMDH) provides us with a powerful tool [61]. GMDH is a
learning machine on the basis of heuristic self-organization as
proposed by Ivakhnenko in 1976 [62], and has been widely
used in energy conservation [63], marketing [64], fault recog-
nition [65], and engineering geology [66]. In this study, SVM
and GMDH were combined as SVM-GMDH for the first time
for SOM detection.

Let the training set be T = {(Xj, yj) | j= 1, 2, 3, … ,m} and
the testing set be V = {(Xi, yi) | i= 1, 2, 3,… , n}, where Xj and
Xi are the feature vectors of the training set and the validation
set respectively, and yj and yi are the observed SOM concentra-
tions by the training set and the testing set respectively. m and
n are the sample numbers of the training set and the testing
set, respectively. The algorithm procedures of SVM-GMDH
are shown below:

(a) According to the SOM classification standard, T was
divided intoCk classes (k= 1, 2,… , m), and there existed:

T=
m⋃
j

Ck, Ck
⋂
Cp = ∅ (6)

where k ̸= p (p = 1,2, … , m).
(b) The training set T was used to construct an SVMclustering

model.
(c) Ck was used as the training set to build GMDH models,

and a total of k GMDH models were obtained.
(d) The samples (Xi, yi) in V were classified into the Ck class

by the trained SVM clustering model, and the predicted
value of yi could be obtained by predicting Xi with the kth
GMDH model.

2.6.2 PLSR-BPNN. Due to the complex causality between
soil gases and SOM, the SOM concentration may be intern-
ally related either linearly or nonlinearly to the soil olfaction
feature space. Therefore, a hybrid prediction model of PLSR-
BPNN was proposed in this study. The PLSR-BPNN is an
organic combination of PLSR and BPNN, which effectively
utilizes the linear modeling capability of PLSR and the non-
linear mapping capability of BPNN to improve the predictive
performance of AOS. The combination of PLSR and BPNN is
illustrated in figure 6.

The modeling and forecasting process of PLSR-BPNN is
described below:

(a) The training set was used to establish a PLRS model and
a BPNN model respectively.

(b) The established PLRS model and BPNN model were used
to predict the validation set, respectively. The predicted
values yp (PLRS prediction result) and yb (BPNN predic-
tion result) could be obtained, where p= 1, 2,… , n; b= 1,
2, … , n; and n was the sample size of the validation set.

Feature 
matrix

BPNN

PLSR
Combined 

model
Output 
results

Figure 6. Sketch map of PLSR-BPNN.

(c) The prediction result of ŷi was output by combining yp and
yb according to the arithmetic mean, where i = 1, 2, … , n.
The combination was expressed as follows:

ŷi = k1 · yp+ k2 · yb (7)

where k1 and k2 are the weighting coefficients of PLRS and
BPNN, respectively.

To determine k1 and k2, the concept of model validity
[67] was introduced here, which is expressed by S. S can be
defined as:

S= E · (1−σ) (8)

Ai = 1−
∣∣∣∣yi− ŷi

yi

∣∣∣∣ (9)

E=
1
n

n∑
i=1

Ai (10)

where Ai (i = 1, 2, … , n) represents the prediction precision
sequence of the samples, yi is the observed value of the sample

in the validation set, and σ = 1
n

√
n∑
i=1

(Ai−E)2 is the predicted

value of yi. In the previous equations, E and σ represent the
mean and standard deviation of the Ai sequence respectively.

The above calculation implies that a larger Smeans a higher
prediction precision. We denoted the validity of the PLRS
model and the BPNN model as Sp and Sb respectively. In this
study, Sp and Sb were normalized as the values of k1 and k2
respectively, namely:

k1 =
Sp

Sp+ Sb
,k2 =

Sb
Sp+ Sb

(11)

2.7. Evaluation indices The frequently used performance
evaluation indices of soil property prediction models include
the coefficient of determination (R2), ratio of performance to
deviation (RPD), root mean square error (RMSE) and relat-
ive prediction error (RPE). Compared with previous studies,
here we also used R2, RMSE and RPD to assess the predic-
tion models. Moreover, the RPE was adopted as an evaluation
index of parameter optimization such as feature optimization

7
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Figure 7. Statistical characteristics of SOM content and significance
level of the K–S test.

and abnormal sample elimination. The equations of R2, RMSE
and RPD can be found in [49].
R2 closer to 1 means higher model fitness. PRD can com-

pensate for the limitations of R2 in predicting nonlinear mod-
els, and a larger PRD indicates the forecasting performance
is higher. A smaller RMSE implies the prediction precision is
higher, and a smaller RPE suggests the predicted value devi-
ates less from the observed value. The RPE is calculated as
follows:

RPE= (|ŷi− yi|)/yi(i≤ n) (12)

where n is the sample number of the training set or validation
set; yi is the observed value of the ith sample; and ŷi is the
predicted value of yi.

3. Results

3.1. Descriptive statistics for all samples The observed val-
ues of SOM from102 soil sampleswere descriptively analyzed
on the statistical software SPSS13.0. The normal distribution
was tested via the Kolmogorov–Smirnov (K–S) method. The
SOM content varied within 12.19–48.79 g kg−1, with a mean
of 23.131 g kg−1. The coefficient of variation (CV) was 0.319,
indicating SOM content in this study showed a spatial vari-
ation trend. The K–S test value was 0.295 (P > 0.05), so the
null hypothesis of normality cannot be rejected (figure 7).

3.2. Results of abnormal sample elimination The SOFS
consisted of a training set (71 samples) and a validation set
(31 samples). To eliminate the effects of abnormal samples,
we used MCCV to identify the abnormal samples in the train-
ing set. In the calculation of MCCV, 57 (71%× 80%) samples
in the training set were randomly selected to build 1000 PLSR
models, and the remaining 14 (71% × 20%) samples were
used for prediction. Figure 8 shows the variation curves of f ac
along with the sequence number of ranked models, and the
small inset figure shows the f ac of the first 119 models.

Clearly, as the sequence number of ranked models
increased, the f ac values of most samples in the training set
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Figure 8. Cumulative frequency ( fac) curves of samples in the
training set.
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Figure 9. Optimal fitness function evolution curve.

approached 80%, but the f ac curves of samples 1, 18, 36, 38
and 70 were significantly different from the other curves to
some extent because the f ac values of these five samples were
still maintained at 100% within a larger model sequence num-
ber range. Therefore, the five samples with numbers 1, 18, 36,
38 and 70 were identified as ‘abnormal samples’, and needed
to be removed.

3.3. Results of feature optimization After removing the
abnormal samples from the training set, a new training set was
obtained. The GA-BP method was used to reduce the dimen-
sion of the new training set for optimization. The output condi-
tion of the GA-BPwas set as 100 iterations. Figure 9 illustrates
the fitness function evolution curve.

Obviously, after the number of iterations exceeded 10, the
optimal fitness value was unchanged, indicating the optimal
effect had been achieved. In this case, a group of optimal fea-
ture vectors were screened out: 1, 2, 6, 8, 10, 13, 14, 16, 17, 18,
21, 24, 25, 26, 30, 36, 37, and 40, which meant that the original
feature was reduced from 40 dimensions to 18 dimensions. It
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can be seen that, after the elimination of abnormal samples and
feature dimensionality reduction, the training set was optim-
ized from a matrix of 71 × 40 dimensions to a new matrix of
66 × 18 dimensions, and the validation set was transformed
into a new matrix of 31 × 18 dimensions.

3.4. Prediction results by single models

To test the effect of the optimized OFS on modeling perform-
ance, BPNN, SVR and PLSR were used to establish three
different single prediction models on the new training set
(66 samples × 18 features), and the new validation set (31
samples × 18 features) was used to validate these models. In
the BPNN modeling, the number of optimized neurons in the
hidden layer was eight. In the SVRmodeling, the optimal para-
meters were c = 1 048 576 and g = 1.5492 × 10−6. In the
PLSR modeling, the optimal number of FPCs was four. The
prediction results of the models are shown in figure 10.

The R2 of the three single models were 0.941, 0.918 and
0.913, respectively; the RMSEs were 2.036, 2.224 and 2.114,
respectively; and the PRDs were 3.733, 3.418 and 3.377,
respectively (figure 10). The above results suggest that the
three models are all of high predicting ability. In terms of
R2, RMSE or PRD, the SVR model and the PLSR model are
not significantly different, but the R2 and PRD of the BPNN
model are both higher than those of the other two models, and
the RMSE is lower than those of the other two models. Thus,
among the three models, the BPNN model outperforms the
other two models and has a higher prediction accuracy.

3.5. Prediction results by hybrid models

3.5.1 SVM-GMDH. According to the soil nutrient clas-
sification standard of the second national soil survey in
China, the SOM content can be divided into six levels [68]:
level 1—extremely high (>40 g kg−1), level 2—very high
(30–40 g kg−1), level 3—high (20–30 g kg−1), level 4—
medium (10–20 g kg−1), level 5—low (6–10 g kg−1), and level
6—very low (<6 g kg−1). The classification results of SOM in
this study are shown in table 3.

However, since the organic matter content of all soil
samples was greater than 10 g kg−1, there were no level 5 or
6 samples in table 2. In addition, when the abnormal samples
1 (20.51 g kg−1), 18 (29.87 g kg−1), 36 (41.10 g kg−1), 38
(20.17 g kg−1) and 70 (38.86 g kg−1) were removed, only one
soil sample remained in level 1 of the training set and valida-
tion set respectively, which was not conducive to the establish-
ment of a classification model and regression model. There-
fore, these two remaining samples (namely, 43.85 g kg−1 and
48.79 g kg−1) of level 1 were grouped into level 2. In table 2,
C1, C2 and C3 were labeled as three categories respectively:
C1 (level 2), C2 (level 3) and C3 (level 4).

Based on the results in table 3, an SVM-GMDH predic-
tion model was built and the validation set was classified and
predicted. The prediction results and performance evaluation
indices (R2, RMSE, PRD, and RPE) are shown in figure 11.
The results were R2 = 0.79, RMSE = 3.52 and PRD = 2.16,
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(b) SVR prediction results. 
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(c) PLSR prediction results. 

Figure 10. Prediction results of single models.

indicating the predicting ability of the SVM-GMDH model
was not high (figure 11(a)). The reasonsweremainly attributed
to the low classification accuracy (CA) of SVM, because
the CA of SVM-GMDH in the validation set was 83.9%
(figure 11(a)). When the CA was set at 100% by manual,
the predicting indices of SVM-GMDH were R2 = 0.845,
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Table 3. Classification results of SOM content.

Label SOM content of training set

Number
of training
set samples SOM content of validation set

Number of
validation
set samples

C1 43.85; 33.50; 32.13; 39.64; 35.55; 36.28;
30.71; 30.14; 35.38

9 48.79; 33.77; 34.24; 38.92 4

C2 27.62; 20.23; 23.11; 24.43; 28.71; 26.53;
26.92; 20.48; 28.85; 22.85; 22.85; 25.27;
22.55; 20.52; 25.20; 23.72; 22.31; 25.42;
23.16; 24.76; 23.80; 27.95; 20.60; 22.88;
24.75; 23.46; 22.89; 29.65

28 24.15; 25.11; 21.32; 25.86; 25.85; 25.10;
25.94; 22.71; 21.50; 23.18; 28.58; 21.13;
28.62; 20.01; 21.28; 27.89

16

C3 18.88; 14.97; 17.69; 13.76; 17.38; 19.97;
12.37; 17.33; 14.22; 15.49; 18.13; 13.44;
16.24; 15.67; 13.29; 19.54; 19.14; 19.79;
13.79; 15.90; 19.27; 18.67; 16.53; 15.32;
16.31; 16.74; 17.78; 14.8; 19.75

29 12.19; 18.94; 19.64; 18.96; 17.58; 17.78;
13.64; 14.72; 19.37; 15.59; 15.71

11
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Figure 11. Test results of the SVM-GMDH hybrid model.

Table 4. Preliminary modeling results of three single models.

Models R2 RMSE RPD

BPNN 0.880 2.679 2.837
SVR 0.895 2.531 3.003
PLRS 0.808 3.393 2.240

RMSE= 3.093 and PRD= 2.51 (figure 11(b)), which were all
higher than those of SVM-based classification. Furthermore,
the RPE was smaller when CA= 100% (figure 11(c)). Admit-
tedly, the low CA decreased the forecasting performance of
SVM-GMDH.

3.5.2 PLSR-BPNN. To evaluate the prediction performance
of the hybrid model PLSR-BPNN, the optimized SOFS was
used in modeling and prediction. In the PLSR-BPNN model-
ing, the parameters of its two parallel combination branching
algorithms PLSR and BPNNwere set the same as in the single
PLSR model and single BPNN model. Figure 12 shows the
predicted results by the PLSR-BPNN.

Clearly, the PLSR-BPNN showed a favorable predicting
trend and accuracy, and the R2, RMSE and PRD were 0.952,
1.771 and 4.291 respectively (figure 12). As per equation (11),
the weighting coefficients of the PLSR and BPNN were
calculated to be k1 = 0.52 and k2 = 0.48, respectively.
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Figure 12. Test results of the PLSR-BPNN.

4. Discussion

4.1. Discussion on optimization effect of SOFS

In this paper, we refer to the calibration model based on the
unoptimized SOFS the preliminary prediction model. In our
previous paper [41], we reported the preliminary prediction
results of three single models of a BPNN, SVR and PLSR as
listed in table 4.
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Figure 13. Preliminary prediction results of the hybrid models.

As can be seen from table 3, the R2 of the BPNN, SVR and
PLSR are all greater than 0.8, and all have RPD greater than
2.0. Vohland et al reported a detailed evaluation method for
predicting goodness [69]: R2 and RPD values greater than 0.90
and 3.0, respectively, are considered to be ‘excellent’, whereas
values from 0.82–0.9 (R2) to 2.5–3.00 (RPD) are defined as
‘good’. Values between 0.66 and 0.81 (R2) and 2.0 and 2.5
(RPD) indicate ‘approximate quantitative prediction’. When
the RPD value is from 1.5 to 2.0 and the R2 value is from
0.50 to 0.65, the model can only be used to distinguish high
and low values. ‘Unsuccessful’ predictions have RPD and R2

values lower than 1.5 or 0.50, respectively. Therefore, the pre-
liminary models of the BPNN and SVR have ‘good’ predict-
ive performance, while the PLSR preliminary model has only
approximate quantitative ability.

The preliminary prediction results of hybrid models are
shown in figure 13. The results of SVM-GMDH were:
R2 = 0.69, RMSE = 19.89 and PRD = 0.382 (figure 13(a)).
It is an unsuccessful prediction (RPD < 0.50). On the one
hand, as mentioned above, SVM-GMDH is affected by the
accuracy of SVM classification. On the other hand, it may be
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affected by abnormal samples and redundancy features. The
preliminary prediction model of PLSR-BPNN has a ‘good’
prediction, with R2 = 0.848, RMSE= 3.043 and RPD= 2.497
(figure 13(b)).

The optimized SOFS, including the new training set
(66 samples × 18 features) and the new validation set
(31 samples × 18 features), was used in modeling and pre-
diction.We refer to the calibration model based on the optim-
ized SOFS as the optimized model. The prediction results
of the five optimized models (BPNN, PLSR, SVR, SVM-
GMDH and PLSR-BPNN) are shown in figures 10(a)–(c),
11(a) and 12, respectively. In comparison with the prelim-
inary prediction model, the results of the optimized mode
rise by 6.93%, 2.57%, 13.00%, 14.53% and 12.26%, respect-
ively (R2); decrease by 24.00%, 12.13%, 37.70%, 82.29%
and 41.80% respectively (RMSE); and increase by 31.58%,
13.82%, 50.76%, 464.92% and 95.29% (RPD). These res-
ults suggest the predictive capabilities of all five mod-
els were largely improved after the optimization of SOFS,
indicating that MCCV can effectively identify abnormal
samples and GA-BP can effectively eliminate redundant
features.
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4.2. Comparison of optimized models

To find the optimal prediction model for SOM detection, we
visualized the evaluation indices of the five optimized models
(figure 14). Except for the SVM-GMDH optimized model
(R2 = 0.79, PRD= 2.16), which can only be used for approx-
imate quantitative prediction, the other four optimized models
(R2 > 0.90, RPD > 3.0) have ‘excellent’ prediction.

According to figure 14(a), it can be seen that the pre-
diction performance relationship of the optimized models
is PLSR-BPNN > BPNN > SVR > PLSR > SVM-GMDH.
Moreover, the RPE curves reflect the fluctuation of prediction
errors of the five models (figure 14(b)). Clearly, the RPE of
PLSR-BPNN fluctuated within the smallest range (0–0.185)
and thus showed the strongest predicting accuracy. There-
fore, we believe that the PLSR-BPNN optimized model per-
forms the best in olfactory detection of SOM. This is because
there was a linear and non-linear relationship between olfact-
ory feature variables, and the PLSR-BPNN could effectively
solve the linear and nonlinear mapping problems by weighting
coefficients.

5. Conclusions

The main intellectual merits of this work include the novel
approach based on the AOS and PLSR-BPNN and its effect-
iveness as a method of solving the linear and nonlinear map-
ping problems by weighting coefficients in detecting SOM.
The test results demonstrate that: (a) MCCV and GA-BP
were good measures to optimize SOFS, and (b) the PLSR-
BPNN model yields higher predictive performance and lower
relative predicting errors compared to BPNN, SVR, PLSR
and SVM-GMDH models. According to numerical and eval-
uation index tradeoffs, MCCV + GA-BP + PLSR-BPNN
(R2 = 0.952, RMSE = 1.771, and RPD = 4.291) is selec-
ted as the most suitable method for predicting SOM in this
study.

Compared with the near-infrared spectroscopy in refer-
ence [70] (test result: R2 = 0.91) and reference [71] (test res-
ult: R2 = 0.69), the method of the current study is superior.
However, our samples need to be stored sealed for a period of
time, which is time-consuming and not conducive to real-time
detection. Therefore, our next work will focus on the influen-
cing factors of artificial olfactory detection of SOM and the
rapid processing of soil samples. In addition, the number of
soil samples should also be increased to make the determina-
tion method more stable and robust.

Acknowledgments

This research was funded by the National Key R&D Plan
project, Grant No. 2016YFD070030201, and the Jilin Sci-
ence and Technology Development Plan (20190302116GX,
20200502007NC). We highly appreciate Yibing Chen, who is
a researcher of the Soil and Fertilizer Station of Jilin Province,
for providing the soil samples.

ORCID iD

Longtu Zhu https://orcid.org/0000-0001-8699-7902

References

[1] Tziachris P, Aschonitis V, Chatzistathis T and
Papadopoulou M 2019 Assessment of spatial hybrid
methods for predicting soil organic matter using DEM
derivatives and soil parameters Catena 174 206–16

[2] Karami A, Homaee M and Afzalinia S 2012 Organic resource
management: impacts on soil aggregate stability and other
soil physico-chemical properties Agric. Ecosyst. Environ.
148 22–8

[3] Salehi M H, Beni O H and Harchegani H B 2011 Refining soil
organic matter determination by loss-on-ignition
Pedosphere 21 473–82

[4] Kasim N, Sawut R and Qingdong S 2018 Estimation of soil
organic matter content based on optimized spectral index
Trans. Chin. Soc. Agric. Mach. 49 155–63

[5] Wang J, He T and Lv C 2010 Mapping soil organic matter
based on land degradation spectral response units using
Hyperion images Int. J. Appl. Earth Obs. Geoinf.
12 S171–80

[6] Nawar S and Mouazen A M 2019 On-line vis-NIR
spectroscopy prediction of soil organic carbon using
machine learning Soil Tillage Res. 190 120–7

[7] Shepherd K D and Walsh M G 2002 Development of
reflectance spectral libraries for characterization of soil
properties Soil Sci. Soc. Am. J. 66 988–98

[8] Conforti M, Matteucci G and Buttafuoco G 2018 Using
laboratory vis-NIR spectroscopy for monitoring some forest
soil properties J. Soil Sediment. 18 1009–19

[9] Conforti M, Castrignanò A and Robustelli G 2015
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