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Fuzzy String Matching with a Deep Neural Network
Daniel Shapiroa,b, Nathalie Japkowicza, Mathieu Lemayb, and Miodrag Bolic a

aSchool of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, Canada;
bLemay Solutions Consulting Inc, Ottawa, Ontario, Canada

ABSTRACT
A deep learning neural network for character-level text classi-
fication is described in this work. The system spots keywords in
the text output of an optical character recognition system
using memoization and by encoding the text into feature
vectors related to letter frequency. Recognizing error messages
in a set of generated images, dictionary and spell-check-based
approaches achieved 69% to 88% accuracy, while various deep
learning approaches achieved 91% to 96% accuracy, and a
combination of deep learning with a dictionary achieved 97%
accuracy. The contribution of this work to the state of the art is
to describe a new approach for character-level deep neural
network classification of noisy text.

Introduction

Fuzzy string matching is the process of classifying text that contains
added noise in the form of spelling errors. This work is about learning
to detect and correct mistakes in optical character recognition (OCR)
output for certain keywords by examining character-level text features.
The contribution of this work is to describe a new approach using a deep
neural network (DNN) and memoization to classify based upon particular
text features.

Consider a virtual agent that detects onscreen error messages. The input to
the agent is the output from an OCR engine translating fullscreen computer
screen images to text. OCR conversion from image to text often includes
many misspellings, and so the system described in this work learns a map-
ping from incorrect OCR output words (e.g., nullpointer3xception) back to
the correct words (e.g., nullpointerexception), improving error message
recognition. The system is described below, in the section entitled ‘Fuzzy
string generation process’. The three approaches evaluated in this work are
spelling correction, dictionary, and deep learning. The classification accuracy
results are discussed in the ‘Discussion’ section, followed by concluding
remarks and thoughts on future work.
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Prior art

A recent survey on the general topic of text detection and extraction from
images was conducted by Ye and Doermann (2015), and a survey on fuzzy
string matching was conducted by Gomaa and Fahmy (2013). The fuzzy
string matching literature enumerates many methods for measuring the
similarity of two strings, including edit distance metrics and term-based
metrics. In future work, a more comprehensive comparison between this
work and these many methods will be carried out.

As described in Kasampalis (2015), memoization is an optimization tech-
nique used to avoid recomputing a result when the answer has already been
computed. In this work, memoization was used as a dictionary for caching
keyword spelling corrections. Similar to the general approach in this work,
Silberpfennig et al. (2015) corrected a baseline OCR engine using it as a black
box to process a set of unlabeled images. The OCR output text was then
calculated as the centroid of a set of many candidate OCR words, measured
by edit distance. Jaderberg, Vedaldi, and Zisserman (2014) and Zhang, Zhao,
and LeCun (2015) processed noisy text using convolutional neural networks.
Zhang, Zhao, and LeCun (2015) used memory units in a network nine layers
deep with six convolutional layers and three fully connected layers, sending
text character by character into the neural network (multiple vectors per
word). In this work, three fully connected layers process one vector per word.
Using word vectors produces faster training results and avoids the need to
consider memory units. Bissacco et al. (2013) extracted text from smartphone
images on a character by character basis. Character-level classification was
achieved with a deep learning neural network with five hidden layers. The
input layer consisted of histograms of oriented gradients coefficients and
three geometry features, while the output layer was a softmax over 99
character classes plus a noise class. Just as this character classification system
extracts features using a histogram with bins, the system in this work uses
letter frequency encoding at the word level as a feature of the error message
text. In our own testing of Bissacco et al. (2013) using 23 onscreen error
messages, only 15 were correctly translated to text. This provides further
motivation for the development of a specialized tool for error message
detection.

Fuzzy string generation process

Consider the block diagram in Figure 1 for recording OCR inputs and
outputs. An image generator (B) generates many images of various font
settings (C) for one specific keyword (A). The system then submits the
images for OCR processing (D), optionally performs corrective operations
on the OCR output (E), and then compares the accuracy of the output with
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the original text input (F). OCR at (D) uses the tesseract-OCR engine Smith
(2007) to convert the image back into a string of text (E). OCR is treated as a
black box (D), and the behavior of this black box is characterized through the
recording of its input (A) and output (E). The image generation subroutine
depicted in Figure 1 (B) takes in a keyword (e.g. AbstractMethodError) and
outputs a 1024 × 786 grayscale Portable Network Graphics (PNG) image
containing that keyword with a white background and black text. The system
selects a random vertical and random horizontal position on the screen to
display the word, ensuring that the word is not cut off. The word style is
selected randomly as either bold, italic, or plain. The font size is selected
randomly between 10 and 40 pt, and the font is selected randomly from a set
of 18 common fonts.

Testing and training datasets

A Java Error List (JEL) was created to model onscreen error messages. JEL
contained a set of 248 keywords such as “indexoutofboundsexception” cast to
lowercase. Testing and training datasets were created using JEL according to
the procedure described in ‘the Fuzzy String Generation Process’, above. For
the TESTING dataset, 10 images were generated for each keyword in JEL,
while for the TRAINING dataset 100 images per JEL keyword were created.
TESTING contained a total of 2480 images and corresponding keywords,
while TRAINING contained a total of 24,800 images and corresponding
keywords. Each dataset contained the original text that each picture was
based upon, as well as the text produced by the OCR process. TRAINING
contained 5269 distinct OCR results associated to the 248 distinct keywords
in JEL. There were therefore, on average, 21.2 variants of each keyword
produced by the OCR output. Some common substrings in JEL include
“illegal” (10 keywords), “error” (23 keywords), and “exception”
(189 keywords). Note that 14 data points (0.56%) in TESTING had blank
OCR text as a result of the OCR software detecting no text in the image. The
theoretical maximum possible classification accuracy was therefore 99.44%.
When the deep learning system described in ‘Combining Deep Learning and

Figure 1. System for recording and correcting OCR mistakes.
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Memoization’ below was both trained and tested using the TESTING dataset,
the classification accuracy was in fact 99.35%.

A baseline measurement for the detection accuracy of keywords is to
measure exact matches between OCR input and output text, and to calculate
the resulting accuracy. The default OCR configuration had 61% accuracy
processing the TESTING dataset. The tesseract-OCR software configuration
can be tuned in various ways to improve OCR accuracy on non-dictionary
text (Morris et al. 2016). Disabling the dictionaries did not improve the OCR
accuracy (60%). Disabling OCR dictionaries was not an effective strategy for
improving OCR accuracy when processing error message text from
TESTING. These results leave significant room for other approaches to
provide improvements in accuracy.

Spell-check approach

An initial OCR output correction system was developed for this work based
upon the ideas in Bassil and Alwani (2012) to correct OCR output text using
the Google search engine’s built-in spell-check correction. The OCR output
text was submitted to the search engine, and if the “Showing results for” field
appeared in the results page, the term that the search engine expected
replaced the OCR output text. This system correctly classified 1721 keywords
out of 2480 in TESTING (69.40% accuracy). A second OCR output correc-
tion system was developed for this work to further evaluate the effectiveness
of correcting spelling mistakes in OCR output text. The spell-check module
(McCallum, 2014–2016) selects the best candidate correction from a variety
of ranked options including known misspellings of words, dictionaries of
words, word lists generated by parsing natural language documents, and
word snippets. The ranking is based on word use frequency in the reference
document, preferring more common terms over less common ones. The
autocorrect dictionary was updated to include the corpus of keywords from
TRAINING into its database. After this upgrade, the system correctly classi-
fied 1993 keywords out of 2480 (80.36% accuracy) when processing
TESTING.

Memoization

A dictionary-based approach called memoization was used to first learn a set
of OCR output correction rules based upon the TRAINING dataset, and then
tested against the TESTING dataset. Using TRAINING, a dictionary D was
trained to store outputs from the OCR process as keys, and text inputs to the
image generation process as values. These key/value pairs map incorrect
OCR outputs back to the correct output word. The benefit of this approach
is that the learning algorithm executes very quickly, whereas the drawback of
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this approach is that it cannot generalize to identify new relationships that
were not observed during the training phase. This approach learns which
spelling mistakes the OCR module is prone to make, and stores them in
relation to the correct spelling for use after the training phase.

The dictionary was trained using the TRAINING dataset, and then
TESTING was processed. For TESTING, the system corrected the output of
the OCR tool in cases where the OCR output matched a key in the dictionary.
When there was a key match, the corresponding dictionary value was sub-
stituted for the OCR output. The resulting accuracy was 88% (296 fails and
2184 passes). This 88% accuracy is an improvement over the 61% baseline.
This result indicates that most OCR output errors are repeatable as a given
keyword is most likely to be misinterpreted in a particular way. Furthermore, it
is clear that more than 1 in 10 results from the OCR module is generated by
rare or unpredictable circumstances that a dictionary-based approach cannot
hope to solve. For example, OCR errors can be generated when a characters is
touching the edge of the image, or is encoded in an unusual font. Another
interesting result was the presence of dictionary key collisions. Even with
TESTING’s small 248-keyword lexicon, there were several cases where two
input keywords resulted in the same OCR results in the training dataset,
causing a key conflict between two keywords. Both keywords expect to use
the same key, but keys cannot be shared between keywords.

Combining deep learning and memoization

The three-layer deep learning neural network used in this work is a branch of
the image processing code (Radford 2014), originally designed to recognize
handwritten characters in the MNSIT dataset (LeCun, Cortes, and Burges
1998). Radford (2014) was modified for this work to accept text rather than
image data, and the width of the output layer was expanded to 5000 neurons,
where each output neuron encodes for a specific keyword. Radford (2014)
included numerically stable softmax for the output layer, gradient scaling,
improved training with dropout, improved training with noise injection, and
more. The DNN input vector representations considered in this section are
Naive ASCII encoding (Ascii), Binary ASCII encoding (BinAscii), Morse
encoding (Morse), Morse with letter frequency encoding (MorseFreq), and
Binary ASCII with letter frequency encoding (BinAsciiFreq). Finally, the
memoization (dictionary) approach was combined with the vector encoding
of BinAsciiFreq (BinAsciiFreqDict). Output vectors specified in TESTING
and TRAINING are one-hot vectors. This gives the network the ability to
map many millions of possible input vectors (representing OCR text) onto
up to 5000 keywords. The input layer contains 784 neurons, and the hidden
layer contains 625 neurons. Training of the network is accomplished over
150 epochs. During each epoch, the system is trained on TRAINING and
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then tested against TESTING. Many experiments in this work were per-
formed at different levels of uniform random sampling from TRAINING:
10%, 20%, or 100%. Using less of the dataset in training helps the model to
complete the training phase faster at the cost of predictive performance after
the training. Using too much training causes the model overfit to the training
data and then under perform when classifying the TESTING dataset.

The one-hot vectors in TRAINING and TESTING are the classes into
which the neural network is trained to classify inputs. The images based
upon these keywords are the inputs to the OCR. Because of the sparse nature
of one-hot vectors, they are stored as integers signifying the integer index
into the one-hot vector. Input vectors in TRAINING are created using the
encoding of the OCR output. Data in the vector representation of a keyword
are left aligned onto the input vector. Various alignment schemes for the
input vectors were attempted with poor results, including random alignment
and random amounts of 0-padding both sides of any keyword less than 784
elements long. The initial approach of left alignment of the data produced the
best accuracy. Data less than 784 characters long are right-padded with 0s
length 784, and data longer than 784 characters are truncated to length 784.
Input vectors can be encoded to increase the number of array elements
encoded by a character (increased number of neurons activated) and to
increase the contrast of the input vectors during training (array elements
contain only the values 0 or 255).

Naive ASCII encoding (Ascii)

This encoding involves assigning each element in an array of length 784 and
height 1 with the ASCII value for a character. The encoding at each element
maps the ASCII number of the corresponding character to the element in the
array at the same index. The naive ASCII encoding scheme was formatted in
a way that the deep learning neural network was not able to learn well (14%
accuracy after training on a 10% sample of TRAINING).

Binary ASCII encoding (BinAscii)

To improve the perceptron processing of the information contained in the
ASCII input to the neural network, the data in each ASCII character were
converted into binary and then into elements. Figure 2 shows an example of
this encoding scheme. For example, the letter “a” has ASCII code 55, which is
“110111” in binary. This binary string is then converted into the following
string: “255, 255, 0, 255, 255, 255.” These element strings were then con-
catenated into a vector representing the original text coming from the OCR
module (Figure 3). The classification accuracy of binary ASCII encoding is
reported in Table 1 and Figure 4 under the labels BinAscii10, BinAscii20, and
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BinAscii100. The binary ASCII encoding scheme was very good at training
the deep learning neural network to classify OCR output text. The maximum
classification accuracy achieved with binary ASCII encoding was 92%.

Morse encoding (morse)

The 784-element Morse input vectors are populated by converting characters
from letters and numbers in the OCR input/output into the dots and dashes
of the International Morse Code (Morse) (ITU 2009). Although Morse
standards require special characters to be mapped to specific patterns, that
component of the standard was not followed for this work. In Morse, a dot is

Figure 2. Conversion from text into input vectors using binary ASCII encoding.

Figure 3. Conversion from text into input vectors using Morse encoding.

Table 1. Classification accuracy for deep learning neural network using various input vector
encoding schemes and classifying the TESTING dataset.
Training effort Classification accuracy Learning graph label in Figure 4

None 61.09% Baseline (not in Figure 4)
Training on 10% sample of TRAINING 88.26% Morse10
Training on 20% sample of TRAINING 90.84% Morse20
Training on 100% of TRAINING 88.91% Morse100
Training on 10% sample of TRAINING 90.28% BinAscii10
Training on 20% sample of TRAINING 92.01% BinAscii20
Training on 100% of TRAINING 89.43% BinAscii100
Training on 10% sample of TRAINING 95.97% Morse2Freq10
Training on 20% sample of TRAINING 95.85% Morse2Freq20
Training on 100% of TRAINING 94.03% Morse2Freq100
Training on 10% sample of TRAINING 96.09% BinAscii2Freq10
Training on 20% sample of TRAINING 95.97% BinAscii2Freq20
Training on 100% of TRAINING 94.03% BinAscii2Freq100
Training on 20% sample of TRAINING 96.29% BinAscii10Freq20
Training on 20% sample of TRAINING 96.97% BinAscii10Freq20Dict
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occupied by one element with value 255 followed by a one element with the
value 0, a dash occupies three elements with value 255 followed by one
element with the value 0, the space between letters occupies three elements
with value 0, and the space character is represented by seven consecutive
elements with value 0. The dot and dash representation of each letter and
number is specified in the Morse system, and this work maps special char-
acters to existing Morse codes to retain the information they contain. For
example, the double quote is treated as a U character, and the comma is
treated as the number 4.

The classification accuracy of Morse encoding is reported in Table 1 and
Figure 4 under the labels Morse10, Morse20, and Morse100. The Morse
encoding scheme was very good at training the deep learning neural network
to classify OCR output text. The maximum classification accuracy achieved
with Morse encoding was 91%.

Morse with letter frequency encoding (MorseFreq)

Morse encoding of input vectors resulted in 91% classification accuracy. The
9% of TESTING that was incorrectly classified was analyzed to uncover the
possible reasons for learning failures. It became clear from looking through
the data that one major problem is frame shifts. Frame shifting in the OCR
output text (e.g., the “M” character interpreted as two consecutive lowercase
“l” characters) throws off the neural network by shifting all subsequent letters
from their usual position. These shifts can occur multiple times in the same
text. Two such shifts confuse the network too much to be resolved correctly.

Figure 4. Classification accuracy (%) for various deep learning input vector encoding schemes at
each training iteration (epoch) during the training phase.
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One solution is to encode letter frequency into the final elements of the input
vector to preserve the information contained in a keyword when characters
are added and the information in the keyword is shifted. This encoding
region gives the network hints about the keyword in a frame shift invariant
way using letter frequency encoding. As shown in Algorithm 1, 52 elements
are used in a 2-bin letter frequency vector. Only the letters “a” through “z”
(26 characters) are represented in the encoding, and each letter is represented
by two elements in the vector. The encoding is simple: for each letter, one
input represents the presence of a character (e.g., “a” in the word “apple” is
present and therefore “255”), while the adjacent input represents the detec-
tion of more than one of a letter being detected. And so, the two elements
encoding the frequency of “a” in “apple” will contain “255,” “0,”, while the
elements for “p” contain “255,” “255,” and the elements for the letter “z” will
contain “0,” “0.”

Algorithm 1: Encoding letter frequency of OCR text output into a vector

Input: Array of 26 letters [a-z]: letter; text output from OCR module:
ocrText;
generator of 0-filled array: zeroes(length); parser of occurrences of
letter in text: count(letter, text); Number of elements used to
represent the frequency of each letter: numBuckets

Output: Array representation of letter frequency frequencyArr
frequencyArr = zeroes(26 * numBuckets)
for i in range(0, 26) do

occurrences = count(letter[i],ocrT ext)
for j in range(0, numBuckets) do

if occurrences > j then
frequencyArr[numBuckets * i + j] = 255

end
end

end

The classification accuracy of Morse with 2-bin frequency encoding is
reported in Table 1 and Figure 4 under the labels Morse2Freq10,
Morse2Freq20, and Morse2Freq100. The maximum classification accuracy
achieved with Morse with 2-bin frequency encoding was 96%.

Binary ASCII with letter frequency encoding (BinAsciiFreq)

Binary ASCII character encoding of BinAscii was combined with letter
frequency encoding of MorseFreq to produce another input vector
encoding scheme.

APPLIED ARTIFICIAL INTELLIGENCE 9



The classification accuracy of binary ASCII with 2-bin frequency
encoding is reported in Table 1 and Figure 4 under the labels
BinAscii2Freq10, BinAscii2Freq20, and BinAscii2Freq100. The maximum
classification accuracy achieved with binary ASCII with 2-bin frequency
encoding was 96%. Results for binary ASCII with 10-bin frequency encod-
ing are reported as BinAscii10Freq20, where the highest classification
accuracy was also 96%.

Binary ASCII with letter frequency encoding and memoization

To further increase the classification accuracy, the dictionary approach was
combined with the input vector encoding from BinAscii10Freq20. The dic-
tionary was programmed to replace the output from the neural network
when it identified an exact match, and otherwise to defer to the result from
the neural network. This approach (BinAscii10Freq20Dict) resulted in 97%
as the highest classification accuracy. More detailed results are presented in
Figure 4 and Table 1.

This approach resulted in accurate identification of 2403 out of 2480 images
in TESTING. The remaining 77 images from TESTING that failed to be
correctly classified were: 13 images where the OCR output was blank, 48
images where key collisions occurred, and the remaining 16 images contained
OCR output that TRAINING did not contain. One example of these rare OCR
output mistakes is the OCR output for an image containing the keyword
“cannotundoexception” where the OCR output was mammogram.

Discussion

A summary of the results for each OCR approach is presented in Figure 5.
The results for the naive ASCII encoding were poor (14%), but clearly some
learning did take place as the classification was better than chance. Without
optimization, the baseline system was able to detect 61% of the onscreen
keywords. Using spelling correction improved the accuracy (80%), picking
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Figure 5. Classification accuracy on TESTING dataset for OCR approaches.
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up gains in cases with single-letter substitutions and/or added spaces. Using
memoization to remember common OCR errors further improved accuracy
(88%). Results for the DNN trained to recognize binary ASCII and Morse
encodings slightly outperformed the previously mentioned methods (91%
and 92%), while including letter frequency in the feature vectors further
improved accuracy (96%). Combining memoization with the most successful
DNN approach brought accuracy up to 97%, close to the maximum possible
accuracy of 99.44%.

The deep learning system appears to have generalized more than the strict
memoization approach. OCR tuning, dictionary-based classification, and spelling
correction provided lower accuracy than the deep learning approach. Deep
learning has a long initial training phase which becomes a problem when
retraining the whole network to remove (unlearn) a keyword. 5000 keywords
in the one-hot output vector are initially available to be added to the network’s
lexicon without incurring a heavy training penalty. However, removing keywords
required the network to be completely retrained. In the approaches without deep
learning, removing keywords is comparatively computationally cheap.

Training on a 20% sample of the Morse data resulted in higher accuracy
than using 100% of the data. The model is likely overfitting to the training
data and then getting stuck on the novel testing data. This is a common
problem with deep learning systems that is mostly solved by dropout, which
was used in this work by Srivastava et al. (2014). A gradual increase in
accuracy from 88% to 97% can be observed in Figure 4 as the input vector
encoding scheme was tuned to maximize accuracy. Comparing ASCII and
Morse input vector encoding schemes, the binary encoding of ASCII char-
acters performed equally or slightly better than Morse encoding, even though
the length of the data in Morse vectors is typically longer than ASCII vectors.
Perhaps, these two encoding schemes express equivalent amounts of pattern
information for the neural network to learn from.

Conclusion and future work

The systems discussed in this work learned to detect and correct mistakes
in OCR output. A combination of deep learning and memoization
achieved 97% classification accuracy. This work is a component in a
virtual agent tasked with identifying onscreen error messages. The plan
for future work is to compare this technique to many others, to apply this
system beyond the domain of computer error messages, and to include
unsupervised learning and context awareness. Sets of keywords such as
gene names, case law identifiers, and other domain-specific identifiers that
are not processed by OCR with high accuracy could be applied to this
system in order to detect their presence onscreen and generate insights for
the computer user.

APPLIED ARTIFICIAL INTELLIGENCE 11
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