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ABSTRACT
Most of the current computer systems authenticate a user’s
identity only at the point of entry to the system (i.e., login).
However, an effective authentication system includes continu-
ous or frequent monitoring of the identity of a user already
logged into a system to ensure the validity of the identity of the
user throughout a session. Such a system is called a “continuous
or active authentication system.” An authentication system
equipped with such a security mechanism protects the system
against certain attacks including session hijacking that can be
performed later by a malicious user. The aim of this research is
to advance the state-of-the-art of the user-active authentication
research using keystroke dynamics. Through this research, we
assess the performance and influence of various keystroke fea-
tures on keystroke dynamics authentication systems. In particu-
lar, we investigate the performance of keystroke features on a
subset of most frequently used English words. The performance
of four features including key duration, flight time latency, dia-
graph time latency, and word total time duration are analyzed.
A series of experiments is performed to measure the perfor-
mance of each feature individually as well as the results from
the combinations of these features. More specifically, four
machine learning techniques are adapted for the purpose of
assessing keystroke authentication schemes. The selected classi-
fication methods are Support Vector Machine (SVM), Linear
Discriminate Classifier (LDC), K-Nearest Neighbors (K-NN), and
Naive Bayesian (NB). Moreover, this research proposes a novel
approach based on sequential change-point methods for early
detection of an imposter in computer authentication without
the needs for any modeling of users in advance, that is, no need
for a-priori information regarding changes. The proposed
approach based on sequential change-point methods provides
the ability to detect the impostor in early stages of attacks. The
study is performed and evaluated based on data collected for 28
users. The experimental results indicate that the word total time
feature offers the best performance result among all four key-
stroke features, followed by diagraph time latency. Furthermore,
the results of the experiments also show that the combination
of features enhances the performance accuracy. In addition, the
nearest neighbor method performs the best among the four
machine learning techniques.
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Introduction

Traditionally, the combination of username and password security scheme
has been the mainly used authentication method to control access to sensitive
and important resource particularly in computer security and related fields.
A legitimate user claims an identity by providing her user name and then
proves the ownership of the claimed identity by providing a password.
However, these traditional protection mechanisms that relay on using pass-
words are less satisfactory and vulnerable to many threats, for example, to be
stolen. As indicated by the 2002 NTA Monitor Password Survey (NTA 2002),
a study conducted on 500 users demonstrates that every user has approxi-
mately 21 passwords of which 81% employ regular regime in protecting
password while 30% write their passwords down or store them in a file.
According to a study published in 2007, the average user has 6.5 passwords,
each of which is shared across 3.9 different sites (Florencio and Herley 2007).
The same study reports that each user has about 25 accounts that require
passwords, and types an average of eight passwords per day. These traditional
authentication mechanisms that relay on using usernames and passwords
only verify user’s identity at the point of entry to the system (i.e., login).
However, an effective authentication system includes continuous or frequent
monitoring of the identity of a user to ensure the valid identity of the user
throughout a session. Such a monitoring system is called a continuous or
active authentication system. An authentication system with such security
scheme protects against certain attacks such as session hijacking that can be
conducted by a malicious user. There are numerous conceivable applications
and scenarios that require employing continuous monitoring approach to
authentication. For instance, consider a student who takes online quizzes/
tests. This is an important application in the light of the fact that the number
of students taking online classes is increasing and teachers are getting more
concerned about true assessment and academic integrity. Threats in this case
include substitution of the legitimate and valid student who is already
authenticated at the start of the exam. For another example, consider an
employee who works for an organization. In this case, threats include an
insider intruder who can takes over an active session on a computer that is
left unattended.

Recently, keystroke analysis has acquired its popularity as one of the main
approaches in behavioral biometrics techniques that can be used for con-
tinuously authenticating user. There are several advantages when applying
keystroke analysis: First, keystroke dynamics are practical, since every user of
a computer types on a keyboard. Second, keystroke analysis is inexpensive
because it does not require any additional components (such as special video
cameras) to sample the corresponding biometric feature. Third and most
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importantly, typing rhythms can be still available even after the authentica-
tion stage has been passed.

A major challenge in keystroke analysis is the identification of the major
factors that influence the performance accuracy of the keystroke authentica-
tion detector. Two of the most influential factors that may impact the
performance accuracy of the keystroke authentication detector include the
classifier employed and the choice of features (Killourhy and Maxion 2010).

Currently, there is insufficient research that addresses the impact of these
factors in continuous authentication analysis. The majority of exciting studies
in keystroke analysis focuses primarily on the impact of these factors in the
static authentication analysis. Understanding the impact of these factors will
contribute to the improvement of continuous authentication keystroke-based
system performance. Furthermore, most of the existing schemes of keystroke
analysis require having predefined typing models either for legitimate users
or impostors. However, it is difficult or even impossible in some situations to
have typing data of the users (legitimate or impostors) in advance.

The intention that forms the basis of this research is to improve contin-
uous keystroke biometrics user authentication systems designed to detect
malicious activity caused by another person (impostor) who intends to take
over the active session of a valid user. The major contribution of this research
is the utilization of most frequently used English words in deciding about
identify of users when typing. Our keystroke authentication scheme captures
necessary features such as latencies and duration times to determine which
timing feature performs better in keystroke dynamics. Another important
contribution of this research includes proposing a novel approach based on
sequential change-point methods for early detection of an imposter in com-
puter authentication. There are two main advantages of using sequential
change-point methods. First, they can be implemented online, and hence,
enable building the continuous user authentication systems without any
needs for any prior user model in advance. More specifically, sequential
change-point tests do not require any a-priori information regarding both
process and change (Alippi et al. 2011). Second, these techniques minimize
the average delay of attack detection while maintaining an acceptable detec-
tion accuracy rate.

The remainder of this paper is organized as follows. Section 2 highlights
the motivation and the contributions of this paper. An overview of keystroke
analysis is given in Section 3. Section 4 presents the research objectives and
the research questions. Section 5 describes our experiment procedure, data
capture, feature extraction, and classification techniques employed. The
experimental results are represented in Section 6. Section 7 introduces a
change point detection approach to keystroke dynamics, its experiments
and their obtained results. Section 8 provides a literature review of keystroke
analyses. Section 9 presents the conclusions and future work.
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Motivation and contribution

When a user types on a keyboard two main events occur: 1) the key down
event, when the user pressing a key, and 2) the key up event, when the user
releases a key. Timestamps of each event are usually recorded to keep track of
the time period of pressing or releasing a key.

A variety of timing features can then be extracted from this timing
information. Two of the most used features are: 1) duration of the key,
which is the time the key is held down, and 2) keystroke latency, which is
the time between two successive keystrokes. It is also possible to capture
other keystroke dynamics information, such as the time it takes to write a
word, two letters (digraph) or three letters (tri-graph).

Features are one of the most important factors that may influence the
effectiveness and error rates of keystroke-dynamic detectors (Killourhy and
Maxion 2010). The process of feature selection plays a critical role in
improving the performance when designing keystroke dynamic detectors.
Ashbourn states that the classification accuracy is substantially influenced by
the feature selection process and to a lesser extent on the authentication
algorithm employed (Ashbourn 2000). Also, a recent survey of keystroke
dynamics perceives that certain features have a tendency to be more helpful
than others (Banerjee and Woodard 2012).

Extant literature on keystroke dynamics demonstrates conflicting results
regarding which feature is the most effective timing feature in terms of
distinguishing between users in keystroke dynamics domain. Experiments
show that hold times are much more important than latency times (Robinson
et al. 1998; Tech, Yue, and Teoh 2012). It is also observed that using tri-graph
time offered better classification results than using digraphs or higher order
n-graphs (Bergadano, Gunetti, and Picardi 2002). Revett et al. also reported
that the digraph and tri-graph times were more effective compared to the
hold time and time of flight (Revett et al. 2007). Accordingly, recent studies
combine more than one of these features (Ara´Ujo et al. 2004; Tech, Yue, and
Teoh 2012). Research has found that use of all three types of features (i.e.,
hold times, digraph times, and flight times) produces better results (Ara´Ujo
et al. 2004). In contrast, it has also been reported that, when hold times and
either digraph times or flight times are included, the particular combination
has a trivial effect (Tech, Yue, and Teoh 2012).

Another observation taken from the literature on keystroke dynamics is
that existing schemes use some features (i.e., hold times, digraph times,
and flight times) from static authentication keyboard-based systems to
represent user typing behavior in continuous authentication keyboard-
based systems. These features can be used in the static authentication
keyboard-based systems for successful user authentication. However,
these features may not guarantee strong statistical significance in
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continuous authentication keyboard-based systems. Hence, better informa-
tive timing features must be added to the extant literature to guarantee
successful distinguishing between users in continuous authentication key-
board-based systems.

From a different point of view, another important conclusion that can be
drawn from the existing literature of keystroke dynamics is that most of the
existing schemes require having predefined typing models either for legit-
imate users or impostors. It is difficult or even impossible in some situations
to have typing data of the users (legitimate or impostors) in advance. For
instance, consider a personal computer that a user carries to a college or to a
cafe. In this case, only the computer owner (legitimate user) is known in
advance. For another instance, consider a computer that has a guest account
in a public library; in this case, none of the system users are known in
advance. Thus, a new automated and flexible technique that has the ability
to authenticate the user without the need for any prior user-typing model is
needed.

This paper assesses the performance and influence of various keystroke
features on keystroke dynamics authentication systems. In particular, we
investigate the performance of keystroke features on a subset of most fre-
quently used English words. The paper analyzes the effectiveness and per-
formance of keystroke dynamics with respect to four features namely: (1) key
duration, (2) flight time latency, (3) diagraph time latency, and (4) word total
time duration. In addition to measuring the performance of each feature
separately, we also capture the effectiveness of the keystroke dynamics on
combination of various subsets of these features. Moreover, this paper intro-
duces a novel approach based on sequential change-point techniques for
early detection of anomaly in an online active authentication system. The
key contributions of this paper are as follows:

● Introduction of new features useful in distinguishing users in continu-
ous authentication systems based on keystroke dynamics. The new
features are based on the utilization of the most frequently used
English vocabularies to ascertain identify of the users typing on a
keyboard.

● Introduction of a new anomaly detection approach based on sequential
change-point methods for early detection of attacks in computer authen-
tication. The developed algorithms are self-learning, which allow the
construction of continuous keystroke authentication systems without
the need for any a-priori regarding the user-typing model in advance.

● Extraction of various types of keystroke features and determination of
the most important features in the keystroke dynamics problem. In
particular, the performance of four features such as i) key duration, ii)
flight time latency, iii) digraph time latency, and iv) word total time
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duration are extracted and analyzed in order to find which one among
these four features performs better in keystroke dynamics.

● Investigation of the possibility of improving the performance of the
keystroke continuous authentication system by building various models
by combining the extracted keystroke features. In particular, this
research compares the independent performances of four keystroke
features, including i) key duration, ii) flight time latency, iii) digraph
time latency, and iv) word total time duration against ten different
combinations of these keystroke features.

● Introduction and comparison of the performance of several machine
learning-based anomaly detection techniques in terms of their ability to
distinguish users in continuous authentication systems. In particular, four
machine learning techniques are adapted for keystroke authentication in
this paper: Support Vector Machine (SVM), Linear Discriminate
Classifier (LDC), K-Nearest Neighbors (K-NN), and Naive Bayesian (NB).

An overview of keystroke dynamics

Keystroke dynamics are defined as “a behavioral biometric characteristic,
which involves analyzing a computer user’s habitual typing pattern when
interacting with a computer keyboard” (Monrose and Rubin 2000). There
are several advantages of using Keystroke Dynamics (Gunetti and Picardi
2005): First, keystroke dynamics are practical and feasible, since every com-
puter user types on a keyboard; second, it is inexpensive due to the fact that it
does not require any additional or special tools or components; thirdly,
typing rhythms can be still available even after the authentication phase has
passed.

A keystroke authentication system consists of two phases: the training or
enrollment phase, which includes capturing typing data, filtering, feature
extraction, and pattern learning to build a model representing legitimate
users; and the verification phase, which includes capturing data typed, filter-
ing, feature extraction, and performing the comparison with the biometric
pattern. The main scheme for the keystroke dynamics system as technically
described by Giot, El-Abed, and Rosenberger (2011) is pictured in Figure 1.
A user types on the keyboard and the timing of typing features is extracted
and compared with the user’s stored typing pattern by the matcher. The
matcher decides whether the current user is a legitimate user.

Static and dynamic authentication systems

Keystroke analysis techniques can be primarily classified into two main
categories: static and dynamic (also known as continuous or active) analysis.
Static analysis means that the analysis is executed at certain points in the
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system (i.e., at log-in time). This type of analysis ordinarily involves short
typing samples such as those which might be seen at log-in time. For
example, user IDs, passwords, names, and/or passes phrases. This method
is often used to add additional layer of security to the system and to address
some limitations inherent in the traditional authentication techniques such as
when the password is stolen by another person.

With such a security scheme enforced during an authentication process (at
log-in time), the verification system attempts to verify two aspects of the user:
first, is the user credential correct? Second, is the manner of typing the
password similar to the user profile? Therefore, if an attacker was able to
steal the user’s credentials, he/she will be denied by the verification system
because he/she will not type in the same manner as the legitimate user.

With a static security scheme, the authentication process is statically
performed only at the point of entry to the system (i.e., log-in). However,
an effective authentication system continuously verifies the identity of a user
by gathering data typed throughout the user’s session to ensure the valid
identity of the user. An authentication system with such a security scheme
can be robust against certain attacks, such as session hijacking performed
later by a malicious user.

In contrast to static analysis, dynamic analysis includes continuous or
frequent monitoring of a user’s keystroke typing behavior. It is first checked
during the log-in session and continues after the initial authentication. In this
case, larger typing samples, that is, training data, are usually necessary in
order to build an individual model. Typing samples can be collected directly,
by requiring individuals to type some predefined long fixed or dynamic text

Figure 1. The basic keystroke dynamics training or enrollment in authentication schemes as
described by (Giot et al. 2011).
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several times, or indirectly, by monitoring their keystroke activities (e.g.,
when they are writing emails and using word processing).

Figure 2 shows the security life cycles of static and continuous keystroke
authentication systems. It is obvious that continuous keystroke authentica-
tion systems provide greater security.

Additionally, static authentication analysis can be utilized only in systems
where there is no need for additional text entry (e.g., to check bank accounts
online). In contrast, there are numerous conceivable applications of the keystroke
biometric for dynamic authentication analysis. One such application is the
verification of the identity of students taking online quizzes/tests. This is an
important application in the light of the fact that the number of students taking
online classes is increasing, leading to growing concerned among education
professionals about true assessment and academic integrity. Another good appli-
cation is the use of dynamic biometrics to prevent insider attacks by installing
key loggers on each employee’s computer to monitor his/her keystroke activities.

Keystroke features

Keystroke latency can be calculated by many different methods. The most
commonly used methods are:

– Press-to-press (PP) latency, which is the time interval between conse-
cutive key presses, also called the digraph time.

– Release-to-press (RP) latency, which is the time interval between releas-
ing the key and pressing the next one, also called the flight time.

– Release-to-release (RR) latency, which is the time interval between
releases of two consecutive keys.

It is also possible to capture other keystroke dynamics information, such as
the time it takes to write a word, two letters (digraph) or three letters (tri-
graph). Figure 3 presents the most popular features that can be extracted
from keystroke timing information. Other features such as difficulty of
typing phrase, pressure of keystroke, and frequency of word errors can also
be used as features in keystroke analysis. However, not all features are

Figure 2. Security cycles of static and continuous keystroke authentication system.
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favorable since some of them require additional tools, as in the case of
keystroke pressure.

Objectives and research questions

In this paper, we focuses on improving continuous user authentication systems
(that are based on keystroke dynamics) designed to detect malicious activity
caused by another person (impostor) whose goals to is take over the active
session of a valid user. Through this paper, we assess the performance and
influence of various keystroke features in keystroke dynamics authentication
systems. In particular, this paper investigates the performance of keystroke
features on various subsets of the 20 most frequently used English alphabet
“letters”, the 20 most frequently appearing pairs of English alphabet “letters”,
and the 20 most frequently appearing English “words”. The rationale behind in
focusing only the first 20 items of each list is two-fold: (1) the feasibility of study
and experimentations to assure that the study and the collection of data are
accomplished within time and resource limits; (2) the significance of the results
with respect to the volume of the data captured and analyzed. The performance
of four features including the key duration, flight time latency, digraph time
latency, and word total time duration are analyzed. Experiments are conducted
to measure the performance of each feature individually and of different subset

Figure 3. Keystroke timing information.
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combinations of these features. Moreover, this paper introduces a new anomaly
detection approach based on sequential change-point methods for early detec-
tion of attacks in computer authentication. The developed algorithms are self-
learning, which allow the construction of continuous keystroke authentication
systems without the need for building any user typing model in advance.

The research will be carried out by 1) studying the impact of the selected
features on the performance of keystroke continuous authentication systems;
2) proposing new timing features that based on utilization of the most
frequently used English words (e.g. “The”, “And”, For””) that can be useful
in distinguishing between users in continuous authentication systems; 3)
comparing the performance of keystroke continuous authentication systems
with the application of different algorithms; 4) investigating the possibility of
improving the accuracy of continuous user authentication systems by com-
bining more than one feature; 5) proposing a new detector that does not
require predefined typing models either from legitimate users or impostors.

The main research questions addressed in this paper are the follows:

(1) Which keystroke timing feature(s) among key duration, flight time
latency, digraph time latency, and word total time duration timing
performs better in keystroke dynamics?

(2) Does any combination of timing features improve the accuracy of an
authentication scheme?

(3) How does word total time duration feature perform in comparison
with key duration, flight time latency, and digraph time latency?

(4) Which authentication algorithm(s) among SVM, LDC, NB, and KNN
performs better in keystroke dynamics?

(5) Can we detect the impostor who takes over from the legitimate user
during the computer session when NO predefined typing models are
available in advance either for legitimate users or impostors?

(6) Is it possible to detect an imposter in the early stages of an attack? If
so, what amount of typing data is needed for a system in order to be
able successfully detect the imposter?

Experimental procedure

This section describes the experimental procedure, data collection, and the
feature selections used in this experimental study.

Data collection

A VB.NET windows form application was developed to capture raw key-
stroke data samples. For each keystroke, the time a key was pressed and the
time a key was released, measured in milliseconds, were recorded. Our
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experiment of keystroke timing dynamic involved 28 participants. The parti-
cipants were graduate students majoring in Computer Science who volun-
teered for the study and thus no official effort was made to obtain an
Institutional Review Board (IRB) approval. The participants had the ability
to use all keys on the keyboard including special keys such as Shift and Caps
Lock keys. More importantly, they were also able to use the Backspace key to
correct their typing errors.

The participants had the choice to either use our laptop computer or
download the application for collecting data on their own computers.
However, since the study was a controlled experiment, the keyboard use
was controlled and the participants were asked to use our own laptop.
The main window of the application was split into two sections. The top
section displayed text that was required to be typed, i.e., fixed text. The
bottom section had a space to allow the participant enter the text.

Even though it is desirable to let participants freely enter whatever they have
in mind, it may cause some problems in performance evaluation since there is
no source test text with which to compare the entered text to. When deciding
about choosing a phrase for evaluation, some concerns should be accounted for:
(1) reproducibility, (2) study heterogeneity, (3) internal validity, and (4) external
validity (Kristensson and Vertanen 2013). It has been noted that when using a
phrase set for typing and evaluation, the goal is to use phrases that are moderate
in length, easy to remember, and representative of the target language
(MacKenzie and Soukoreff 2003). It has reported that asking participants to
memorize phrases increases entry rates at the cost of slightly increased error
rates (Kristensson and Vertanen 2013). The preferred procedure, which is often
used in the majority of research studies, is to randomly retrieve phrases from a
set and present them to participants (MacKenzie and Soukoreff 2003). The texts
used in the experiment were a collection of random English sentences selected
from a randomly selected pool of English passages. Figure 4 shows a screen shot
of the main window of the application used to collect the data from users.

All participants were asked to type the same prepared text (5000
characters) one time. Furthermore, six of the 28 participants were
asked to provide another two samples of the same text. We were thus
able to have two data sets:i) the first data set contained one sample for
each one of the 28 users, and ii) the second data set contained two more
samples for only six users who played the role of the owner of the device,
i.e. the legitimated users, and whose active authentications were of
interest.

Extracted features

The collected raw data from both data sets were used to extract the following
features for our experiment:
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(1) Duration (F1) of the key presses for the 20 most frequently English
alphabet letters (e, a, r, i, o, t, n, s, h, d, l, c, u, m, w, f, g, y, p, b)
(Gaines 1956).

(2) Flight Time Latency (F2) for the 20 most frequently appearing pairs of
English alphabet letters (in, th, ti, on, an, he, at, er, re, nd, ha, en, to,
it, ou, ea, hi, is, or, te) (Gaines 1956).

(3) Digraph Time Latency (F3) for the 20 most frequently appearing pairs
of English alphabet letters (in, th, ti, on, an, he, at, er, re, nd, ha, en,
to, it, ou, ea, hi, is, or, te) (Gaines 1956).

(4) Word Total Duration (F4) for the 20 most frequently appearing
English words (for, and, the, is, it, you, have, of, be, to, that, he,
she, this, they, will, I, all, a, him) (Fry et al. 2006).

Every feature (F1, F2, F3, and F4) consisted of 20 data items. For instance, F1
contained 20 alphabet letters, where each letter represented an item (e.g. “a”).
Figure 3 illustrates an example of four keystroke features extracted for the
word “the” along the features.

Classification schemes

In keystroke dynamics security system, classification of users is accom-
plished based on the similarities and dissimilarities among the observed
data and stored patterns. In this paper, four machine learning classification
techniques are adapted to evaluate the performance of the keystroke iden-
tification and authentication systems. The selected classification methods
are Support Vector Machines (SVM), Linear Discriminate Classifiers

Figure 4. The main window of the application used to collect the data from users.
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(LDC), K-Nearest Neighbors classifiers (K-NN), and Naive Bayesian (NB).
The adapted techniques are accompanied by a good and comprehensive set
of features that enables conducting various forms of classification analysis.

Support vector machine
Support vector machines (SVMs) are an excellent and prevalent technique
for data classification. SVM is a discriminative classifier based on the concept
of separating hyperplanes. In other words, given a set of labeled of training
data, SVM objective is to find an optimal separating hyperplane that sepa-
rates the training data set by a maximal margin.

Given two classes of labeled training data, ðxi; yiÞ i ¼ 1; . . . :; n;ð x 2
Rd; y 2 þ1;�1f gÞ; an SVM outputs an optimal hyperplane that categorizes
new observation of data either to (+1) or (−1). Generally, SVM classification
is a two-phase process. In the first phase, or the training phase, the SVM
classifier builds two models using the training vectors. The algorithm projects
two classes of training data into a higher dimensional space, then finds a
linear separator between the two classes. Thus, all vectors located on one side
of the hyperplane are labeled as 1, and all vectors located on the other side
are labeled as −1. In the second phase, the testing phase, the testing vectors
are mapped into the same high-dimensional space and it is predicted as to
which category they belong to, with respect to the side of the hyperplane they
fall.

In addition to the traditional linear classifications, SVMs can effectively
execute a non-linear classification using what is called the kernel functions.
The two most used kernel functions with SVM are the polynomial kernel and
the radial basis. While the polynomial kernel produces polynomial bound-
aries of degree d in the original space, the radial basis function (RBF)
produces boundaries by putting weighted Gaussians upon key training
instances. An RBF kernel nonlinearly projects training data samples into a
higher dimensional space and can therefore deal with the cases in which the
relation between class labels and attributes is nonlinear. This type of kernel is
distinct upon the linear kernel.

Linear discriminant classifier
Linear discriminant classifier (LDC) is a simple and mathematically strong
classification method that is based upon the concept of searching for a
linear combination of variables, which can best separates two or more
classes. LDC tries to find a linear combination of variables (predictors)
that maximizes the difference between the means of the data while at the
same time minimizes the variation within each group of the data.
Therefore, LDC usually looks for a projection where samples from the
same class are projected close to each other and, at the same time, the
projected means are as separate as possible.
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Assume that we have C classes with the mean vector μi of each class; we
are then interested in finding a scalar by projecting the samples onto a line:

yk Xð Þ ¼ WT
k Xð Þ þ Wk0

where x is a sample vector, Wk is a weight vector that represents coefficients,
and Wk0 is the bias, also called threshold, which determines the decision
surface. In order to find the optimum W, first the within-class scatter matrix
SW is computed by the following equation (Scholkopft and Klaus-Robert
1999):

SW ¼
Xc

i¼21
Si

where

Si ¼
Xn
x2Di

x�mið Þ x�mið ÞT

represents scatter matrix for every class, and mi is the mean class vector.
Similarly, the between-class scatter matrix SB is computed by the following
equation:

SB ¼
Xn
x2c

Ni mi �mð Þ mi �mð ÞT

where m is the overall mean, and mi and ni are the sample mean and sizes of
the respective classes. Finally, linear discriminates can be expressed as:

J Wð Þ ¼ wT � SBW
WTSWW

K-nearest neighbor
The K-nearest neighbor classifier is one of the simplest and most well-
known classifiers in pattern recognition. The main principle behind it is to
calculate the distance from a query point to all of its neighbors in the
training set and select the k data points which are the closest ones.
Specifically, in the training phase, the KNN classifier builds two models
using the training vectors. In the testing phase, the distances between the
query point and all its neighbors are calculated. A majority vote is then
used to classify a new point to the most prevalent class between its
K-nearest neighbors. In other words, KNN classifies new points based on
a similarity measure (e.g., distance functions). In general, the distance can
be any metric measure; however, the Euclidean distance is the most
frequent choice. The Euclidean distance is given by the following equation
(Cunningham and Delany 2007):
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

qi � pið Þ2
s

Naïve bayes
The Naive Bayes classifier technique is a well-known machine learner based
on Bayes’s rule of conditional probability with a “naive” independence
assumption between every pair of variables. Specifically, a Naive Bayes
classifier provides a method of calculating the posterior probability, P(c|x),
from P(c), P(x), and P (x|c) as seen in the following equation:

p cjxð Þ ¼ p xjcð Þ:p cð Þ
p xð Þ

where:

● P(c|x) is the posterior probability of a target class given the predictor
(attribute).

● P(c) is the prior probability of class.
● P(x|c) is the likelihood, which is the probability of predictor given class.
● P(x) is the prior probability of predictor.

R packages
Analyses of machine learning-based classification methods were conducted
using R scripts. In particular, knn and lda functions from MASS R package
(Venables and Ripley 2013) were used to carry out K-Nearest Neighbors (K-
NN), and LDC analyses respectively. On the other hand, SVM and Naïve
Bayes functions from e1071 R package (Dimitriadou et al. 2009) were used to
carry out Support Vector Machine (SVM) and Naive Bayesian (NB) analyses
respectively.

Results

Evaluating authentication performance

The performance of the authentication system was evaluated by assigning
each of the 28 users in the training data set the role of a genuine user. Then,
each of the remaining users played the role of the imposter. The above-
mentioned classifiers were then built, trained,1 and tested to measure their
ability in classifying the genuine user and imposters. On each repetition, we
kept track of the number of false positives and false negatives classified by
each classifier. The false acceptance rate (FAR) and false rejection rate (FRR)
were then computed as follow:
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FAR ¼ nfp
nfp þ ntn

and FRR ¼ nfn
nfn þ ntp

where nfp is the number of false positive cases, nfn is the number of false
negative cases, ntn is the number of true negative cases, and ntp is the number
of true positive cases, classified by the classifier. It is important to note that
the use of FAR and FRR under the context of keystroke dynamics is very
prevalent. It is also possible to employ some other metrics such as the time it
takes to recognize an imposter. However, employing such assessment metrics
and in particular the real time that takes to identify an imposter are prone to
being less accurate. We adhere to use FAR and FRR instead of some other
metrics for consistency with the literature and similar research work con-
ducted by some other researchers.

We ran two experiments in this paper. The aim of the first experiment was
to compare the features individually in order to find out which features were
most effective in distinguishing users. The purpose of the second experiment
was to evaluate and study the influence of various keystroke feature combi-
nations on the performance accuracy of keystroke dynamics authentication
system. Specifically, we compared the performances of four features against
different feature combinations using the proposed classifiers.

For both experiments the first 25 typed timing repetitions of all feature’s
items (20 items of each feature) were selected to create a user profile. We
selected 25 repetitions of each feature’s item for two reasons: First, 25
repetitions in our data set can be treated as the smallest number of repeti-
tions that occurred for all feature’s items. Secondly and more importantly, we
aimed to test the classifiers performance on small samples to determine the
accuracy in these cases. Then, the first 20 repetitions of each feature’s item
(of the 25) for each user were chosen for the training phase, and the
remaining five repetitions of each feature’s item were used for the testing
phase.

Comparing the performance of the classifiers

In order to compare the classification algorithms mentioned in the previous
section, the digraph latency (F3) was used since it is the most utilized feature
by researchers in literature (Banerjee and Woodard 2012). Table 1 reports the
results. By observing Table 1, we notice that KNN and SVM perform the best
among the four utilized classifiers. However, using KNN classifier, we are
able to obtain a better result compared to the other learning classifiers (SVM,
LDC, and NB) for minimizing the authentication error rates of FAR and
FRR. Using KNN classifier, the FAR and FRR values achieved were 5% and
4%, respectively.
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The performance of single feature individually

We compared four different keystroke features F1 (Duration), F2 (Flight
Time Latency), F3 (Diagraph Time Latency), and F4 (Word Total
Duration) based on the four classification methods. Table 2 illustrates the
FAR and FRR values for all features based on (SVM), (LDC), (NB), and (K-
NN), respectively. We observe that by using F4, we are able to obtain a better
result compared to the other keystroke features (F1, F2, and F3). In parti-
cular, the results are ascertaining noticeably better with the use of the KNN
classifier. The FAR and FRR values when F4 was used were 3% and 2%,
followed by F3 with 5% and 4% of FAR and FRR, respectively. The low FAR
and FRR values for F4 and F3 suggest that these two timing features might be
good indicators for distinguishing users.

Multiple features performance

We have already observed that the use of F4 feature produced the best result
among the four keystroke features. It would be beneficial to know whether
combinations of these features would improve the results by reducing the
error rates values of FAR and FRR.

Since KNN and SVM outperformed the other classification methods, we
used only KNN and SVM in the second analysis that aimed to evaluate and
study the influence of various keystroke feature combinations on the perfor-
mance accuracy of the keystroke dynamics. It can be observed from Figures 5
and 6 that the error rates values of FAR and FRR were decreased by
combining more than one feature. In particular, using the KNN classifier,
we were able to achieve 2% of FAR and 1% of FRR when combining the four
features. More notably, while using the KNN classifier, the results showed

Table 1. A comparison of learning methods using digraph
time latency.
Classifier FAR FRR

SVM 0.09 0.05
LDC 0.16 0.16
NB 0.43 0.40
KNN 0.05 0.04

Table 2. The performance comparison of four different keystroke features on SVM,
LDC, NB, and KNN.

SVM LDC NB KNN
Feature FAR, FRR FAR, FRR FAR, FRR FAR, FRR

F1 0.08, 0.04 0.23, 0.04 0.48, 0.46 0.08, 0.08
F2 0.14, 0.10 0.53, 0.29 0.33, 0.31 0.11, 0.10
F3 0.09, 0.05 0.16, 0.16 0.43, 0.40 0.05, 0.04
F4 0.14, 0.08 0.26, 0.23 0.43, 0.35 0.03, 0.02
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that the combination of F4 with any other three features produced a better
result as compared to other combinations without F4. Furthermore, the
worst results were obtained from combining F2 and F3 for both classifiers.
It is possible that because the latency times are less stable than duration
times, combining of the two latency times in combination might prove
insufficient for distinguishing users.

Keystroke dynamics vs. intrusion detection

A continuous authentication system can be considered as a kind of intrusion-
detection application that monitors a series of activities with the aim of
detecting any malicious activities or abrupt changes in the system behavior.

Existing intrusion detection systems fall into two categories: i) Signature-
Detection Systems, and ii) Anomaly-Detection Systems. In Signature-
Detection systems, the system attempts to detect any attacks by comparing
the observed patterns (patterns under the test) with known large databases of

Figure 5. Performance comparison of four keystroke features used independently against the ten
different combinations performed on SVM.

Figure 6. Performance comparison of four keystroke features used independently against the ten
different combinations performed on KNN.
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attack signatures. Therefore, such a system only looks for specific kinds of
attacks that have already been identified and listed in the database. In
anomaly detection, the system defines a normal baseline of a series of
activities and then tries to compare the parameters of the newly observed
activities with the learned normal activities. The attack is announced once a
certain deviation from the normal activities is observed (Chandola, Banerjee,
and Kumar 2009).

The problem of detecting an attack through which an imposter takes over
an active session of a valid user, where it is impossible to gain prior knowl-
edge of impostor activities, can be formulated and solved using the anomaly-
detection approach. In particular, the approach adopted in this paper is based
on change-point detection theory that offers the ability to detect a change in
the model distribution in the early stages of an attack by specifying a
particular point where the regular behavior starts to deviate. The idea behind
this approach is based on the observation that taking over an active session of
a valid user by another person (impostor) would lead to relatively abrupt
changes in the statistical parameters. These changes occur at unknown points
in time and should be detected as soon as possible.

Change-point detection

The driving idea behind change-point detection technique is that the struc-
ture of time-series data can be formulated or described by a stochastic model,
and that modification or transformation of the data leads to abrupt changes
of the data structure. Modifications in data can occur due to a number of
causes such as a change in means, variances or correlation functions.
Generally, such changes in distributions occur at unknown points in time,
and then the objective of change-point detection is to detect these changes as
soon as possible.

Traditionally, in typical change-point problems, one assumes that the
sequence of time-series data that contain n observations X1 . . . . . . ; Xn is
independent and identically distributed (iid) corresponding to some distri-
bution f0. If the change occurs at some point of time T, then the observations
are independent and identically distributed, but to some another distribution
f1, where f0�f1, and can be written as (Hawkins, Qiu, and Kang 2003):

Xi, F0 if i<T
F1 if i � T

�

Figure 7 illustrates the general procedure of change-point detection.
Generally, change-point detection algorithms identify where there is a change
in the data sequence.

The change-point detection approach is typically characterized by three
major metrics to measure its performance, namely: i) false alarm rate, which
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occurs when the alarm is flagged before the change occurred (Type I error);
ii) misdetection rate, which occurs when a system cannot detect a change
(Type II error); and iii) detection delay, which refers to the time period from
the start of the change until the alarm is flagged correctly (Hawkins, Qiu, and
Kang 2003). Detection delay can also be measured by the amount of data a
system needed until signaling a change.

Generally, there are two main methods to detect changing events: batch
detection and sequential detection (Basseville and Nikiforov 1993). In the
former setting, there is a fixed length of sequence of time-series observations,
and it is necessary to determine whether or not the observations are statis-
tically homogeneous, and in the case of a sequence that is not homogeneous,
to determine a particular point in time when the change occurred. This type
of change-point detection is also called retrospective because it makes the
decision as to whether the change occurred or not based on all observations.
In the latter setting, the sequence of time-series of observations does not have
a fixed length. The observations are arrived in and tested sequentially over
time. Whenever a new observation is added, the test is made to determine if
the change happened by using only the observations arrived in thus far. If the
test decides no change has occurred, then the next observation is added to
the observations set and tested.

Traditionally, the methods used for these problems are completely differ-
ent. For batch-detection problems, the most generally used methods are
likelihood ratio testing and Bayesian inference (Stephens 1994). On the
other hand, control charts methods such as the Cumulative Sum (CUSUM)
(Page 1954), Exponential Weighted Moving Averages (EWMA) (Roberts
1959), or sequential Bayesian methods (Fearnhead and Liu 2007) are used
to detect changes in sequential change-point problems.

Sequential change-detection problems vary based on the assumption used
about pre and post-change distributions. The traditional control charts
methodologies, such as Cumulative Sum (CUSUM), and Exponential

Figure 7. An illustration of a change-point detection system.
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Weighted Moving Averages (EWMA), usually assume that data follows some
parametric distribution, mostly normal distribution, and require a complete
knowledge regarding the pre and post-change distribution parameters (mean,
variance or both). However, in many feasible cases, these parameters are
unknown, and in many situations the information about data distribution
may not even be available.

Recently, advanced works in the field of change-point model framework
have been developed to detect changes in cases where the available informa-
tion about pre and post-change distributions is very restricted. The devel-
oped methodologies employ several statistical tests from parametric and
nonparametric techniques to enable the detection of changes in diversity of
sequences (Hawkins and Deng 2010; Hawkins, Qiu, and Kang 2003; Hawkins
and Zamba 2005; Ross and Adams 2011).

The initial work was introduced by Hawkins, Qiu, and Kang (2003) and
concentrated on detecting changes in mean shift or variance of normal
random distribution variables. Hawkins et al. assumed that no prior infor-
mation is available regarding distributions parameters. Hawkins et al. devel-
oped an approach based on the logic of two-sample hypothesis testing, where
the null hypothesis assumes that all observations in the sequence come from
the same distribution and no change point occurs, against the alternative
hypothesis, which assumes that there is a change point in the sequence of
observations that split them into two sections. This work has been expanded
by other researchers to detect more complicated changes, including those
assuming that the ongoing data observations distribution is unknown
(Hawkins and Deng 2010; Ross and Adams 2011; Zou and Tsung 2010).

The change-point model techniques developed in (Hawkins, Qiu, and
Kang 2003) can be used in both batch detection and sequential detection
settings. In the next two subsections, we will explain in further detail how
these techniques work. First, we provide an overview of the batch-detection
scenario, and then we explain the sequential extension.

Batch change-point detection
In the batch change-point setting, there is a fixed length of sequence of time-
series observations where it is necessary to decide if the observations involve
any change point or not. If any change exists, the sequence observations are
independent and identically distributed corresponding to some distribution
f0. If the change occurs at some point of time T, then the sequence of
observations will have another distribution f1, where f0�f1. In this case,
the change point will be determined instantly after some specific observation
k (Hawkins, Qiu, and Kang 2003).

In particular, this approach to the batch-change detection problem follows
the form (Hawkins, Qiu, and Kang 2003):
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H0 : "iXi,F0; i ¼ 1; . . . ::; n

H1 : Xi,
F0ifi< k; i ¼ 1; . . . . . . . . . . . . . . . :; k
F1ifi � k: i ¼ kþ 1; kþ 2; . . . :; n

�

where k represents an observation that a change point occurs at an unknown
point of time.

This is a classical problem that can be solved by using a two-sample
hypothesis test, where the option of statistical test relies on what is assumed
to be known about the observations’ distribution. For instance, if the data
observations are assumed to follow a normal distributional, then a Student-t
test would be suitable to detect changes in mean, and an F test to detect a
change in scale. For some other cases when no assumption is made about the
data observations distributional, then a nonparametric test such as Man-
Whitney test can be used to detect changes in location shifts, and the Mood
test to detect changes in scale shifts.

Once the two-sample statistical test is chosen, the computed statistical
value can then be compared to some appropriate threshold, if the computed
value is greater than the threshold, then the null hypothesis that assumes the
two-samples come from the same distribution is rejected, and we say that the
change has occurred. The choice of threshold is based on the security level of
the considered application. Small threshold value will result in quicker
change detection at the cost of obtaining higher false alarms (Ross et al.
2011).

Since k, an abrupt change-point in statistical model, is not known in
advance, a two-sample statistical test Dk;n is estimated for every 1< k< n,
and the maximum value is used. In particular, every potential way of dividing
a sequence of observations into two non-overlapping sets is considered, and a
two-sample statistical test is applied at the splitting point to test for a change.
The statistical test is then:

Dn ¼ max
Dk;n: � μDk;n

σDk;n
1< k< n:

where μDk;n is statistical means values, σDk;n is statistical standard deviations.
Dk;n then has standardized mean of 0 and variance of 1. If Dn > hn, the null
hypothesis that assumes no change has occurred is rejected, where hn is some
suitable selected threshold that limits the Type 1 error rate and is constrained
by the given value α. At last, the maximum likelihood estimator is used to
estimate the best location of the change point that immediately follows the
kth observation that maximized Dn, i.e.: (Hawkins, Qiu, and Kang 2003).

T̂ ¼ argmaxDk;n
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Sequential change-point detection
The traditional two-sample hypothesis testing approach used in the batch- detec-
tion scenario can be extended to sequential change-detection scenario where new
observations are arrived in and tested sequentially over time (Ross 2015).

The main driving idea behind this approach is that whenever a new
observation is arrived in, it will be added to the observations sequence and
the sequence treated as being a fixed length sample, then the change-point
statistic Dmax;n is computed using the above batch methodology (Ross
2015).

To be specific, suppose that Xt indicates the number of observations that
has been arrived in so far, where t 2 1; 2 . . .ð Þ and is increasing over time.
Whenever a new observation Xt is arrived, it will be added to the sequence
and treated X1; . . . ;Xascertaining

� �
as being a fixed size sample, and

computed Dt using the methodology from the previous section. If Dt > ht;
for some appropriate selected threshold, the change is detected. If no change
was detected, the subsequent observation Xt þ 1 is added to the sequence,
and then Dt þ 1 is computed and compared to ht þ 1, and so on.

While it is possible to determine the sequence of hn that limits the Type 1
error rate value with a fixed length sample, such a sequence is not appro-
priate for sequential change detection. In this setting, Type 1 error rate is
linked with Average Run Length (ARL), that is, a number of observations are
checked before the first signal of change is indicated, which is equal to 1=α .
Thus, ht is selected so that the probability of Type 1 error is fixed over time,
and under the null hypothesis that assumes no change-point occurs
(Hawkins, Qiu, and Kang 2003):

PðD1 > h1Þ ¼ α

P Dt > htjDt�1 � ht�1; . . . :;D1 � h1ð Þ ¼ α; t > 1;

However, the conditional distribution in the previous equation is computa-
tionally intolerable, and some other methods such as Monte Carlo simulation
method is used to compute the sequence of the values that correspond to the
selected.

The choice of Average Run Length (ARL) impacts the detection delay and
false alarm rate. Low value of ARL will result in quicker change detection at
the cost of obtaining higher false alarms (Ross et al. 2011). Therefore,
selecting an appropriate value of ARL is based on the security level of the
considered application.

While the major work of this approach concentrated on detecting changes
in the shifts in means or variances of normal random distribution variables,
some other researchers have expanded it to detect more complicated changes
including nonparametric change detection of non-normal distribution, when
no prior information is available regarding even the sequence distribution.
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(Hawkins, Qiu, and Kang 2003) used Man Whitney and (Ross et al. 2011)
used Mood statistic tests to detect changes in location and scale parameters
respectively, when no assumptions about the sequence distribution are made.
(Ross and Adams 2011) used Lepage and Cramer-von-Mises statistics tests
that designed to test the equality of the location and scale parameters changes
where no assumptions about the sequence distribution are made.

CPM R package
In this paper, we use the cpm (Ross 2015) package to detect changes in
sequences of time-series keystroke dynamic observations. In particular, we
use detectChangePoint function from the CPM package to detect changes in
a stream of observations that were arrived in and tested sequentially over time.

Analyses

Several analyses are conducted to determine the effectiveness of the sequen-
tial change-detection methods in continuous keystroke-based systems with
the aim of detecting impostors automatically. The analyses results report how
quickly the impostor is detected. This section represents data set used,
experiment setup, and the results obtained by the analyses.

Data set
In the previous sections, the experiments focused on evaluating and studying the
influence of various keystroke features on the performance accuracy of the
keystroke dynamics system. Therefore, typed timing repetitions of all feature
items were used to build user profiles in order to find which features perform the
best among the four features (key duration, flight time latency, digraph time
latency, and word total time duration). This section focuses only on the extracted
feature item of key press duration (F1) for the most 11 frequently appearing
English alphabet letters (e, a, r, i, o, t, n, s, h, d, l) (Gaines 1956). Sequences of
time-series data for each user of 28 users are created based on those 11 letters,
which are supposed to represent about 77% of any written text (Gaines 1956).

Analyses methods
To evaluate the effectiveness of the proposed sequential change-detection
method on continuous user authentication system that is keystroke-based, we
used four performance matrices:

● False Acceptance Rate (FAR): it refers to the percentage of times a test
does not signal a change-point in the sequence when it is there, also
known as misdetection rate.
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● False Rejection Rate (FRR): it refers to the percentage of times a test
signals a change point in the sequence when it is not there, also known
as false alarm rate.

● Equal Error Rate (EER): it can be defined as the point where FAR
value is equal to FRR value, which can be estimated from Receiver
Operating Characteristics (ROC) which plot FAR values against FRR
values under different threshold values. Different thresholds are
linked with choosing different values of Average Run Length that is
equal 1=α .

● Average Detection Delay (ADD): it refers to the average amount of data
a test needed to signal a change point in the sequence when it is there.

Authentication system performance was evaluated by assigning each of the
28 users in the data set the role of a genuine user. Then, each of the
remaining users played the role of an imposter. In each repetition, the first
50 typed timing repetitions of the underlying letter, for both genuine user
and impostor, were selected to create the sequence of observations data.
Thus, a sequence of observations consisted of 100 timing repetitions: the
first 50 timing repetitions represented a genuine user, and the last 50 timing
repetitions represented an imposter.

The detectChangePoint function from CPM package is used to detect a
single point of change in the sequence of observations, and to estimate the
best location of the observation at which the change was detected; in our
case, occurring after 50 observations. The detectChangePoint function pro-
cesses the entire sequence. If the change was detected, then the observation at
which the change was detected is specified. If no change was detected, then
the function returns 0. More specifically, the authentication system perfor-
mance was evaluated as follows:

● If the test signals a change point before 50 observations, then we say
that an authorized and legitimate user was declined from using the
system.

● If the test does not signal a change point in the sequence, then we say
that the test was not able to detect a change, and an imposter was
accepted by the system falsely.

● If the test signals a change point after 50 observations, we record the
location where it is detected and we calculate the detection delay in
terms of the amount of data needed by the system to signal a change
point in the sequence.

Figure 8 illustrates the change-point detection approach used in this
paper. The first 50 typed timing repetitions belong to the genuine user,
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and the last 50 belong to the impostor. In this case, the attack begins at
observation 51.

This procedure was repeated for all 28 users, and thus there were 756
unique sequences of data for each letter of the 11 letters that needed to be
tested to detect the change.

For an ideal case, both error rates (FAR, FRR) should be equal to 0%.
However, there is a trade-off between these two metrics; that is increasing
one might not be possible without decreasing the other. Thus, an appropriate
threshold is a very important issue in biometric authentication systems that
may depend heavily on the security level of the application. For instance, in
the domains where a high security application is required, FAR needs to be as
low as possible to detect as many impostors.

Therefore, to compare the performance of our detection system using
different thresholds, various values of ARL were used. In particular, we
tested the performance of our detection system for choices of ARL values
ranging from 100 to 1000 with increments of 100 for each round. In each
round, we calculated False Acceptance Rate (FAR), False Rejection Rate
(FRR), and Average Detection Delay (ADD) measured in the amount of
data a test needed to detect a change point. Calculation of False
Acceptance Rate (FAR) and False Rejection Rate (FRR) using different
thresholds would allow us to estimate Equal Error Rate (EER) values to
compare a letter’s performance. For instance, Figure 9 shows the perfor-
mance of the detection system using different values of ARL for letter E.
The point where FAR value crosses FRR value is used to estimate Equal
Error Rate (EER) and Average Detection Delay (ADD) from Table 3 that
reports the corresponding values of ARL, FAR, FRR and ADD. In this
case, as shown in Figure 8, the estimated value of ERR is equal to 16%.
Looking at Table 3, we can see that this value falls within 13% of FAR and
21% of FRR, respectively. Therefore, we can see that the best FAR, FRR

Figure 8. An illustration of sequential change-point detection. The detection delay is measured
in the amount of data a test needed to signal a change point in the sequence.
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and ADD can be obtained when ARL = 200, and in this case, the
estimated ERR is equal to 16%.

In this setting, we ran several different experiments using different statis-
tical test techniques, both parametric and nonparametric, to detect different
kinds of changes; in particular, Mann-Whitney and Mood statistic tests to
detect changes in location and scale parameters, respectively, and Lepage,
and Cramer-von-Mises statistics to detect more general changes.

Analyses results
This section reports the results obtained by the conducted experiments. We
ran three experiments. The purpose of the first experiment was to determine
which letter performs better among all 11 letters. The aim of the second
experiment was to investigate how the number of observations that were
available from the pre-change distribution would impact the performance.
The aim of the third experiment was to compare different statistical tests
techniques performance.

Figure 9. Performance of detection system using different ARL of letter “E”.

Table 3. Performance of detection system using different ARL of letter “E”.
ARL FAR FRR ADD

100 0.04 0.53 12.2
200 0.13 0.21 13.09
300 0.22 0.07 15.28
400 0.24 0.07 16.07
500 0.27 0.07 16.26
600 0.28 0.03 16.75
700 0.3 0.03 17.04
800 0.31 0.03 17.26
900 0.32 0.03 17.33
1000 0.33 0.03 17.27
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(1) Letter performance

This section reports the accuracy measures of each letter to determine which
letter performs better among all 11 letters. Table 4 illustrates the performance
values for performance of the 11 most frequent letter performances using
sequential change-point detection along with Lepage statistical tests. For each
letter, the table shows the estimated EER and its FAR and FRR interval that
ERR falls within, and its estimated Average Detection Delay (ADD) mea-
sured by the average number of letters a test needed to signal a change point
in the sequence when it was there.

We observe that some letters perform better than the others. For instance,
the estimated EER of letter “D” was 12% while the estimated EER of letter
“N” was 22%. The low estimated EER of letters suggests that these letters
might be good indicators for distinguishing users among the eleven letters.

Moreover, in Table 4 it is observed that letter “D” performs the best
among all eleven letters with 12% estimated EER, and estimated Average
Detection Delay equal to 13 letters. Letter “A” comes in second place with
13% estimated EER, and estimated Average Detection Delay equal to 14
letters.

(2) Pre-Change Number of Observations Impact

In the previous experiment, the authentication system performance was
evaluated by selecting the first 50 typed timing repetitions of the underlying
letter, for both genuine user and impostor, to create the sequence of observa-
tions. In this section, we report the results when increasing the number of
observations from 50 to 100 to investigate how the number of observations
that are available from the pre-change distribution would impact the
performance.

Table 5 illustrates the performance values for the most frequent 11 letters
using sequential change-point detection with Lepage statistical tests while

Table 4. Letter performance using sequential change-point detection when
employing Lepage statistical tests, the change occurs after 50 observations.
Letter Estimated EER Interval [FAR, FRR] Estimated ADD

E 0.16 [0.13, 0.21] 13.09
A 0.13 [0.17, 0.07] 14.09
R 0.15 [0.10, 0.21] 13.54
I 0.15 [0.16, 0.17] 14.89
O 0.18 [0.21, 0.14] 16.21
T 0.15 [0.13, 0.17] 14.56
N 0.22 [0.21, 0.25] 15.91
S 0.15 [0.14, 0.17] 14.09
H 0.15 [0.17, 0.14] 15.35
D 0.12 [0.13, 0.10] 13.54
L 0.25 [0.26, 0.25] 18.23
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increasing the number of observations from 50 to 100. We can observe that
changes that occur after the 100th observation are easier to detect than those
occurring after the 50th. Thus, we can conclude that the changes that
occurred later are easier to detect than those which occurred earlier.

(3) Techniques Comparison

We ran several different experiments using different statistical test techniques
to detect different kinds of changes. In particular, Mann-Whitney, Mood
statistic tests to detect changes in location and scale parameters, respectively,
and Lepage, and Cramer-Mises statistics to test the equality of the location
and scale parameters changes where no assumptions about the sequence
distribution are made.

Table 6 illustrates the performance values using these techniques. The
table shows the results when the changes occur after the 50th and 100th
observations. We can observe that some techniques perform better than
others. In Table 6 it is shown that Lepage statistical tests perform the best
among all five techniques with an average 16% of estimated EER when the
changes occur after the 50th and with an average 12% of estimated EER when
the changes occur after the 100th observations.

Related work

(Gaines et al. 1980) conducted a feasibility study on the use of timing patterns
of keystrokes as an authentication method. The experiment involved six profes-
sional typists who were required to provide three passages consisting of 300 to
400 words, two times each, over a period of four months. A statistical t-test was
applied under the hypothesis that the means of the digraph times were the same
in both settings, and with the assumption that the two variances were equiva-
lent. It was demonstrated that the number of digraph values that exceeded the

Table 5. Letter performance using sequential change-point detection when
employing Lepage statistical tests, the change occurring after 100 observations.
Letter Estimated EER Interval [FAR, FRR] Estimated ADD

E 0.14 [0.10, 0.17] 21.56
A 0.13 [0.12, 0.14] 20.43
R 0.1 [0.12, 0.10] 22.77
I 0.11 [0.11, 0.14] 20.12
O 0.12 [0.11, 0.14] 22.89
T 0.1 [0.11, 0.10] 22.97
N 0.17 [0.18, 0.17] 26.19
S 0.1 [0.11, 0.10] 20.79
H 0.14 [0.13, 0.14] 25.17
D 0.09 [0.10, 0.07] 21.74
L 0.18 [0.19, 0.17] 29.73
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test were typically between 80 to 95%. The most frequent five digraphs that
appeared as distinguishing features were in, io, no, on, ul.

Umphress and Williams (1985) conducted an experiment in which 17
participants were asked to provide two typing samples. The first sample,
which was used for training, included about 1400 characters, and the second,
which was used for testing, included about 300 characters. Digraph latencies
that fall within 0.5 standard deviations of its mean are considered to belong
to a valid user. They achieved 6% of FAR and 12% of FRR.

Leggett and Williams performed experiments on 36 participants who were
asked to type the same text of 537 characters twice in two separate events
over a month (Leggett and Williams 1988). The first sample was used for
training and building an authentication model of the users, and the second
sample was used for testing. The test digraph latency was counted valid if it
fell within a 0.5 standard deviation of the mean reference digraph latency,
and was accepted if the ratio of valid digraph latencies to total latencies was
more than 60%. A False Acceptance Ratio (FAR) of 5.5% and a False
Rejection Ratio (FRR) of 5% were achieved.

Monrose and Rubin performed a study on both static and dynamic key-
stroke analyses (Monrose and Rubin 2000). Overall, 31 users were asked to
type a few sentences from a list of available phrases and/or enter a few free
sentences. Three different methods were used to measure similarities and

Table 6. Letter performance using sequential change-point detection when employing different
statistical test techniques.

Letter Mann Whitney Cramer-Mises Lepage Mood

E 0.21 0.17 0.16 0.24
A 0.20 0.17 0.13 0.19
R 0.20 0.19 0.15 0.2

T = 50 I 0.21 0.20 0.15 0.26
O 0.26 0.25 0.18 0.24
T 0.22 0.18 0.15 0.21
N 0.28 0.25 0.22 0.24
S 0.19 0.17 0.15 0.21
H 0.20 0.18 0.15 0.18
D 0.22 0.18 0.12 0.18
L 0.24 0.24 0.25 0.25

Average 0.22 0.20 0.16 0.21
E 0.18 0.16 0.14 0.18
A 0.20 0.15 0.13 0.19
R 0.18 0.14 0.1 0.15

T = 100 I 0.20 0.18 0.11 0.2
O 0.18 0.17 0.12 0.18
T 0.17 0.12 0.1 0.18
N 0.20 0.25 0.17 0.2
S 0.17 0.15 0.1 0.18
H 0..18 0.17 0.14 0.17
D 0.17 0.15 0.09 0.17
L 0.20 0.20 0.18 0.19

Average 0.19 0.17 0.12 0.18
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differences between typing samples: normalized Euclidean distance, weighted
maximum probability, and non- weighted maximum probability measures.
About 90% of correct classification was achieved when fixed text was used.
However, it was reported that when different texts are used, accuracy col-
lapsed to 23% of correct classification in the best state.

Dowland, Singh, and Furnell (2001) monitored normal activities of four
users for some weeks on computers using Windows NT, which means there
were no constraints on the users. Different statistical techniques were
applied. Only digraphs that occurred less frequently by the users were used
to build the users’ profiles. A new sample compared users’ profiles in two
steps: first, each digraph in the new sample is compared to the mean and
standard deviation of its corresponding digraph in the users’ profiles and
marked accepted if it fell within some defined interval. Second, the new
sample was assigned to the user whose profile provided the largest number
of “accepted” digraphs. A 50% correct classification was achieved.

Bergadano and Guenti used the type error and intrinsic variability of
typing as a feature to differentiate between legitimate users and impostors
(Bergadano et al. 2002). Their experiment involved 154 participants, of
whom 44 users, as legitimate users, were asked to type a fixed text of 683
characters long for five times over a period of one month, while110 users
were asked to provide only one sample to be used as impostor users. The
degree of disorder within tri-graph latencies was used as a measure for
dissimilarity metric and statistical method for classification to compute the
average difference between the units in the array. This approach was able to
achieve 0.0% of FAR and 2.3% of FRR.

Curtin et al. (2006) conducted three identification experiments in which
subjects were asked to type three texts 10 times. The first two texts were
600 characters in length and the third one was 300 characters in length.
The first text was used for training. The nearest neighbor classification
technique employing Euclidean distance was used in these experiments. A
100% identification accuracy was achieved on eight users typing the same
text. However, this accuracy diminished with 30 subjects, typing different
texts, and gradually decreasing the length of the text. It was concluded
that the best performance could be achieved under these conditions:
sufficient training and testing text length, sufficient number of enrollment
samples, and the same keyboard type used for enrollment and testing.

(Gunetti and Picardi 2005) conducted an experiment on 205 participants.
Their work focuses on long free text passages. They used 40 participants to
represent legitimate users who provided 15 samples each, and 165 partici-
pants to represent impostors who provided only one sample each. They
developed a method for comparing the two typing samples based on the
distance between typing times. They reported a FAR below 5% and a FRR
below 0.005%.
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(Hu, Gingrich, and Sentosa 2008) used 19 participants to represent legit-
imate users who provided 5 typing samples each, and 17 participants to
represent impostors who provided 27 samples. Typing environment condi-
tions were not controlled in the experiment. Typing samples were used in
building users’ profiles by creating averaging vectors from all training sam-
ples. K-nearest neighbor technique was employed to cluster the users’ profiles
based on the distance measure. 66.7% of correct classification.

Conclusion

This paper focuses on improving continuous user-authentication systems
(based on keystroke dynamics) designed to detect the malicious activity
caused by another person (impostor) who takes over the active session of a
valid user by 1) studying the impact of the selected features on the perfor-
mance of the keystroke continuous authentication system; 2) proposing new
timing features that can be useful in distinguishing between users in con-
tinuous authentication systems; 3) comparing the performance of the key-
stroke continuous authentication system when applying different algorithms;
4) investigating the possibility of improving the accuracy of continuous user
authentication systems by combining more than one feature; 5) proposing a
new detector that does not require predefined typing models either for
legitimate users or impostors.

The new keystroke timing features based on the utilization of the most
frequently used English words can be useful in distinguishing between users
in continuous authentication systems based on keystroke dynamics. The
results of empirical studies show that word total time duration obtains the
better result among the four features when applying the four classification
methods (SVM, LDC, NB, and KNN). In particular, word total time dura-
tion provides better results with the use of the KNN classifier. This paper
also investigates the possibility of improving the performance of the key-
stroke continuous authentication system by performing various combina-
tions of the extracted keystroke features. In particular, this paper compares
the independent performance of four keystroke features, including) key
duration, ii) flight time latency, iii) digraph time latency, and iv) word
total time duration against ten different combinations of these keystroke
features. The results showed that the combination of features does improve
the accuracy of authentication while using KNN and SVM classification
methods.

Finally, this paper presents a new anomaly detection approach based on
sequential change-point theory in order to detect the impostor who takes
over from the legitimate user during the computer session when no
predefined typing models are available in advance, either for legitimate
users or impostors. The new approach provides the ability to detect the
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impostor in early stages of attacks. The empirical results show that letter
“D” performs the best among all eleven letters with 12% of estimated EER,
and estimated Average Detection Delay equal to 13 letters when Lepage
statistical tests are employed. Additionally, the paper shows that the
changes that occurred later are easier to detect than those, which occurred
earlier.

Future work might involve introducing and comparing the performance
of more anomaly detection techniques such as neural network and random
forest hills in terms of their ability to distinguish between users. We are also
interested in trying to train classifiers using smaller samples sizes and
testing the impact of that on the performance accuracy in order to deter-
mine the minimum amount of typing training data needed for building a
continuous typist authentication model of a user with the possibility of
maintaining good performance accuracy of the system. In addition to
applying sequential change-point analysis on a univariate sequence of
data (letter by letter), we are also interested in applying this approach on
multivariate observations. Moreover, we are also interested on studying the
performance of other features such as flight time latency, digraph time
latency, and word total time duration using sequential change-point
analysis.

Note

1. Please note that the classifiers used in this section still need to be trained the user
models. However, when using sequential change point approach, there will be no need
to train a user model.
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