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Abstract 

 
This study investigates the impact of violation of the assumption of the hierarchical linear model where 

covariate of level – 1 collinear with the correct functional and omitted variable model. This was carried out 

via Monte Carlo simulation. In an attempt to achieve this omitted variable bias was introduced. The study 

considers the multicollinearity effects when the models are in the correct form and when they are not in the 

correct form.  Also, multicollinearity test was carried out on the data set to find out whether there is presence 

of multicollinearity among the data set using Variance Inflation Factor (VIF).  At the end of the study, the 

result shows that, omitted variable has tremendous impact on hierarchical linear model. 

 

 

Keywords: Hierarchical; monte carlo; multicollinearity; omitted variable; linear model. 

 

1 Hierarchical Linear Model 

 
Hierarchical Linear Modelling (HLM) is a statistical technique that is used for analyzing data in a clustered or 

“nested” structure, in which lower-level units of analysis are nested within higher-level units of analysis. Some 

sublevels are nested within another sublevel which is equally nested in the main levels. The wide spread of the 
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application of hierarchical levels data was due to the works of (Smith 1973) [1, 2]. Hierarchical linear modelling 

has been applied in various fields like education, social works, health, in conjunction with approaches such as 

covariance component modelling, multilevels modelling, fixed and random effect modelling, and mixed level 

modelling [2]. 

 

Most researchers in the fields such as psychology, sociology, health and education are frequently confronted 

with data that are hierarchical in nature. In longitudinal research, repeated observations are nested within 

individuals (i.e.units) and these individuals are nested within groups. The pervasiveness of hierarchical data has 

led to the development of many statistical methods which are hierarchical linear modelling (HLM) [3], multi-

level modelling, mixed linear modelling, or growth curve modelling. Various methodologies for hierarchical 

linear modelling have been proposed by Aitkin and Longford [4], DeLeeuw and Kreft [5], Goldstein [6], Mason, 

Wong and Entwisle [7], Raudenbush [8], and Raudenbush and Bryk [9]. All their proposed methods were for 

estimating effects within hierarchical linear modelling. These techniques have helped researchers to model 

hierarchical data at several levels of aggregation thereby addressing issues of aggregation bias, efficient 

estimation of effects, and individual by setting interactions [8]. 

 

The complexity of these hierarchical methods leads to misuse and confusion, which stands as barriers to applied 

researchers. The assumptions underlying the hierarchical linear models are similar to the assumptions 

underlying ordinary least squares regression estimation such as: linear relationships, homoscedasticity and 

normal distribution of the disturbance error. In ordinary least squares regression, it is established that violations 

of these assumptions lead to highly inaccurate parameter estimates or large standard errors particularly when the 

sample size is too small, but it can only be efficient when the sample size is large; that is when the law of large 

number is applied [10]. 

 

1.1 Limitation of the Study 

 
Owing to financial constraints and time, simulated data was used in this study.   

 

2 Methodology 

 
2.1 The Omitted Model (the O-model) (mis-specified) 

 
The omitted variable model, the O-model, derived by omitting one of the level-1 predictors (i.e.X3) of the T- 

model. This model is as follows: 

 

 Level-1: Yij  = β0j + β1jX1ij + β2jX2ij + rij 

 Level-2: β0j = γ₀₀ + γ₀₁W₁j  + γ₀₂W₂j  +u₀j 

  β₁j  = γ₁₀ + γ₁₁W₁j  + γ₁₂W₂j  +u₁j 

  β₂j  = γ₂₀ + γ₂₁W₁j  + γ₂₂W₂j  +u₂j …………………………1 

 

2.2 Data generative process 

 
1. The magnitude of the collinearity amongst the level-1 predictors are (r=0.0, 0.2).   

2. The magnitude of the collinearity between the omitted level-1 predictors and level-2 predictors are (r=-

0.2, -0.6). 

3. The level-1 sample size (nj = average of 3, 5,10) 

4. The level-2 sample size (Nj= 10, 30, 50). 

5. The magnitude of the intraclass correlation (ICC). 

 

The first two conditions above define the intercorrelations among predictors modelled in the T-models. The 

omitted level-1 predictors, X3, was assumed to be highly correlated with X2 (r=0.99), while the predictors was 

assumed to be weakly and uncorrelated with X1 ( r=0.2) respectively. The group means of X3 were also assumed 

to be highly correlated with one of the level-2 predictors, W2 (r=-0.6), but weakly correlated with W1 (r=-0.2). 
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3 Analysis 

 
3.1 Presentation of results obtained using simulated data sets 

 
In Table 1, considering  𝛽0 when N=10, the study reveals that Penalised Quasi-likelihood (PQL) outperformed 

other estimators. Considering𝛽1, SGD (Glm) outperformed other estimators. SGD (moment) outperformed other 

estimators while considering 𝛽2 . Considering 𝛽3,  Penalized Quasi-likelihood (PQL) outperformed other 

estimators. 

 
Table 1. Showing the correct functional form of hierarchical linear model with different estimators (bias 

and MSE) asymptotically for  𝒏 = 𝟑, 𝝆𝟏= 0.0, 𝝆𝟐= -0.2 

 

𝒏 = 𝟑, 𝝆𝟏= 0.0, 𝝆𝟐= -0.2 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 

N trueV  1.0000 0.3000 0.1000 1.0000 

10 PQL  0.1148(0.0165) 0.1226(0.0236) 0.0934(0.0116) 0.9822(0.9711) 

SGD(Glm) 0.5404(0.2920) 0.0698(0.0049) 0.1144(0.0131) 1.0927(1.1940) 

SGD(linear) 0.5404(0.2920) 0.0698(0.0049) 0.1144(0.0131) 1.0927(1.1940) 

SGD (moment) 0.1201(0.1084) 0.1226(0.0151) 0.0063(0.1144) 0.9865(0.9735) 

30 PQL  0.4666(0.2609) 0.1168(0.0292) 0.0074(0.0016) 0.6698(0.4529) 

SGD(Glm) 0.5634(0.3175) 0.2718(0.0739) 0.0113(0.0168) 1.0334(1.0680) 

SGD(linear) 0.5634(0.3175) 0.2718(0.0739) 0.1296(0.0168) 1.0334(1.0680) 

SGD (moment) 0.5136(0.2657) 0.3490(0.1222) 0.1296(0.0169) 1.0017(1.0033) 

50 PQL  0.1525(0.0652) 0.4339(0.2055) 0.0348(0.0026) 1.0614(1.1320) 

SGD(Glm) 0.5909(0.3492) 0.0439(0.0019) 0.0751(0.0056) 1.1782(1.3881) 

SGD(linear) 0.5909(0.3492) 0.0439(0.0019) 0.0751(0.0056) 1.1782(1.3881) 

SGD (moment) 0.4049(0.1654) 0.0760(0.0066) 0.0407(0.0017) 1.1639(1.3551) 
Source: author’s computation 

 

Considering  𝛽0  when N=30, the study reveals that Penalised Quasi-likelihood (PQL) outperformed other 

estimators. Considering 𝛽1 , Penalised Quasi-likelihood (PQL) also outperformed other estimators. Penalised 

Quasi-likelihood (PQL)   outperformed other estimators while considering𝛽2. Considering 𝛽3, Penalized Quasi-

likelihood (PQL) outperformed other estimators. 
 

Considering  𝛽0  when N=50, the study reveals that Penalised Quasi-likelihood (PQL) outperformed other 

estimators. Considering 𝛽1 , SGD (Glm) is the most consistent estimator while SGD (moment) is the most 

efficient estimator while SGD (moment) is the most efficient estimator while considering 𝛽2. Considering 𝛽3, 
Penalized Quasi-likelihood (PQL) outperformed other estimators. 
 

Table 2 showing the correct functional form of hierarchical linear model with different estimators (bias 

and MSE) asymptotically for  𝒏 = 𝟓, 𝝆𝟏= 0.0, 𝝆𝟐= -0.6 
 

𝒏 = 𝟓, 𝝆𝟏= 0.0, 𝝆𝟐= -0.6 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 

N trueV  1.0000 0.3000 0.1000 1.0000 

10  PQL  0.2519(0.1242) 0.1985(0.0410) 0.0276(0.0029) 0.7015(0.4993) 

 SGD(Glm) 0.7135(0.5091) 0.0416(0.0017) 0.0681(0.0046) 0.6902(0.4764) 

SGD(linear) 0.7135(0.5091) 0.0416(0.0017) 0.0681(0.0046) 0.6902(0.4764) 

SGD (moment) 0.3391(0.1163) 0.1698(0.0289) 0.0181(0.0004) 0.5661(0.0032) 

30 PQL  1.1872(1.4815) 0.2444(0.0721) 0.1635(0.0293) 0.6993(0.4945) 

SGD(Glm) 0.1259(0.0159) 0.2147(0.0462) 0.0195(0.0005) 0.7802(0.6086) 

SGD(linear) 0.1259(0.0159) 0.2146(0.0461) 0.0194(0.0004) 0.7802(0.6086) 

SGD (moment) 0.5410(0.2948) 0.3423(0.1174) 0.1482(0.0221) 0.7425(0.5513) 

50 PQL  0.2530(0.1016) 0.5476(0.3177)  0.1337(0.0190) 0.2252(0.0597) 

SGD(Glm) 0.2072(0.0432) 0.1926(0.0370) 0.0042(0.0002) 0.8710(0.7587) 

SGD(linear) 0.2073(0.0433) 0.1927(0.0371) 0.0043(0.0003) 0.8710(0.7587) 

SGD (moment) 0.1074(0.0430) 0.2986(0.0372) 0.0588(0.0004) 0.8440(0.7587) 
Source: author’s computation 
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In Table 2, considering 𝛽0, with N=10, Penalized Quasi-likelihood (PQL) is the most consistent estimator while 

SGD (moment) is the most efficient estimator. Considering𝛽1 , SGD (linear) outperformed other estimators. 

SGD (moment) outperformed other estimators while considering 𝛽2 . Considering 𝛽3,  SGD (moment) also 

outperformed other estimators. Overall, SGD (moment) is the best estimators. 

 

Considering  𝛽0 , with N=30, SGD (Glm) outperformed other estimators. Considering 𝛽1 , SGD (linear) 

outperformed other estimators.  SGD (linear) also outperformed other estimators while considering 𝛽2 . 

Considering 𝛽3, Penalized Quasi-likelihood (PQL) outperformed other estimators. Overall, SGD (linear) is the 

best estimators. 

 

Considering 𝛽0, with N=50, SGD (moment) outperformed other estimators. Considering𝛽1 and 𝛽2, SGD (Glm) 

outperformed other estimators. Considering 𝛽3, PQL outperformed other estimator. Overall, SGD (Glm) is the 

best estimator. 

 

Table 3. Showing the correct functional form of hierarchical linear model with different estimators (bias 

and MSE) asymptotically for  𝒏 = 𝟏𝟎, 𝝆𝟏= 0.2, 𝝆𝟐= -0.2 

 

𝒏 = 𝟏𝟎, 𝝆𝟏= 0.2, 𝝆𝟐= -0.2 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 

N trueV  1.0000 0.3000 0.1000 1.0000 

10  PQL  0.5243(0.3233)  0.1190(0.0286) 0.0694(0.0066) 0.4525(0.2095) 

 SGD(Glm) 0.9265(0.8058) 0.6735(0.4536) 0.1871(0.0350) 0.5648(0.3190) 

SGD(linear) 0.9265(0.8058)  0.6735(0.4536) 0.1871(0.0350) 0.5648(0.3190) 

SGD (moment) 1.2785(1.6372) 0.8814(0.7771) 0.2742(0.0753) 0.5938(0.3526) 

30 PQL  0.2519(0.1242) 0.1985(0.0491) 0.0276(0.0029) 0.7015(0.4993) 

SGD(Glm) 0.7135(0.5091) 0.0416(0.0017) 0.0681(0.0046) 0.6902(0.4764) 

SGD(linear) 0.7135(0.5091) 0.0416(0.0017) 0.0681(0.0046) 0.6902(0.4764) 

SGD (moment) 0.3391(0.1163)  0.1698(0.0289)  0.0181(0.0004) 0.5661(0.3205) 

50 PQL  1.1872(1.4815) 0.2444(0.0721) 0.1635(0.0293) 0.6993(0.4945) 

SGD(Glm) 0.1259(0.0159)  0.2146(0.0461) 0.0194(0.0004) 0.7802(0.6086) 

SGD(linear) 0.1259(0.0159) 0.2146(0.0461) 0.0194(0.0004) 0.7802(0.6086) 

SGD (moment) 0.5410(0.2948) 0.3423(0.1174) 0.1482(0.0221) 0.7425(0.5513) 
Source: author’s computation 

 

In Table 3, when N=10, considering 𝛽0, β₁, β₂, and β₃ Penalized Quasi-likelihood (PQL) outperformed other 

estimators.  

 

Considering 𝛽0, when N=30, Penalized Quasi-likelihood (PQL) has a minimum bias while SGD (moment) has a 

minimum mean square error (MSE). Considering𝛽1, SGD (linear) outperformed other estimators. Considering 

β₂, and β₃, SGD (moment) outperformed other estimators. 

 

Considering  𝛽0 , when N=50, SGD (Glm) outperformed other estimators. Considering 𝛽1 , SGD (linear) 

outperformed other estimators. SGD (linear) also outperformed other estimator while considering 𝛽2 . 

Considering 𝛽3, Penalized Quasi-likelihood (PQL)  outperformed other estimators. 

 

In Table 4, considering  𝛽0 when N=10, the study reveals that SGD (moment) outperformed other estimator. 

Considering𝛽1, PQL outperformed other estimators. PQL and SGD (GLM) outperformed other estimators while 

considering𝛽2.  It was observed that overall, PQL estimator is the best. 

 

Considering  𝛽0  when N=30, the study reveals that SGD (moment) outperformed other estimators. 

Considering 𝛽1 , Penalized Quasi-likelihood (PQL) also outperformed other estimators. Penalized Quasi-

likelihood (PQL) and SGD (GLM) outperformed other estimators while considering 𝛽2. It was observed that 

overall, PQL estimator is the best. 

 

Considering  𝛽0 when N=50, Considering  𝛽0 when N=50, the study reveals that SGD (moment) outperformed 

other estimators. Considering 𝛽1 , Penalized Quasi-likelihood (PQL) also outperformed other estimators. 
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Penalized Quasi-likelihood (PQL) and SGD (GLM) outperformed other estimators while considering 𝛽2. It was 

observed that overall, PQL estimator is the best. 

 

Table 4. Showing the incorrect functional form (omitted variable) of hierarchical linear model with 

different estimators (bias and MSE) asymptotically for  n = 3, ρ₁ = 0.0, ρ₂ =-0.2 
 

  n = 3,  ρ₁  = 0.0, ρ₂  =-0.2  𝜷𝟎 𝜷𝟏 𝜷𝟐 

N  trueV  1.0000  0.3000  0.1000  

10  PQL  0.1733(0.0331) 0.0563(0.0045)  0.0135(0.0012) 

SGD(Glm)  0.1357(0.0184) 0.1652(0.0273) 0.0219(0.0005)  

SGD(linear)  0.1357(0.0184) 0.1652(0.0273) 0.0219(0.0006) 

SGD (moment)  0.1218(0.0148)  0.1794(0.0322) 0.0310(0.0009) 

30     PQL  0.1733(0.0331) 0.0563(0.0045)  0.0135(0.0012) 

SGD(Glm)  0.1357(0.0184) 0.1652(0.0273) 0.0219(0.0005)  

SGD(linear)  0.1357(0.0184) 0.1652(0.0273) 0.0219(0.0006) 

SGD (moment)  0.1218(0.0148)  0.1794(0.0323)  0.0301(0.0009) 

50  PQL  0.1733(0.0331) 0.0563(0.0045)  0.0135(0.0012) 

SGD(Glm)  0.1357(0.0184)  0.1652(0.0273) 0.0219(0.0005)  

SGD(linear)  0.1357(0.0184) 0.1652(0.0273) 0.0219(0.0006) 

SGD (moment)  0.1218(0.0148)  0.1794(0.0273) 0.0301(0.0009) 
Source: author’s computation 

 

Table 5. Showing the incorrect functional form (omitted variable) of hierarchical linear model with 

different estimators (bias and MSE) asymptotically for n = 5, ρ₁ = 0.0, ρ₂ =  -0.6 

 

     n = 5, ρ₁ = 0.0, ρ₂ =  -0.6    𝜷𝟎 𝜷𝟏 𝜷𝟐 

N trueV  1.0000 0.3000 0.1000 

10 PQL  0.4302(0.2101) 1.7320(3.0036)  1.8832(3.5495) 

SGD(Glm) 0.3810(0.1451) 1.1234(1.2621) 0.6010(0.3612)  

SGD(linear) 0.3810(0.1451) 1.1234(1.2621) 0.6010(0.3612)  

SGD (moment) 0.2592(0.0672)  0.9296(0.8641)  0.9883(0.9767) 

30 PQL  0.4302(0.2101) 1.7320(3.0036) 1.8832(3.5495) 

SGD(Glm) 0.3810(0.1451) 1.1234(1.2621) 0.6010(0.3612)  

SGD(linear) 0.3810(0.1451) 1.1234(1.2621) 0.6010(0.3612)  

SGD (moment) 0.2592(0.0672)  0.9296(0.8641)  0.9883(0.9767) 

50 PQL  0.4302(0.2101) 1.7320(3.0036)  1.8832(3.5495) 

SGD(Glm) 0.3810(0.1451) 1.1234(1.2621) 0.6010(0.3612)  

SGD(linear) 0.3810(0.1451) 1.1234(1.2621) 0.6010(0.3612)  

SGD (moment) 0.2592(0.0672)  0.9296(0.8641)  0.9883(0.9767) 
Source: author’s computation 

 

Considering  𝛽0  when N=10, the study reveals that SGD (moment) outperformed other estimators. 

Considering 𝛽1 , SGD (moment) also outperformed other estimators. SGD (GLM) and SGD (linear) 

outperformed other estimators while considering𝛽2. It was observed that overall, SGD (moment) outperformed 

all other estimators. 

 

Considering  𝛽0  when N=30, the study reveals that SGD (moment) outperformed other estimators. 

Considering 𝛽1 , SGD (moment) also outperformed other estimators. SGD (GLM) and SGD (linear) 

outperformed other estimators while considering𝛽2. It was observed that overall, SGD (moment) outperformed 

all other estimators. 

 

Considering  𝛽0  when N=50, the study reveals that SGD (moment) outperformed other estimators. 

Considering 𝛽1 , SGD (moment) also outperformed other estimators. SGD (GLM) and SGD (linear) 
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outperformed other estimators while considering𝛽2. It was observed that overall, SGD (moment) outperformed 

all other estimators. 

 

4 Multicollinearity Tests On Bias  

 
4.1 Using the multiple linear regression 

 

lm(formula = y ~ x1 + x2 + x3, data = vinc_bias1) 

 

              Estimate Std. Error  t value Pr(>|t|)     

(Intercept)  1.172e-01  3.633e-06    32259 1.97e-05 *** 

x1          -1.236e+00  4.636e-07 -2665762 2.39e-07 *** 

x2           2.536e+00  3.984e-06   636556 1.00e-06 *** 

x3                  NA         NA       NA       NA     

 

Residual standard error: 1.611e-07 on 1 degrees of freedom 

Multiple R-squared:      1,     Adjusted R-squared:      1  

F-statistic: 1.652e+14 on 2 and 1 DF,  p-value: 5.502e-08 

 

Comment: The R-square value of 1 is not practically obtainable in real life data. This is an indication of 

multicollinearity 

 

4.2 Overall multicollinearity diagnostics 

 

                         MC Results detection 

Determinant |X'X|:     0.000000e+00         1 

Farrar Chi-Square:     4.222040e+01         1 

Red Indicator:         9.652000e-01         1 

Sum of Lambda Inverse: 1.310614e+15         1 

Theil's Method:        1.000000e+00         1 

Condition Number:      1.583578e+08         1 

 

1 --> COLLINEARITY is detected by the test  

0 --> COLLINEARITY is not detected by the test 

 

Using all the methods considered above, multicollinearity is confirmed present 

 

4.3 Correlation matrix 

 

           x1         x2         x3 

x1  1.0000000  0.9937156 -0.9676217 

x2  0.9937156  1.0000000 -0.9332880 

x3 -0.9676217 -0.9332880  1.0000000 

 

The correlation matrix above shows that there is high correlation among the independent variables 
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4.4 Correlation matrix visualized 

 
Fig. 1 

 
Fig. 2 

 

Comment: As a rule of thumb, any variable having a variance inflation factor (VIF) or Eigen value higher than 

the boundary line is collinear with another variable. It can be visualized from the plots above that the variables 

x1, x2, and x3 have crossed the boundary, we can say that the variables are collinear. 
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5 Multicollinearity Tests on MSE  

 
5.1 Using multiple linear regression 

 
lm(formula = y ~ x1 + x2, data = vinc_mse1) 

              Estimate Std. Error  t value Pr(>|t|)     

(Intercept)  1.520e+01  1.680e-06  9044928 7.04e-08 *** 

x1          -9.732e-02  2.396e-07  -406190 1.57e-06 *** 

x2          -8.886e+00  2.407e-06 -3692190 1.72e-07 *** 

Residual standard error: 3.861e-07 on 1 degrees of freedom 

Multiple R-squared:      1,     Adjusted R-squared:      1  

F-statistic: 1.853e+14 on 2 and 1 DF,  p-value: 5.195e-08 

 

5.2 Correlation matrix 

 
          x1        x2        x3 

x1 1.0000000 0.9771642 0.9999683 

x2 0.9771642 1.0000000 0.9788258 

x3 0.9999683 0.9788258 1.0000000 

 
Fig. 3 

 

5.3 Overall multicollinearity diagnostics 
 

                         MC Results detection 

Determinant |X'X|:     0.000000e+00         1 

Farrar Chi-Square:     4.665360e+01         1 

Red Indicator:         9.854000e-01         1 

Sum of Lambda Inverse: 2.801226e+17         1 

Theil's Method:        1.000000e+00         1 

Condition Number:               NaN        NA 

 

1 --> COLLINEARITY is detected by the test  

0 --> COLLINEARITY is not detected by the test 
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Fig. 4 

 

Comment: Fig. 4, indicates the Variance Inflation Factor (VIF) and Eigen values plot.  It can be visualized from 

the plots above that the variables x1, x2, and x3 have crossed the boundary which indicates the variables are 

collinear.  

 

5.4 Test of autocorrelation and stationarity on True Model Bias and Mse 

 
Fig. 5 indicates the plot of autocorrelation of bias and MSE data. The plot indicates that there is stationarity in 

the data. 

 

 
Fig. 5. Time plot for CMV Bias 
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Fig. 6. ACF for CMV Bias 

 

Fig. 6 indicates the plot of Autocorrelation function (ACF) of the complete model value (CMV) for the bias 

data. The plot indicates that there is stationarity in the data 

 
Fig. 7. PACF for True Model Bias 
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Fig. 7 indicates the plot of Partial Autocorrelation Function (PACF) of the complete model value (CMV) for the 

bias data. The plot indicates that there is stationarity in the data 

 

5.5 Augmented Dickey-Fuller test 

 
data:  Bias_cmv 

Dickey-Fuller = -3.9566, Lag order = 5, p-value = 0.01249 

alternative hypothesis: stationary 

 

Conclusion: The hypothesis of non-stationarity is rejected, therefore, the series is stationary 

 
Fig. 8. Time plot for CMV Bias

 
Fig. 9. ACF for CMV MSE 

 

Figs. 8 and 9 are plot of autocorrelation for complete model values. They both indicates stationarityof the data. 
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Fig. 10. PACF for CMV Mse 

 

5.6 Augmented Dickey-Fuller test 
 

data:  mse_cmv 

Dickey-Fuller = -3.5945, Lag order = 5, p-value = 0.03523 

alternative hypothesis: stationary 

Conclusion: The hypothesis of non-stationarity is rejected, therefore, the series is stationary 

 

6 Conclusion 

 
The study reveals that under multicollinearity, the estimators outperformed   themselves at different points when 

consideration is given to β₀ , β₁  and β₂  at varying n, N, ρ₁  and ρ₂ . More so, as the data point increases the 

estimators are asymptotically consistent and efficient. Simulation shows that the omission of variables yields 

bias in both regression coefficients and variance components. It also suggests that omitted effects at lower levels 

may cause more severe bias than at higher levels. Important factors resulting in bias were found to be the level 

of an omitted variable, its effect size, and sample size.  
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