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Abstract 
 

Background: In modelling claim frequency in actuary science, a major challenge is the number of zero 

claims associated with datasets.  

Aim: This study compares six count regression models on motorcycle insurance data.  

Methodology: The Akaike Information Criteria (AIC) and the Bayesian Information Criterion (BIC) were 

used for selecting best models.  

Results: Result of analysis showed that the Zero-Inflated Poisson (ZIP) with no regressors for the zero 

component gives the best predictive ability for the data with the least BIC while the classical Negative 

Binomial model gives the best result for explanatory purpose with the least AIC. 

 

 

Keywords: Claims frequency; count models; poisson model; negative binomial model; regression. 
 

1 Introduction 
 

A common task in social science, lifetime modelling, economics, and actuaries is the modelling of count 

variables. Because empirical dataset in economics and bio-medical sciences often exhibits over-dispersion with 

excess zeros responses, it is usually counterproductive to assume classical count-observations distributions (like 
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Poisson) for the response variable since these distributions require the dataset to have equi-dispersion property 

[1]. Also, assuming Negative Binomial for the response variable requires the dataset to be over-dispersed i.e. 

higher variance than mean [2].  A number of modifications have however been made to classical Poisson and 

Negative Binomial distributions for modelling count observations when some of these assumptions are violated. 

An approach is the development of mixtures of Poisson distribution with other related distributions: Poisson-

Lindley distributions [3], the Poisson-Exponential-Gamma [4], and Poisson-Exponential [4]. Another approach 

is the assumption of the so-called zero-augmented models that capture zero counts [5,6]. 

 
The zero-augmented models combine a zero point mass and a count component [6]. The technique was first 

used to model number of defects in manufacturing [6]. Since then, this model has been applied in different 

settings including insurance pricing. The variation had been applied to insurance data by [7] who studied the 

classical Poisson and logistic regression and compare the findings with a Zero Inflated Poisson (ZIP) model 

using insurance data from the French motor third party liability. The result shows that the ZIP outperforms the 

classical Poisson regression. Although it was reported that the logistic regression performs better than the ZIP 

model. The zero-inflated models was also used to model: the impact of lifestyle and motivations on car crashes 

[8]; claim frequency of car insurance [9]; number of claims and the number of accidents [10]. 

 
To model dataset with count observations, R [11], provided the Generalized Linear Models (GLMs) due to [12] 

with package pscl [13] that utilizes design and basic functions of R to implement a new function called 

zeroinfl(). The function implements some basic count observation regression models and their respective zero-

augmented extensions. 

 
A major challenge with modelling claims frequency in actuary science is the number of zero claims associated 

with dataset. Having a model that is capable of capturing these zero claims has always been an uphill task. In 

this study, the Zero Inflated Poisson (no regressors for zero component), Zero Inflated Negative Binomial (no 

regressors for zero component), Zero Inflated Poisson (with regressors for zero component), and Zero Inflated 

Negative Binomial (with regressors for zero component) are considered along with the classical Poisson and 

Negative Binomial distributions. 

 

2 Data 

 
A very pertinent concept in general insurance pricing involves classification of risks and identification of risk 

characteristics (like age, duration of policy, gender, type of policy, etc.) of the insured to estimate premium [7]. 

Since most insurance data have confidentiality issue, it is always difficult to obtain more recent data. This 

research uses data from Wasa (a Swedish Insurance Company). The data contains aggregated data on all 

insurance claims and policies from 1994 to 1998 on partial Casco Insurance for Motorcycle. The data was 

obtained from the R-Package: insuranceData, a package that contains dataset often used in claims frequency 

and claims severity models. The data had also been used by [14]. From the 64,548 observations, 6 variables 

were used to form different count models. From the data, the response variable is the number of claims 

(antskad) recorded by the insurance company within the years under review. The variable is a count variable 

that can be assumed to follow any of the count distributions (Poisson, Negative Binomial, and Geometric). The 

number of claims is modelled to be a function of the following risk characteristics: agarald (the owners age, 

between 0 and 99), zon (Geographic zone numbered from 1 to 7, in a standard classification of all Swedish 

parishes), mcklass (Classification by the EV ratio, defined as 
Engine power in kW x 100

Vehicle weight in kg + 75
 rounded to the nearest lower 

integer. The 75 kg represent the average driver weight. The EV ratios are divided into seven classes), fordald 

(vehicle age, between 0 and 99), and duration (the number of policy years). Chart 1 shows the number of zeros 

in the data is highly dominating in comparison with other observations. 

 
Table 1 below shows the frequency and percentages of the number of claims observed (the response variable) in 

the period under review. The table shows that over 98% of observed responses (number of claims observed) are 

0. This obviously presents a case of highly dispersed data set. Hence, assuming a Gaussian distribution for the 

response variable could be misleading. Then data gives variance of 0.011518 and mean of 0.010798, depicting 

an over-dispersed observation. 
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Table 1. Frequency of figures and their respective percentages 

 

Figure Frequency Percentage 

0 63878 98.9620 

1 643 0.9962 

2 27 0.0418 

Total 64548 100.0000 

 

 
 

Chart 1. Bar chart showing frequency of observations 

 

3 Models 

 
Classical count data regression modelling involves using the GLM technique pioneered by [12] and extensively 

studied by [15]. R language gives a flexible framework for implementing the GLM framework with the 

glm()function that comes with the stats package [16]. 

 

Poisson: Poisson distribution is the simplest for modelling count observations. Its density function is defined as: 

𝑓(𝑥; 𝜆) =
𝜆𝑥𝑒−𝜆

𝑥!
, 𝑥 = 0,1,2, … Generally, the distribution is used to describe the mean but usually underestimates 

the variance in the dataset. 

 

Negative Binomial: This is more useful in modelling over-dispersed count observations. The Negative 

Binomial distribution with mean = 𝜆  and shape parameter 𝜃  is defined as: 𝑓(𝑥; 𝜆, 𝜃) =
Γ(𝑥+𝜃)

Γ(𝜃)𝑥!

𝜆𝑥𝜃𝜃

(𝜆+𝜃)𝑥+𝜃 . The 

Geometric distribution is a special case of the Negative Binomial distribution when 𝜃 = 1. If 𝜃 is not specified 

apriori while using the GLM framework in R language, it can be estimated from the data by reusing the GLM 

technique to iterate the coefficients given 𝜃 and vice versa. 

 

Zero Inflated Models: These models give special attention to count data with excess zero (for overview, see 

[17]). The models combine a point mass to 0 with distributions like Poisson and Negative Binomial. For 

example, the Zero-inflated negative binomial regression models count observations with excessive zeros 

(usually for over-dispersed count observations).  
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3.1 Model Selection 
 
Assuming six different models for the response variable (claim frequency) for the data used in this                      

research, table 2 shows various values of the Akaike Information Criteria (AIC, [18]) and Bayesian                     

Information Criteria (BIC, [19]). Selecting criterion to utilize in choosing the best among competing models had 

been discussed [20-23]. AIC and BIC are the two most used information criteria. AIC has been reported to be 

the optimal for prediction as it is asymptotically equivalent to cross-validation while BIC is reported to                          

be the best for explanation as it allows for consistent estimation of the underlying data generating process                  

[24].  

 
The Bayesian Information Criterion (BIC) has been reported to show superiority in large samples in comparison 

to the Akaike Information Criterion [24,25]. The distribution with the lowest criterion is adjudge the best. If p is 

the number of estimated parameters and n is the number of observations and LL is the Loglikelihood, the criteria 

are defined as: 𝐴𝐼𝐶 = 2𝑝 − 2𝐿𝐿; and 𝐵𝐼𝐶 = 𝑝 ln(𝑛) − 2𝐿𝐿 

 
In this research, Table 2 shows that Zero Inflated Poisson (no regressors for zero component) is best if the 

intention is to use the result of the analysis for predictive purpose while the classical Negative Binomial gives 

best explanation to the data. 

 
Table 2. Selection criteria for the competing models 

 
Model Distribution AIC Rank BIC Rank 

1 Poisson 7097.581 6 7152.03 4 

2 Negative Binomial 7073.283 3 7136.81 1 

3 Zero Inflated Poisson (no regressors for zero component) 7078.446 5 7141.97 2 

4 Zero Inflated Negative Binomial (no regressors for zero 

component) 

7075.284 4 7147.89 3 

5 Zero Inflated Poisson (with regressors for zero component) 7056.080 1 7164.98 5 

6 Zero Inflated Negative Binomial (with regressors for zero 

component) 

7058.070 2 7176.05 6 

 

4 Results and Discussion 

 
Table 3 gives parameter estimates for the Negative Binomial model (best for explanation of the observations) 

while tables 4a and 4b provides parameter estimates for the Zero-Inflated Poisson (with regressors for zero 

component). 

 
Table 3. Coefficients for negative binomial 

 

 Estimate Std. Error z-value P-value 

(Intercept) -2.020323 0.187518 -10.774 < 2e-16 *** 

Agarald -0.043562 0.003370  -12.925 < 2e-16 *** 

Zon -0.339811    0.031197 -10.893 < 2e-16 *** 

mcklass 0.155377      0.026917 5.772 7.82e-09 *** 

fordald -0.070375    0.006313 -11.147 < 2e-16 *** 

duration 0.193598      0.013159 14.712 < 2e-16 *** 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
The dispersion parameter for the Negative Binomial is 0.4463 with Null deviance: 5386.5 on 64547 degrees of 

freedom and the Residual deviance: 4748.5 on 64542 degrees of freedom. It is observed that all estimated 

parameters are highly significant. 
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Table 4a. Count model coefficients for ZIP (Poisson with log link) 

 

 Estimate Std. Error z-value Pr(>|z|) 

(Intercept) -0.880163 0.399226 -2.205 0.02748 *   

Agarald -0.042968 0.008264 -5.199 2.00e-07 *** 

Zon -0.386817 0.094949 -4.074 4.62e-05 *** 

Mcklass 0.184411 0.064203 2.872 0.00408 **  

Fordald -0.082219 0.013575 -6.057 1.39e-09 *** 

duration 0.107593 0.021129 5.092 3.54e-07 *** 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Table 4b. Zero-inflation model coefficients (binomial with logit link) 

 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 0.868989 0.601996 1.444 0.149 

agarald 0.006871 0.012825 0.536 0.592 

Zon -0.049650 0.153132 -0.324 0.746 

mcklass 0.045745 0.101286 0.452 0.652 

fordald -0.017934 0.021885 -0.820 0.412 

duration -0.589756 0.130774 -4.510 6.49e-06 *** 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Table 4a contains the Poisson regression coefficients for the covariates while table 4b is the inflation model. All 

predictors are statistically significant in the Poisson model while only duration is significant in the inflation 

model. Neither of the models indicate superiority of one over the other. This can however be determined using 

the Vuong statistic [26]. Table 5 shows the comparison of the classical Poisson model and Zero-inflated Poisson 

Model. With significant probability values, the table shows that the ZIP model explains the reality in the data 

more than the classical Poisson model. 

 

Table 5. Vuong non-nested hypothesis test-statistic 

 

 Vuong z-statistics H_A P-value 

Raw -3.3523793 Model 2 > Model 1 0.0004006 

AIC-corrected -2.6004584 Model 2 > Model 1 0.0046550 

BIC-corrected 0.8114448 Model 1 > Model 2 0.2085551 

 

5 Conclusion 

 
From the competing count regression models considered in this study, it is observed that different models 

compete in explaining observed claim frequency. It can therefore be concluded that exploring different models 

for any count data is essential as different data can be better explained by different models. Concise clarification 

should also be made from the onset about the objective of modelling as it has been shown in this study that a 

model gives better result when the intention is to explain the observations while another gives a better result 

when the objective is prediction. 

 

In this study using data on insurance data on motorcycle, the Zero-Inflated Poisson with no regressors for the 

zero component gives the best predictive ability for the data while the classical Negative Binomial model gives 

the best result for explanatory purpose among the six considered models 
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