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Abstract

Migration is a term that encompasses a permanent or temporary change in residence between
some specific defined geographical or political areas. In recent years, it has not only contributed a
lot to the change in size and composition of the population, but also it leaves a significant impact
on the socio-economic characteristics of the origin and destination population. In the present
paper an attempt has been made to examine the distribution of the number of rural out migrants
from household through composite probability models based on certain assumptions. Poisson
distribution compounded with exponential distribution and its composite and inflated form has
been examined for some real data set of rural out migration. The parameters of the proposed
models have been estimated by method of moments. The distributions are quite satisfactory to
explain the phenomenon of rural out migration. Also the distribution of average number of adult
migrants has been examined for all the data sets.
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1 Introduction

Migration is one of the major determinants affecting the distribution of population. In India most
of the population lives in rural area where social amenities, job opportunities, education facilities
are either absent or insufficient. For getting better above mentioned facilities people moved from
one place to another, thus these are the possible reasons of migration and play a vital role in
determination the flow of adult rural out migration. Therefore rural out migration is a primary
issue that affects population composition of a community. It is a process that includes several factors
like age, sex, marital status, education and some other population event, affecting the movements of
an individual of a household. Adults are more prone to migrate than other persons. Many attempts
have been made to explore the migration process at micro level. Migration believed as an event, is
highly selective with regard to age, with young adults generally being the most mobile group in any
population. The probability models can also be adopted for explanation of any population event
very efficiently. Several studies have been done to explain rural out migration (Singh & Yadava [1],
Singh et al. [2], Sharma [3], Yadava & Yadava [4], Yadava et al. [5, 6], Aryal [7], Singh & Singh
[8]) with the help of different probability models.

First attempt of probabilistic model building in this direction was initiated by Singh & Yadava
1981, explained rural out migration with the help of probability model using negative binomial
distribution. Further, Yadava & Singh [9] introduced an idea of cluster for the number of migrants
from a household and proposed a model assuming that migrants from a household occur in clusters.
Moreover, Singh et al. [10] has applied a mixture of negative binomial and Thomas distribution to
describe the pattern of total number of migrants from a household. He applied the inflated geometric
distribution as well as the inflated generalized Poisson distribution for probability modeling to
describe the trends in rural out-migration at the micro level. Yadava and Yadava [4] proposed a
model with displaced geometric distribution instead of taking Poisson distribution for the occurrence
of number of migrants and truncated a truncated polya-aeppli distribution. An alternative estimation
technique using likelihood function for inflated geometric distribution is proposed by Iwunor [11]
and also obtained the variance and covariance for the estimators. The likelihood function using
multinomial combination is only derived, but finally estimates of the parameters obtained by mean-
zero frequency method by Iwunor [11]. Hossain [12] and Aryal [13] used maximum likelihood method
to estimate the parameters of the model considered and applied it to different data set. Hossain [12]
has also used the geometric model for describing the pattern of migration in Bangladesh. Again,
Aryal [7] has used the same model to examine the pattern of migration in Nepal.

Recently, Singh et al. [14] developed a model for adult out migration for the fixed household size
to know the effect of size of household on the adult migration and used inflated binomial and beta
binomial distribution. Singh et al. [15] introduced inflated Poisson-Lindley distribution for the
pattern of adult migration in the household. Further Singh et al. [8] has applied inflated geometric
and beta-geometric based models for explaining the pattern of rural out migration. Singh et al.
[16, 17], has applied a set of some zero adjusted and size biased distributions for exploring the
pattern of adult out migration. In this article an attempt is made to examine the suitability of the
models applying them to various datasets to explore pattern of rural out migration of some regions
with probability models in aggregate. The probability models are employed to explore the real data
set of adult migration to examine the suitability of model.
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2 Development of Probability Models

For development of model we assume that the number of adult migrants from household is a random
variable and thus follows a discrete distribution. Some time the simple distribution fails to explain
the migration process. Therefore we need some modification in the simple distribution. These
modifications may be a mixture of distribution or compounding of the simple distribution with
another distribution or both. It is worthwhile to mention here that some of the households have
varying number of adult migrants from rural to urban and some household have no adult migrants.
Also number of adult migrants from household varies and random in nature. Keeping this fact into
consideration an attempt has been made with such assumptions we put forward a probability model
for the number of rural adult out migrants from a household:

(i) At any point of time, let α be the proportion of household with no adult migration and the
proportion of household having adult out migration is (1− α).

(ii) Let X be the number of adult migrants from a household and follows Poisson distribution with
parameter λ. Further it is assumed that this parameter is a random variable and varies according
to exponential distribution. The reason of this variation is due to huge disparity in terms of social
standard of the household present in the society which affects the amount of migration.

2.1 Model-I

2.1.1 Poisson Exponential Distribution

Let the number of adult migration follows Poisson distribution with parameter λ, further it is
assumed that expected number of adult migration i.e. λ is a random variable and follows exponential
distribution with parameter µ. Thus

P [X = x|λ] = e−λλx

x!
; λ > 0 (2.1)

g(λ) = µe−µλ; µ > 0 (2.2)

The joint distribution is given by P [X = x|λ]× g(λ) = e−λλx

x!
µe−µλ

Therefore marginal distribution of X is written as

P [X = x] =

∞∫
0

e−λλx

x!
.µe−µλdλ (2.3)

P [X = x] =
µ

x!
.

Γ(x+ 1)

(µ+ 1)(x+1)
=

µ

(µ+ 1)(x+1)
=

(
µ

µ+ 1

)(
1

µ+ 1

)x

(2.4)

This is probability density function for the Poisson Exponential distribution. This distribution is a

geometric distribution with parameter
(

µ
µ+1

)
.

2.2 Model-II

2.2.1 Composite Poisson Exponential Distribution

We assume at any point of time, let α be the proportion of household with adult migration and
the proportion of household having no adult out migration is (1 − α). Moreover, we assume the
number of migrants in the household where migration present follows truncated Poisson exponential
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distribution. Thus the probability distribution for number of adult migrants according to the above
assumption is given below

p(X = x) =

{
1− α x = 0

α
(

µ
µ+1

)(
1

µ+1

)x /(
1− µ

µ+1

)
x = 1, 2, 3....

or

p(X = x) =

{
1− α x = 0

α
(

µ
µ+1

)(
1

µ+1

)x−1

x = 1, 2, 3....
(2.5)

2.3 Model-III

2.3.1 Inflated Poisson Exponential Distribution

When we think about the number of adult migrants from household in a society, some households
have varying number of adult migrants and some household have no adult migrants. At the same
time we can also think that some household have intention of migration but reported no migration.
Thus number of household with no migration becomes inflated. At the same time we can also
think that some household have intention of migration (or temporarily migrated) but reported no
migration. Keeping this fact into consideration under some assumptions an attempt has been made
to develop a probability model for the number of adult out migrants from a household. Therefore,
we assume α be the proportion of household with adult migration and the proportion of household
having no adult out migration is (1 − α). Moreover, we assume the number of migrants in the
household follows Poisson exponential distribution. Thus the probability distribution for number
of adult migrants according to the above assumption is given below

Therefore, an inflated form of this distribution is applied to set up the model as

f(x) =

{
1− α+ α µ

µ+1
; x = 0

α
(

µ
(µ+1)

) (
1

(µ+1)

)x

; x = 1, 2, 3, ....
(2.6)

Here α and θ are two parameters which are estimated by the method of moments and maximum
likelihood method. The excess frequency at zeroth cell can be assumed as two division, first having
no migration at all (with probability (1−α)), second having intension of migration (or temporarily
migrated) but reported no migration (with probability αµ

µ+1
).

3 Estimation of Parameters

3.1 Model-I

3.1.1 Method of Moments

Since the Model-I is a geometric distribution with parameter
(

µ
µ+1

)
. Therefore the E(x) =

(
1
µ

)
.

Thus the parameter µ can be estimated as µ̂ = 1
x̄
.

3.1.2 Maximum Likelihood Estimation

Let x1, x2, ..., xndenote a random sample of size n. Each xi count the number of adult migrant.
The likelihood function of estimating the parameter µ can be expressed as below:

L =
∏
x

[(
µ

µ+ 1

)(
1

µ+ 1

)x]
=

(
µ

µ+ 1

)n (
1

µ+ 1

)s

(3.1)
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where s =
n∑

i=0

xi = nx̄.

Taking log and differentiating (3.1) with respect to p respectively and equating to zero, we have,

∂ logL

∂p
=

n

p
− s

1− p
= 0 ⇒ p

1− p
=

n

nx
(3.2)

where, p = µ
µ+1

after solving the above equation (3.2) we have µ = 1
x
which is the same as moment

estimate.

3.2 Model-II

3.2.1 Method of Moments

Expected value of the above distribution is

E(x) = α


1
µ

1−
(

µ
µ+1

)
 =

α(µ+ 1)

µ
(3.3)

Also we know that p0 = (1− α) the zeroth cell proportion, putting this into the above equation we
get

E(x) = x̄ =
(1− p0)(µ+ 1)

µ
⇒ x̄

1− p0
=

(µ+ 1)

µ
= k (say)

⇒µ̂ =
1

k − 1
(3.4)

3.2.2 Maximum Likelihood Estimation

Let p = µ
µ+1

in the model, then the likelihood function for this composite Poisson exponential
distribution is

L = (1− α)n0
∏
k

[
αpqk−1

]nk

= (1− α)n0 αn−n0pn−n0qs (3.5)

where, s =
m∑

k=1

(k − 1)nk

Taking log and differentiating (3.5) with respect to α and p in respectively and equating to zero,
we have,

∂ logL

∂α
=

n0

1− α
− n− n0

α
= 0 (3.6)

∂ logL

∂p
=

n− n0

p
− s

1− p
= 0 (3.7)

From the above equations we have the estimate of α

n0

1− α
=

n− n0

α
⇒ α

1− α
=

n− n0

n0
(3.8)

1

α
=

n

n− n0
⇒ α̂ = 1− n0

n
= 1− p0 (3.9)

For the estimate of µ (in the form of p)

n− n0

p
=

s

1− p
⇒ 1− p

p
=

s

n− n0
(3.10)

1

p
=

s+ n− n0

n− n0
⇒ p̂ =

n− n0

s+ n− n0
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Now putting p = µ
µ+1

µ

µ+ 1
=

n− n0

s+ n− n0
(3.11)

Since s =
m∑

k=1

(k − 1)nk =
m∑

k=1

knk −
m∑

k=1

nk = nx̄− (n− n0)

Therefore the estimate for µ

µ

µ+ 1
=

n− n0

nx− (n− n0) + n− n0
=

n− n0

nx

⇒ 1 +
1

µ
=

nx

n− n0

⇒ 1

µ
=

nx− n+ n0

n− n0
⇒ µ̂ =

n− n0

nx− n+ n0
(3.12)

The estimated value of parameters is also same as the moment estimates.

3.3 Model-III

3.3.1 Method of Moments

Now we know that

p0 = 1− α+ α

(
µ

µ+ 1

)
and E (x) =

α

µ
(3.13)

Solving these two equations, we can obtain the estimates of α and µ.

α = (µ+ 1) (1− p0) and µ =
1− p0

E (x)− 1 + p0
(3.14)

3.3.2 Maximum Likelihood Estimation

Let x1, x2, ..., xn denote a random sample of size n. Each xi count the number of adult migrant.
Assuming that nk (k = 1, 2, ...,m)denotes the number of observations with value k. The likelihood
function of estimating the parameters α and µ can be expressed as below:

L =

(
1− α+ α

µ

µ+ 1

)n0 ∏
k

[
α

(
µ

µ+ 1

)(
1

µ+ 1

)k
]nk

=

(
1− α+ α

µ

µ+ 1

)n0

αn−n0

(
µ

µ+ 1

)n−n0
(

1

µ+ 1

)s

(3.15)

where, s =
m∑

k=1

k.nk

Taking log and differentiating (3.15) with respect to α and p respectively and equating to zero, we
have,

∂ logL

∂α
=

n0 (p− 1)

(1− α+ αp)
+

n− n0

α
= 0 (3.16)

∂ logL

∂p
=

n− n0

p
− s

1− p
+

n0α

(1− α+ αp)
= 0 (3.17)

where, p = µ
µ+1

after solving the above equations we have

α̂ =
n− n0

n
(
1− µ

µ+1

) =
n− n0

n
(

1
µ+1

) ⇒ α̂ =
(n− n0) (µ+ 1)

n
(3.18)
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Same as moment estimate.

p =
n− n0

nx
or

µ

µ+ 1
=

n− n0

nx
⇒ 1

µ
=

nx

n− n0
− 1 =

nx− n+ n0

n− n0
(3.19)

µ̂ =
n− n0

nx− n+ n0

4 Application of the Model

The parameters estimated for the proposed models with maximum likelihood. Further to check the
suitability, when the model has been applied to various real data sets. In Table 1. the suitability
of proposed model is examined by several sets of data collected under a survey entitled ”Migration
and related characteristics-a case study of North-Eastern Bihar” conducted during October 2009
to June 2010 used by Singh et al. [15]. Again, the suitability of proposed model is examined by
another set of data. Varanasi data was collected under a sample survey ”Rural development and
population growth (RDPG) survey” conducted in 1978 in Varanasi district and used by Sharma [10]
and Iwunor [11]. The Nepal data is taken from a sample survey of the Rupandhi and Palpa districts
in Nepal and used by Aryal [13]. The Western Uttar Pradesh data has been taken from Gupta et al.
[18] given in Table 2. In the Table 4. the data used is Bangladesh data which was collected under
a sample survey ”Impact of Migration on Fertility in Bangladesh: A study of Comilla district”
conducted in 1997 and used by Hossain [12].

5 Discussions and Conclusion

Fig 1. shows the distribution of average number of adult migrants from households for different
data sets. For the data set from Kosi, Bihar 26 percent households having on an average more than
one adult migrant from the household. However both the data sets from Uttar Pradesh are only
about one percent. In Nepal and Bangladesh data sets it is about 7 percent. The area from where
the data have been taken in Bihar is flooded area thus there are more chance that an adult person
migrate with some other persons. The areas from where data have been collected in Uttar Pradesh
seems to be more developed than the survey areas of Nepal and Bangladesh, because the average
adult migration is more than one adult is fewer in Uttar Pradesh than Nepal and Bangladesh.
The observed and expected frequency and the value of chi-square along with p-value allow us to
consider that the models considered in the study are suitable to explain the pattern of migration.
Inflated and composite model are better than the simple model. The interpretation of mixing
parameter in inflated model has a meaning i.e. this much amount is not governed by the plain
distribution, actually this amount shows the extra proportion of household with migrants any way
but reported no migration. Sometimes the inflated and composite models provide better insight
about the phenomenon.

Fig. 1. The distribution of average number of adult out migrants from household
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Table 1, 2, 3, 4 and 5 shows the estimated values of parameters, mean, variance, observed and
expected number of total households according to the number of adult migrants for households
of the different set of data. The value of χ2 with degree of freedom and p−value are also given
in the respective tables. The value of χ2 shown in the tables clearly indicates that both the
distributions describe the pattern of number of migrants from households. According to the p−value,
composite Poisson exponential distribution is found better than Poisson exponential distribution.
From the composite Poisson exponential distribution, the value of parameter α is about 40 percent
households in Koshi, Bihar, 11 percent in Varanasi, 23 percent in Nepal, 17 percent in western
Uttar Pradesh and 27 percent in Comilla, Bangladesh. This indicates that much proportions of
households are expected to have no adult migrants but the estimate of α from inflated Poisson
exponential distribution is different than the estimate of α from composite Poisson exponential
distribution. The difference of these estimates is the proportion of those households who have
migrants but not reported. The maximum difference has been observed in western Uttar Pradesh
and Comilla, Bangladesh.

Table 1. Observed and expected frequency of the number of households according to
the migrants in flooded area of Kosi river, Bihar

Number of
migrants

Observed
number of
households

Expected number of households
Poisson

Exponential
Composite Poisson

Exponential
Inflated Poisson
Exponential

0 401 382.3 9 401.00 401.00
1 147 162.18 141.45 141.45
2 57 68.78 65.37 65.37
3 29 29.17 30.21 30.21
4 16 12.37 13.96 13.96
5 8 5.25 6.45 6.45
6 5 2.23 2.98 2.98
7 1 1.64 2.56 2.56

Total 664 664.00 664.00 664.00

Mean=0.7365
Variance=1.4471

χ2=8.03
(after pooling)

χ2=2.04
(after pooling)

χ2=2.05
(after pooling)

p−value
=0.090(df=4)

p−value
=0.728(df=4)

p−value
=0.726(df=4)

Estimated value
of parameters µ=1.3579

µ=1.1637
α=0.3961

µ=1.1637
α=0.8570

Table 2. Observed and expected frequency of the total number of households
according to migrants in Western Uttar Pradesh

Number of
migrants

Observed
number of
households

Expected number of households
Poisson

Exponential
Composite Poisson

Exponential
Inflated Poisson
Exponential

0 2679 2669.31 2679.00 2679.00
1 445 459.25 443.24 443.32
2 78 79.01 82.76 82.71
3 19 13.59 15.45 15.43
4 3 2.82 3.55 3.54

Total 3224 3224.00 3224.00 3224.00

Mean=0.2078
Variance=0.2596

χ2=2.39
(after pooling)

χ2=0.75
(after pooling)

χ2=0.75
(after pooling)

p−value=
0.302(df=2)

p−value=
0.385(df=1)

p−value=
0.385(df=1)

Estimated value
of parameters

µ=4.8123
µ=4.3557
α=0.1690

µ=4.3557
α=0.9061
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Table 3. Observed and expected frequency of the total number of households
according to migrants in Nepal

Number of
migrants

Observed
number of
households

Expected number of households
Poisson

Exponential
Composite Poisson

Exponential
Inflated Poisson
Exponential

0 623 602.31 623.00 623.00
1 126 154.99 125.78 125.78
2 42 39.88 41.63 41.63
3 13 10.26 13.78 13.78
4 4 2.64 4.56 4.56
5 2 0.68 1.51 1.51
6 1 0.24 0.75 0.75

Total 811 811.00 811.00 811.00

Mean=0.3465
Variance=0.5717

χ2=9.01
(after pooling)

χ2=0.05
(after pooling)

χ2=0.05
(after pooling)

p−value=
0.011(df=2)

p−value=
0.974(df=2)

p−value=
0.974(df=2)

Estimated value
of parameters µ=2.8861

µ=2.0215
α=0.2318

µ=2.0215
α=0.7004

Table 4. Observed and expected frequency of the number of households according to
migrants in Comilla district of Bangladesh

Number of
migrants

Observed
number of
households

Expected number of households
Poisson

Exponential
Composite Poisson

Exponential
Inflated Poisson
Exponential

0 1941 1938.92 1941.00 1941.00
1 542 532.48 529.47 529.47
2 124 146.23 146.49 146.49
3 48 40.16 40.53 40.53
4 13 11.03 11.21 11.21
5 4 3.03 3.10 3.10
6 1 1.15 1.19 1.19

Total 2673 2673.00 2673.00 2673.00

Mean=0.3786
Variance=0.5353

χ2=5.59
(after pooling)

χ2=5.52
(after pooling)

χ2=5.52
(after pooling)

p−value=
0.133(df=2)

p−value=
0.137(df=3)

p−value=
0.137(df=3)

Estimated value
of parameters µ=2.6413

µ=2.0215
α=0.2738

µ=2.0215
α=0.9898

Table 5. Observed and expected frequency of the total number of households
according to the migrants in Varanasi District

Number of
migrants

Observed
number of
households

Expected number of households
Poisson

Exponential
Composite Poisson

Exponential
Inflated Poisson
Exponential

0 1032 999.20 1032.00 1032.00
1 95 139.25 88.52 88.52
2 19 19.41 27.78 27.78
3 10 2.70 8.72 8.72
4 2 0.38 2.74 2.74
5 2 0.05 0.86 0.86
6 0 0.01 0.27 0.27
7 1 0.00 0.12 0.12

Total 1161 1161.00 1161.00 1161.00

Mean=0.1619
Variance=0.3114

χ2=20.95
(after pooling)

χ2=3.66
(after pooling)

χ2=3.66
(after pooling)

p−value=
0.0001(df=1)

p−value=
0.056(df=1)

p−value=
0.056(df=1)

Estimated value
of parameters µ=6.1755

µ=2.1864
α=0.1111

µ=2.1864
α=0.3540
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