

Asian Journal of Probability and Statistics

14(4): 52-64, 2021; Article no.AJPAS.74092 ISSN: 2582-0230

# Modified Class of Estimator for Finite Population Mean Under Two-Phase Sampling Using Regression Estimation Approach

A. Y. Erinola<sup>1\*</sup>, R. V. K. Singh<sup>1</sup>, A. Audu<sup>2</sup> and T. James<sup>1</sup>

<sup>1</sup>Department of Mathematics, Kebbi State University of Science and Technology, Aliero, Nigeria. <sup>2</sup>Department of Mathematics, Usmanu Danfodiyo University, Sokoto, Nigeria.

#### Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

#### Article Information

DOI: 10.9734/AJPAS/2021/v14i430338 <u>Editor(s):</u> (1) Dr. Manuel Alberto M. Ferreira, Lisbon University, Portugal. (1) Waqar Hafeez, Universiti Utara Malaysia, Malaysia. (2) Susanna Spektor, Canada. Complete Peer review History: <u>https://www.sdiarticle4.com/review-history/74092</u>

**Original Research Article** 

Received 06 July 2021 Accepted 16 September 2021 Published 30 September 2021

#### Abstract

This study proposed modified a class of estimator in simple random sampling for the estimation of population mean of the study variable using as axillary information. The biases and MSE of suggested estimators were derived up to the first order approximation using Taylor's series expansion approach. Theoretically, the suggested estimators were compared with the existing estimators in the literature. The mean square errors (MSE) and percentage relative efficiency (PRE) of proposed estimators and that of some existing estimators were computed numerically and the results revealed that the members of the proposed class of estimator were more efficient compared to their counterparts and can produce better estimates than other estimators considered in the study.

Keywords: Auxiliary attribute; ratio-exponential estimators; mean square error; efficiency; two-phase sampling.

<sup>\*</sup>Corresponding author: Email: princessfathyar@yahoo.com, princessfaithyar@yahoo.com;

## **1** Introduction

In the determination of information about a particular population characteristic (for example, the mean) a random sample from that population is usually used because it is infeasible to measure the entire population. Using that sample, the corresponding sample characteristic is calculated, which is used to summarize information about the unknown population characteristic. The population characteristic of interest is called a parameter and the corresponding sample characteristic is the sample statistic or parameter estimate. Because the statistic is a summary of information about a parameter obtained from the sample, the value of a statistic depends on the particular sample that was drawn from the population. Its values change randomly from one random sample to the next one, therefore a statistic is a random quantity (variable). The sampling distribution of a (sample) statistic is important because it enable us to draw conclusions about the corresponding population parameter based on a random sample Siraj et al. [1].

Several authors like Hafeez et al. [2], Hafeez and Shabbir [3], Ahmed et al. [4,5,6], Audu and Adewara [7], Singh and Audu [8], Muili et al. [9], Hafeez et al. [10] Audu et al. [11], Audu and Singh [12] e.t.c have suggested estimators of population parameters using auxiliary variables while many researchers have proposed estimators based on auxiliary attribute. Bahl and Tuteja [13], Jhajj et al. [14], Singh et al. [15], Shabbir and Gupta [16], Koyuncu [17], Malik and Singh [18], Solanki and Singh [19], Zaman [20], Zaman and Kadilar [21] have suggested estimators by using Auxiliary attributes. In this paper, modified estimators for finite population mean under two-phase sampling using regression estimation approach has been suggested.

### 2 Some Existing Estimators of Population Mean with Auxiliary Attribute

Consider a sample of size n drawn by simple random sampling without replacement (SRSWOR) from a population of size N. Let  $y_i$  and  $\phi_i$  denote the observations on variable y and  $\phi$  respectively for ith unit ( i=1,2,...N).

Let  $\phi_i = 1$ ; if the ith unit of the population possesses attribute  $\phi_i$ , = 0; otherwise.

Let A =  $\sum_{i=1}^{N} \phi_i$  and  $a = \sum_{i=1}^{n} \phi_i$ , denote the total number of units in the population and sample respectively

possessing attribute  $\phi$ . P denotes the proportion of unit in the population. When P is not known, double sampling or two-phase sampling is used to estimate the population mean of the study variable. Under the double sampling scheme, two cases are used for the selection of the required sample as follows:

**Case- I.** The first phase sample  $S'(S' \subset \varsigma)$  of a fixed size n' is drawn to measure only on the auxiliary attribute p in order to formulate a good estimate of a population proportion P.

**Case- II.** Given S', the second phase sampling  $S(S \subset S')$  of a fixed size *n* is drawn to measure the study variable y.  $\overline{y} = \frac{1}{n} \sum_{i \in S} y_{i,}$   $p = \frac{1}{n} \sum_{i \in S} a_{i,}$   $p' = \frac{1}{n} \sum_{i \in S} a_{i,}$  Where p' denote the proportion of unit possessing

attribute  $\phi$  in the first phase sample of size n'; p denote the proportion of unit possessing attribute  $\phi$  in the second phase sample of size n' > n and  $\overline{y}$  denote the mean of the study variable y in the second phase sample.

Kumar and Bahl [22] considered ratio estimator of population mean in the two-phase sampling using information of the auxiliary attribute. Their proposed estimator as well as its MSE's is given as in (2.1) (2.2) and (2.3) respectively.

Erinola et al.; AJPAS, 14(4): 52-64, 2021; Article no.AJPAS.74092

$$t_{NG}^d = \bar{y} \frac{p'}{p}$$
(2.1)

$$MSE\left(t_{NGI}^{d}\right)_{I} = \overline{Y}^{2}\left[\theta C_{y}^{2} + \left(\theta - \theta'\right)\left(C_{p}^{2} - 2\theta\rho C_{y}C_{p}\right)\right]$$
(2.2)

$$MSE\left(t_{NGI}^{d}\right)_{II} = \bar{Y}^{2}\left[\theta C_{y}^{2} + \left(\theta + \theta'\right)C_{p}^{2} - 2\theta\rho C_{y}C_{p}\right]$$

$$(2.3)$$

where  $\theta = \frac{1}{n} - \frac{1}{N}$ ,  $\theta' = \frac{1}{n'} - \frac{1}{N}$ ,  $\rho$  is the population coefficient of the correlation between the auxiliary attribute and study variable,  $C_P$  is the population coefficient of variation for the form of attribute and  $C_y$  is the population coefficient of variation of the study variable.

Kumar and Bahl [22] suggested dual to ratio estimator of the population mean under the two- phase sampling as well as its MSE's is given as in (2.4) (2.5) and (2.6) respectively.

$$t_{NG2}^{*d} = \overline{y} \, \frac{p'^*}{p} \tag{2.4}$$

were 
$$p'* = \frac{n'p'-np}{n'-n}$$
  

$$MSE(t_{NGI}^{*d})_{I} = \overline{Y}^{2} \left\{ \theta C_{y}^{2} + \frac{n}{n'-n} (\theta - \theta') \left( \frac{n}{n'-n} C_{p}^{2} - 2\rho C_{y} C_{p} \right) \right\}$$
(2.5)

$$\mathbf{W} = \begin{bmatrix} \mathbf{v} & \mathbf{n} - \mathbf{n} & (\mathbf{n} - \mathbf{n} + \mathbf{v} + \mathbf{v}) \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} \mathbf{v} & \mathbf{n} & [\mathbf{n} & (\mathbf{n} - \mathbf{n} + \mathbf{v} + \mathbf{v})] \end{bmatrix}$$

$$MSE\left(t_{NGI}^{*d}\right)_{II} = \overline{Y}^{2}\left\{\theta C_{y}^{2} + \frac{n}{n'-n}\left\{\frac{n}{n'-n}\left(\theta - \theta'\right)C_{p}^{2} - 2\rho C_{y}C_{p}\right\}\right\}$$
(2.6)

Singh et al. [23] considered the ratio type exponential estimator of population mean in the two-phase sampling using auxiliary attribute. Their proposed estimator is given as well as its MSE's is given as in (2.7) (2.8) and (2.9) respectively.

$$t_{SI} = \overline{y} \exp\left(\frac{p'-p}{p'+p}\right)$$
(2.7)

$$MSE(t_{SI})_{I} = \overline{Y}^{2} \left\{ \theta C_{y}^{2} + (\theta - \theta') \left( \frac{C_{p}^{2}}{4} - \rho C_{y} C_{p} \right) \right\}$$
(2.8)

$$MSE(t_{SI})_{II} = \overline{Y}^{2} \left\{ \theta C_{y}^{2} + (\theta + \theta') \frac{C_{p}^{2}}{4} - \rho \theta C_{y} C_{p} \right\}$$
(2.9)

Kalita and Singh [24], suggested exponential dual to ratio in the two-phase sampling using information of the auxiliary attribute. Their proposed estimator and MSE's are given in (2.10), (2.11) and (2.12) respectively.

$$t_{s}^{*} = \overline{y} \exp\left(\frac{p^{\prime *} - p}{p^{\prime *} + p}\right)$$
(2.10)

Erinola et al.; AJPAS, 14(4): 52-64, 2021; Article no.AJPAS.74092

$$MSE(t_{SI}^{*})_{I} = \overline{Y}^{2} \left\{ \theta C_{y}^{2} + \frac{n}{n'-n} (\theta - \theta') \left\{ \frac{n}{4(n'-n)} C_{p}^{2} - \rho C_{y} C_{p} \right\} \right\}$$
(2.11)

$$MSE(t_{SI}^{*})_{II} = \overline{Y}^{2} \left\{ \theta C_{y}^{2} + \frac{n^{2}}{(n'-n)^{2}} (\theta - \theta') C_{p}^{2} - \theta \frac{n}{n'-n} \rho C_{y} C_{p} \right\}$$
(2.12)

Zaman and Kadilar [21], proposed class of ratio estimator to estimate the population mean of the study variable using the information about the population proportion possessing certain attributes in the two-phase sampling as well as its MSE's is given as in (2.13) (2.14) and (2.15) respectively.

$$\overline{y}_{ZKI} = \overline{y} \exp\left\{\frac{(kp'+l) - (kp+l)}{(kp'+l) + (kp+l)}\right\}$$
(2.13)

The MSEs of these estimators are

$$MSE\left(\overline{y}_{ZKI}\right)_{I} = \overline{Y}^{2}\left\{\theta C_{y}^{2} + \left(\theta - \theta'\right)\left(\lambda^{2}C_{p}^{2} - 2\lambda\rho C_{y}C_{p}\right)\right\}$$
(2.14)

$$MSE\left(\overline{y}_{ZKI}\right)_{II} = \overline{Y}^{2}\left\{\theta C_{y}^{2} + \left(\theta + \theta'\right)\lambda^{2}C_{p}^{2} - 2\lambda\rho C_{y}C_{p}\right\}$$
(2.15)

## **3 Suggested Estimator**

Having studied the estimator proposed by Zaman and Kadilar [21] we observed that their estimator can only be apply if the correlation between the study variable and auxiliary information is positive. Therefore, there is need to propose estimator that can be applied for all direction of correlation between the study and auxiliary information.

$$t_1 = \overline{y} + b_{\phi} \left( p' - p \right) \exp\left(\frac{2\left(\left(Ap' + B\right) - \left(Ap + B\right)\right)}{\left(Ap + B\right) + \left(Ap + B\right)}\right)$$
(3.1)

To derive the biases and MSEs of the proposed estimator, the following error term are defined  $e_0 = \frac{\overline{y} - \overline{Y}}{\overline{Y}}, e_1 = \frac{p - P}{P}, e_2 = \frac{p' - P}{P}$  such that  $|e_0| < 1, |e_1| < 1, |e_2| < 1$  and  $\overline{y} = \overline{Y}(1 + e_0), \quad p = P(1 + e_1), \quad p' = P(1 + e_2).$ 

The expectations of the error terms are given as;

Under case I:

$$\begin{cases} E(e_{0}) = E(e_{1}) = E(e_{2}) = 0, E(e_{0}^{2}) = \theta C_{y}^{2} \\ E(e_{1}^{2}) = \theta C_{p}^{2}, E(e_{2}^{2}) = \theta' C_{p}^{2}, E(e_{0}e_{1}) = \theta \rho C_{y} C_{p} \\ E(e_{0}e_{2}) = \theta' \rho C_{y} C_{p}, E(e_{1}e_{2}) = \theta' C_{p}^{2} \end{cases}$$
(3.2)

Under case II:

$$\begin{cases} E(e_0) = E(e_1) = E(e_2) = 0, E(e_0^2) = \theta C_y^2, E(e_1^2) = \theta C_p^2, \\ E(e_2^2) = \theta' C_p^2, E(e_0 e_1) = \theta \rho C_y C_p, E(e_0 e_2) = 0, E(e_1 e_2) = 0 \end{cases}$$
(3.3)

Expressing the proposed estimator  $t_1$  in terms of errors, we obtained (3.4)

$$t_{1} = \overline{Y} + \overline{Y}e_{0} + b_{\phi}\left(P + Pe_{2} - P - Pe_{1}\right)\exp\left(\frac{2\left(AP + APe_{2} + B - AP - APe_{1} - B\right)}{AP + APe_{2} + B + AP + APe_{1} + B}\right)$$
(3.4)

Simplifying (3.4), we have,

$$t_1 = \left(\overline{Y} + \overline{Y}e_0 + b_{\phi}Pe_2 - b_{\phi}Pe_1\right)\exp\left(\left(\lambda e_2 - \lambda e_1\right)\left(1 + \frac{\lambda}{2}e_2 + \frac{\lambda}{2}e_1\right)^{-1}\right)$$
(3.5)

were  $\lambda = \frac{AP}{(AP+B)}$ 

Taking the expansion (3.5)

$$t_{1} - \overline{Y} = \overline{Y} \left( \frac{\lambda}{2} e_{2} - \frac{\lambda}{2} e_{1} + \frac{\lambda^{2}}{2} e_{1}^{2} - \frac{\lambda^{2}}{2} e_{1} e_{2} + e_{0} + \frac{\lambda}{2} e_{0} e_{2} - \frac{\lambda}{2} e_{0} e_{1} \right) + \left( Pb_{\phi}e_{2} + \frac{\lambda^{2}}{2} Pb_{\phi}e_{2}^{2} - \frac{\lambda}{2} Pb_{\phi}e_{1}e_{2} - \frac{\lambda}{2} Pb_{\phi}e_{1} - \frac{\lambda}{2} Pb_{\phi}e_{1}e_{2} + \frac{\lambda}{2} Pb_{\phi}e_{1}^{2} \right)$$
(3.6)

Take expectation of (3.6) and apply the results of (3.2 and 3.3), the bias of proposed estimator  $(t_1)_I$  under case I and  $(t_1)_{II}$  under case II were obtained respectfully as:

$$Bias(t_I)_I = \overline{Y} \left\{ \lambda^2 \theta C_p^2 - \lambda \theta' C_p^2 + \lambda \theta' \rho C_y C_p - \lambda \theta \rho C_y \right\} - Pb_{\phi} \theta C_p^2$$
(3.7)

$$Bias(t_I)_{II} = \overline{Y} \left\{ \lambda^2 \theta C_p^2 - \lambda \theta \rho C_y C_p \right\} - P b_{\phi} \theta C_p^2$$
(3.8)

Square (3.6), take expectation of the result and apply the results of (3.2 and 3.3), the MSE of proposed estimator  $(t_1)_I$  and  $(t_1)_{II}$  under case I and II were obtained respectfully as:

$$MSE(t_1)_I = \overline{Y}^2 \theta C_y^2 + (\theta - \theta') (L^2 C_p^2 - 2\overline{Y}L\rho C_y C_p)$$
(3.9)

$$MSE(t_1)_{II} = \overline{Y}^2 \theta C_y^2 + (\theta + \theta') L^2 C_p^2 - 2\overline{Y} L \theta \rho C_y C_p$$
(3.10)

#### 3.1 Theoretical efficiency comparisons

(i) Theoretical Comparison of Proposed Estimator and Sample Mean

$$\theta \overline{Y}^{2} C_{y}^{2} - \overline{Y}^{2} \theta C_{y}^{2} + (\theta - \theta') (L_{i}^{2} C_{p}^{2} - 2 \overline{Y} L_{i} \rho C_{y} C_{p}) > 0$$

$$(\theta - \theta') (L_{i}^{2} C_{p}^{2} - 2 \overline{Y} L_{i} \rho C_{y} C_{p}) < 0$$

$$(3.11)$$

(ii) Theoretical Comparison of Proposed Ratio Estimator and Estimator of Zaman and Kadilar [21] under study for case I

$$\overline{Y}^{2}\theta C_{y}^{2} + (\theta - \theta') \left( L_{i}^{2}C_{p}^{2} - 2\overline{Y}L_{i}\rho C_{y}C_{p} \right) - \overline{Y}^{2} \left[ \theta C_{y}^{2} + (\theta - \theta') \left( \lambda_{i}^{2}C_{p}^{2} - 2\lambda_{i}\rho C_{y}C_{p} \right) \right] < 0 \quad (3.12)$$
where  $L_{i}$  and  $\lambda_{i}$   $i = 1, 2, 3, \dots, 9$ 

| Known Function  | on of Auxiliary Attribute                                                               |
|-----------------|-----------------------------------------------------------------------------------------|
| Α               | В                                                                                       |
| 1               | $eta_2(\phi)$                                                                           |
| 1               | $C_p$                                                                                   |
| 1               | ${ ho}_{_{pb}}$                                                                         |
| $eta_2(\phi)$   | $C_p$                                                                                   |
| $C_p$           | $eta_2(\phi)$                                                                           |
| $C_p$           | ${ ho}_{_{pb}}$                                                                         |
| ${\cal P}_{pb}$ | $C_p$                                                                                   |
| $eta_2(\phi)$   | ${ ho}_{pb}$                                                                            |
| ${\cal P}_{pb}$ | $eta_2(\phi)$                                                                           |
|                 | A         1         1         1 $\beta_2(\phi)$ $C_p$ $C_p$ $\rho_{pb}$ $\beta_2(\phi)$ |

Table 3.1. Members of the Proposed Ratio Estimator  $t_1$ 

Table 3.2. Efficiency Comparison of Proposed Ratio and Zaman and Kadilar [21] Estimators under Case I

| S/N | Estimators compared        | Condition obtained                                                                                 | Numerical outcome | Decisions |
|-----|----------------------------|----------------------------------------------------------------------------------------------------|-------------------|-----------|
| 1.  | $MSE(t_I)_I < MSE(ZK_I)_I$ | $\rho > \frac{C_{p}\left(L_{1} + \overline{Y}\lambda_{1}\right)}{\left(2\overline{Y}C_{y}\right)}$ | 0.776 > 0.1271419 | Satisfied |

Erinola et al.; AJPAS, 14(4): 52-64, 2021; Article no.AJPAS.74092

| S/N | Estimators compared        | Condition obtained                                                                                 | Numerical outcome | Decisions        |
|-----|----------------------------|----------------------------------------------------------------------------------------------------|-------------------|------------------|
| 2.  | $MSE(t_I)_I < MSE(ZK_I)_I$ | $\rho > \frac{C_p \left( L_2 + \overline{Y} \lambda_2 \right)}{\left( 2 \overline{Y} C_y \right)}$ | 0.776 > 0.1600486 | Satisfied        |
| 3.  | $MSE(t_I)_I < MSE(ZK_I)_I$ | $\rho > \frac{C_p \left( L_3 + \bar{Y} \lambda_3 \right)}{\left( 2 \bar{Y} C_y \right)}$           | 0.776 > 0.4744658 | Satisfied        |
| 4.  | $MSE(t_I)_I < MSE(ZK_I)_I$ | $\rho > \frac{C_p \left( L_4 + \bar{Y} \lambda_4 \right)}{\left( 2 \bar{Y} C_y \right)}$           | 0.776 > 0.4740168 | Satisfied        |
| 5   | $MSE(t_I)_I < MSE(ZK_I)_I$ | $\rho > \frac{C_p \left( L_5 + \bar{Y} \lambda_5 \right)}{\left( 2 \bar{Y} C_y \right)}$           | 0.776 > 0.4031618 | Satisfied        |
| 6   | $MSE(t_I)_I < MSE(ZK_I)_I$ | $\rho > \frac{C_p \left( L_6 + \bar{Y} \lambda_6 \right)}{\left( 2 \bar{Y} C_y \right)}$           | 0.776 > 0.411415  | Satisfied        |
| 7   | $MSE(t_I)_I < MSE(ZK_I)_I$ | $\rho > \frac{C_p \left( L_7 + \overline{Y} \lambda_7 \right)}{\left( 2 \overline{Y} C_y \right)}$ | 0.776 > 0.1582934 | Satisfied        |
| 8   | $MSE(t_I)_I < MSE(ZK_I)_I$ | $\rho > \frac{C_p \left( L_8 + \overline{Y} \lambda_8 \right)}{\left( 2 \overline{Y} C_y \right)}$ | 0.776 > 1.367272  | Not<br>satisfied |
| 9   | $MSE(t_I)_I < MSE(ZK_I)_I$ | $\rho > \frac{C_p \left( L_9 + \overline{Y} \lambda_9 \right)}{\left( 2 \overline{Y} C_y \right)}$ | 0.776 > 0.1247811 | Satisfied        |

(iii) Theoretical Comparison of Proposed Ratio Estimator and Estimator of Zaman and Kadilar [21] under study for case II

$$\overline{Y}^{2}\theta C_{y}^{2} + (\theta + \theta')L_{i}^{2}C_{p}^{2} - 2\overline{Y}L_{i}\theta\rho C_{y}C_{p} - \overline{Y}^{2}\left\{\theta C_{y}^{2} + (\theta + \theta')\lambda_{i}^{2}C_{p}^{2} - 2\lambda_{i}\rho C_{y}C_{p}\right\} < 0 \quad (3.13)$$
where  $L_{i}$  and  $\lambda_{i}$  = 1,2,3,....,9

Table 3.3. Efficiency Comparison of Proposed Ratio and Zaman and Kadilar [21] Estimators under Case II

| S/N | Estimators compared              | Condition obtained                                                                                                                         | Numerical<br>outcome  | Decisions |
|-----|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| 1.  | $MSE(t_I)_{II} < MSE(ZK_I)_{II}$ | $\rho > \frac{C_{p} \left(\theta + \theta'\right) \left(L_{1} + \overline{Y} \lambda_{1}\right)}{\left(2\overline{Y} \theta C_{y}\right)}$ | 0.797 ><br>0.09673137 | Satisfied |
| 2.  | $MSE(t_I)_{II} < MSE(ZK_I)_{II}$ | $\rho > \frac{C_{p} \left(\theta + \theta'\right) \left(L_{2} + \bar{Y} \lambda_{2}\right)}{\left(2 \bar{Y} \theta C_{y}\right)}$          | 0.797 ><br>0.1342345  | Satisfied |
| 3.  | $MSE(t_I)_{II} < MSE(ZK_I)_{II}$ | $\rho > \frac{C_{p} \left(\theta + \theta'\right) \left(L_{3} + \overline{Y} \lambda_{3}\right)}{\left(2\overline{Y} \theta C_{y}\right)}$ | 0.797 ><br>0.4178153  | Satisfied |
| 4.  | $MSE(t_I)_{II} < MSE(ZK_I)_{II}$ | $\rho > \frac{C_{p} \left(\theta + \theta'\right) \left(L_{4} + \bar{Y}\lambda_{4}\right)}{\left(2\bar{Y}\theta C_{y}\right)}$             | 0.797 ><br>0.4629537  | Satisfied |

| Erinola et al.; AJPAS, | 14(4): 52-64, | 2021; Article | no.AJPAS.74092 |
|------------------------|---------------|---------------|----------------|
|------------------------|---------------|---------------|----------------|

| S/N | Estimators compared              | Condition obtained                                                                                                                         | Numerical<br>outcome  | Decisions        |
|-----|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|
| 5.  | $MSE(t_I)_{II} < MSE(ZK_I)_{II}$ | $\rho > \frac{C_{p} \left(\theta + \theta'\right) \left(L_{5} + \overline{Y} \lambda_{5}\right)}{\left(2\overline{Y} \theta C_{y}\right)}$ | 0.797 ><br>0.2503294  | Satisfied        |
| 6.  | $MSE(t_I)_{II} < MSE(ZK_I)_{II}$ | $\rho > \frac{C_{p} \left(\theta + \theta'\right) \left(L_{6} + \overline{Y} \lambda_{6}\right)}{\left(2\overline{Y} \theta C_{y}\right)}$ | 0.797<br>>0.9389652   | Not<br>Satisfied |
| 7.  | $MSE(t_I)_{II} < MSE(ZK_I)_{II}$ | $\rho > \frac{C_{p} \left(\theta + \theta'\right) \left(L_{7} + \bar{Y}\lambda_{7}\right)}{\left(2\bar{Y}\theta C_{y}\right)}$             | 0.797<br>>0.1358819   | Satisfied        |
| 8.  | $MSE(t_I)_{II} < MSE(ZK_I)_{II}$ | $\rho > \frac{C_{p} \left(\theta + \theta'\right) \left(L_{8} + \bar{Y} \lambda_{8}\right)}{\left(2\bar{Y} \theta C_{y}\right)}$           | 0.797 >1.185871       | Not<br>Satisfied |
| 9.  | $MSE(t_I)_{II} < MSE(ZK_I)_{II}$ | $\rho > \frac{C_{p} \left(\theta + \theta'\right) \left(L_{9} + \overline{Y} \lambda_{9}\right)}{\left(2\overline{Y} \theta C_{y}\right)}$ | 0.797 ><br>0.09784492 | Satisfied        |

Efficiency conditions for which the proposed estimator outperformed other related estimators considered in the study have established in (3.11), (3.12) and (3.13). These conditions have been tested numerically as shown in Tables 3.2 and 3.3 and results revealed that all the efficiency conditions were satisfied with exception of few cases. This implies that the class of suggested estimators is more efficient and can produce better estimates of population means than their counterparts.

#### **4** Empirical Study

Real life data were used to determine the superiority of the proposed estimators over the already existence estimators. The real life data were obtained in the previous research worked on Zaman and Kadilar for empirical study.

Population 1: The data is defined as follows; y = the number of villages in the circles.

$$\phi_i = \begin{cases} 1, \text{if a circle of villages} > 5\\ 0, \text{if a circle of villages} < 5 \end{cases}$$

Population of statistic given in Table 4.1

Population 2: The data is defined as follows; y = the number of teachers

$$\phi_i = \begin{cases} 1, \text{if number of teachers} > 60\\ 0, \text{if number of teachers} < 60 \end{cases}$$

Population of statistic given in Table 4.2

| N=89                   | <u></u> <i>¥</i> =3.3596 | $\lambda_1 = 0.0171$ | $\lambda_5 = 0.0433$ | $\lambda_9 = 0.0132$ |
|------------------------|--------------------------|----------------------|----------------------|----------------------|
| N=20                   | <i>n'</i> =45            | $\lambda_2 = 0.0221$ | $\lambda_6 = 0.1508$ |                      |
| $\beta_2(\phi)$ =3.492 | $C_y = 0.6008$           | $\lambda_3 = 0.0695$ | $\lambda_7 = 0.0171$ |                      |
| $ ho_{pb}$ =0.766      | $C_p = 2.6779$           | $\lambda_4 = 0.0694$ | $\lambda_8 = 0.1802$ |                      |

#### Table 4.1. Descriptive statistic of population 1

#### Table 4.2. Descriptive statistic of population 2

| N=111                | <u></u> <i>Y</i> =29.279 | $\lambda_1 = 0.0146$ | $\lambda_5 = 0.0382$ | $\lambda_9 = 0.0117$ |
|----------------------|--------------------------|----------------------|----------------------|----------------------|
| N=30                 | <i>n</i> ′ =55           | $\lambda_2 = 0.0203$ | $\lambda_6 = 0.1441$ |                      |
| $eta_2(\phi)$ =3.898 | $C_y = 0.872$            | $\lambda_3 = 0.0640$ | $\lambda_7 = 0.0164$ |                      |
| $ ho_{pb}$ =0.797    | $C_p = 2.758$            | $\lambda_4 = 0.0709$ | $\lambda_8 = 0.1819$ |                      |

#### Table 4.3. MSE and PRE of population 1

| Estimators                         | N          | MSE      | ]           | PRE         |
|------------------------------------|------------|----------|-------------|-------------|
|                                    | CASE I     | CASEII   | CASE I      | CASE II     |
| $\overline{y}$                     | 0.15793    | 15.85573 | 100         | 100         |
| Kumar and Bahl [22] $t_{NGI}^d$    | 1.633285   | 64.86284 | 9.669469811 | 24.44501351 |
| Kumar and Bahl [22] $t_{NGI}^{*d}$ | 0.97848    | 98.37626 | 16.14034012 | 16.11743524 |
| Singh et al. [23] $t_{SI}$         | 0.333523   | 15.65928 | 47.35205668 | 101.2545277 |
| Kalita and Singh [24] $t_{SI}^*$   | 0.208471   | 21.54799 | 75.75634021 | 72.67165058 |
| Zaman and Kadilar [21] $\lambda_1$ | 0.145373   | 15.1512  | 108.6377801 | 104.6499947 |
| Proposed Estimator $(t_{1,1})$     | 0.1411044  | 14.98685 | 111.9242    | 105.797616  |
| Zaman and Kadilar [21] $\lambda_2$ | 0.141972   | 14.88346 | 111.2402446 | 106.5325536 |
| Proposed Estimator $(t_{1,2})$     | 0.1349351  | 14.48042 | 117.0415    | 109.497722  |
| Zaman and Kadilar [21] $\lambda_3$ | 0.115089   | 13.07351 | 137.2242352 | 121.2813544 |
| Proposed Estimator $(t_{1,3})$     | 0.1122884  | 12.83639 | 140.6468    | 123.521722  |
| Zaman and Kadilar [21] $\lambda_4$ | 0.115115   | 12.82033 | 137.1932415 | 123.6764576 |
| Proposed Estimator $(t_{1,4})$     | 0.1123316  | 12.83998 | 140.5927    | 123.487186  |
| Zaman and Kadilar [21] $\lambda_5$ | 0.128679   | 14.09668 | 122.7317589 | 112.4784701 |
| Proposed Estimator $(t_{1,5})$     | 0.125153   | 13.8438  | 126.1895    | 114.533076  |
| Zaman and Kadilar [21] $\lambda_6$ | 0.09249    | 10.73221 | 170.753595  | 147.7396547 |
| Proposed Estimator $(t_{1,6})$     | 0.09201862 | 10.57384 | 171.6283    | 149.95243   |
| Zaman and Kadilar [21] $\lambda_7$ | 0.145384   | 15.06792 | 108.6295603 | 105.2283925 |
| Proposed Estimator $(t_{1,7})$     | 0.1411044  | 15.01925 | 111.9242    | 105.569386  |

Erinola et al.; AJPAS, 14(4): 52-64, 2021; Article no.AJPAS.74092

| Estimators                         | I          | MSE PF   |             | PRE         |
|------------------------------------|------------|----------|-------------|-------------|
|                                    | CASE I     | CASEII   | CASE I      | CASE II     |
| Zaman and Kadilar [21] $\lambda_8$ | 0.091645   | 10.06635 | 172.3280048 | 157.5122065 |
| Proposed Estimator $(t_{1,8})$     | 0.09200599 | 10.0537  | 171.6519    | 157.710395  |
| Zaman and Kadilar [21] $\lambda_9$ | 0.148116   | 15.28755 | 106.6258878 | 103.7166191 |
| Proposed Estimator $(t_{1,9})$     | 0.1437427  | 15.2393  | 109.8699    | 104.045002  |

| Table 4.4. | MSE and | PRE | estimators | using | population | 2 |
|------------|---------|-----|------------|-------|------------|---|
|------------|---------|-----|------------|-------|------------|---|

| Estimators                              |            | MSE       | PI          | RE       |
|-----------------------------------------|------------|-----------|-------------|----------|
|                                         | CASE I     | CASE II   | CASE I      | CASE II  |
| $\overline{y}$                          | 0.15793    | 15.85573  | 100         | 100      |
| Kumar and Bahl [22] $t_{NGI}^d$         | 3.106026   | 154.3461  | 5.08463226  | 10.27284 |
| Kumar and Bahl [22] $t_{NGI}^{*d}$      | 1.87212    | 234.4669  | 8.435890862 | 6.76246  |
| Singh et al. [23] $t_{SI}$              | 0.625279   | 30.49386  | 25.25752504 | 51.99647 |
| Kalita and Singh [24] $t_{SI}^*$        | 0.370737   | 46.52718  | 42.59893132 | 34.07842 |
| Zaman and Kadilar [21] $\lambda_{ m l}$ | 0.140667   | 14.737378 | 112.2722458 | 107.5885 |
| Proposed Estimator $(t_{2,1})$          | 0.137821   | 14.83997  | 114.5899164 | 106.8448 |
| Zaman and Kadilar [21] $\lambda_2$      | 0.136094   | 14.319605 | 116.0447926 | 110.7274 |
| Proposed Estimator $(t_{2,2})$          | 0.1305843  | 14.25215  | 120.941032  | 111.2515 |
| Zaman and Kadilar [21] $\lambda_3$      | 0.102435   | 11.634163 | 154.1758188 | 136.286  |
| Proposed Estimator $(t_{2,3})$          | 0.0993408  | 11.30576  | 158.9779829 | 140.2447 |
| Zaman and Kadilar [21] $\lambda_4$      | 0.102464   | 11.283763 | 154.132183  | 140.5181 |
| Proposed Estimator $(t_{2,4})$          | 0.09938767 | 11.31067  | 158.9030108 | 140.1838 |
| Zaman and Kadilar [21] $\lambda_5$      | 0.118777   | 13.119154 | 132.9634525 | 120.8594 |
| Proposed Estimator $(t_{2,5})$          | 0.1143738  | 12.74315  | 138.082323  | 124.4255 |
| Zaman and Kadilar [21] $\lambda_6$      | 0.086839   | 8.8723655 | 181.8652909 | 178.7092 |
| Proposed Estimator $(t_{2,6})$          | 0.08788584 | 8.754461  | 179.6990277 | 181.116  |
| Zaman and Kadilar [21] $\lambda_7$      | 0.140682   | 14.606969 | 112.2602749 | 108.5491 |
| Proposed Estimator $(t_{2,7})$          | 0.1349351  | 14.53094  | 117.0414518 | 109.117  |
| Zaman and Kadilar [21] $\lambda_8$      | 0.09429    | 8.5422689 | 167.4939018 | 185.615  |
| Proposed Estimator $(t_{2,8})$          | 0.09684899 | 8.54205   | 163.0682984 | 185.6197 |
| Zaman and Kadilar [21] $\lambda_9$      | 0.14439    | 14.951729 | 109.3773807 | 106.0461 |
| Proposed Estimator $(t_{2,9})$          | 0.1384684  | 14.87575  | 114.0549035 | 106.5878 |

Table 4.3 shows MSE and PRE of some exiting, Zaman and Kadilar [21] and proposed estimators  $t_i$ , i = 1, 2, ..., 9 for population I. The result shows that the proposed estimators have minimum MSE and higher PRE than Kumar and Bahl [22] estimators, Singh et al. [23] and Kalita and Singh [24] estimator. Proposed estimators  $t_{11}, t_{12}, t_{13}, t_{14}, t_{15}, t_{16}, t_{17}$  and  $t_{19}$  also have minimum MSE and higher PRE than Zaman and Kadilar [21] estimators  $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6, \lambda_7$  and  $\lambda_9$  while Zaman and Kadilar [21] estimators  $\lambda_8$  has minimum MSE and higher PRE than proposed estimator  $t_{18}$ .

Table 4.4 shows MSE and PRE of some existing, Zaman and Kadilar [21] and proposed estimators  $t_i$ , i = 1, 2, ..., 9 for population II. The results show that the proposed estimators have minimum MSE and higher PRE than Kumar and Bahl [22] estimators, Singh et al. [23] and Kalita and Singh [24] estimator. Proposed estimators  $t_{2,1} t_{22}, t_{23}, t_{24}, t_{25}, t_{27}$  and  $\lambda_{29}$  also have minimum MSE and higher PRE than Zaman and Kadilar [21] estimators  $\lambda_1$   $\lambda_2$ ,  $\lambda_3$ ,  $\lambda_4$ ,  $\lambda_5$ ,  $\lambda_7$  and  $\lambda_9$  while Zaman and Kadilar [21] estimators  $\lambda_6$ , and  $\lambda_8$  has MSE and higher PRE than proposed estimators  $t_{26}$  and  $t_{28}$ .

### **5** Conclusion

By comparing the results obtained from the empirical study on the efficiency of the proposed estimators over the existing related estimators considered in the study, it is observed that the proposed estimator have minimum MSE and higher PRE compared to other estimators considered in all the numerical computation carried out in the study, hence, the proposed estimators demonstrated high level of efficiency over other estimators considered. Conclusively, the proposed estimators have higher chance of producing estimate that is better than exiting estimators, considered in the study.

#### **Competing Interests**

Authors have declared that no competing interests exist.

#### References

- Siraj M, Javid S, Alamgir K. Estimation of finite population mean in simple random sampling and stratified random sampling using two auxiliary variables. Communications in Statistics - Theory and Methods. 2017;46:5:2181-2192.
   DOI: 10.1080/03610926.2015.1035394
- [2] Hafeez W, Shabbir J, Shah MT, Ahmed S. Some median type estimators to estimate the finite population mean. Asian Journal of Probability and Statistics. 2020;7(4):48-58.
- [3] Hafeez, Javid Shabbir. Estimation of the finite population mean, using median based estimators in stratified random sampling. J. Stat. Appl. Pro. 2015;4(3):367-374.
- [4] Ahmed S, Shabbir J, Hafeez W. Hansen and Hurwitz estimator with scrambled response on second call in stratified random sampling. Journal of Statistics Applications & Probability. 2016a;5(2). DOI: http://dx.doi.org/10.18576/jsap/050217
- [5] Ahmed A, Adewara AA, Singh RVK. Class of ratio estimators with known functions of auxiliary variable for estimating finite population variance. Asian Journal of Mathematics and Computer Research. 2016b; 12(1):63-70.

- [6] Ahmed A, Singh RVK, Adewara AA. Ratio and product type exponential estimators of population variance under transformed sample information of study and supplementary variables. Asian Journal of Mathematics and Computer Research. 2016c;11(3):175-183.
- [7] Audu A, Adewara AA. Modified factor-type estimators under two-phase sampling. Punjab Journal of Mathematics. 2017;49(2):59-73. ISSN: 1016-2526.
- [8] Singh RVK, Audu A. Efficiency of ratio estimators in stratified random sampling using information on auxiliary attribute. International Journal of Engineering Science and Innovative Tecnology. 2013; 2(1):166-172.
- [9] Muili JO, Agwamba EN, Erinola YA, Yunusa MA, Audu A, Hamzat MA. Modified ratio-cum-product estimators of finite population variance. International Journal of Advances in Engineering and Management. 2020;2(4):309-319.
   DOI: 10.35629/5252- 0204309319
- [10] Hafeez W, Shabbir J, Aziz N. Estimation of finite population mean by using median type estimators in two-stage sampling. Thailand Statistician, Article in Press; 2021.
- [11] Audu A, Singh R, Khare S, Dauran NS. Almost unbiased estimators for population mean in the presence of non-response and measurement error. Journal of Statistics & Management Systems. 2021;24(3):573-589.
   DOI: 10.1080/09720510.2020.1759209
- [12] Audu A, Singh RVK. Exponential-type regression compromised imputation class of estimators. Journal of Statistics and Management Systems; 2021.
   DOI: 10.1080/09720510.2020.1814501
- [13] Bahl S, Tuteja RK. Ratio and product type estimator. Information and Optimization Science. 1991;XII: 159–163.
- [14] Jhajj HS, Sharma MK, Grove LK. A family of estimators of population mean using information on auxiliary attribute. Pakistan Journal of Statistics. 2006;22(1):43–50.
- [15] Singh R, Chauhan P, Sawan N. On linear combination of Ratio-product type exponential estimator for estimating finite population mean. Statistics in Transition. 2008;9(1):105–115.
- [16] Shabbir J, Gupta S. Estimation of the finite population mean in two phase sampling when auxiliary variables are attributes. Hacettepe Journal of Mathematics and Statistics. 2010;39(1).
- [17] Koyuncu N. Efficient estimators of population mean using auxiliary attributes. Applied Mathematics and Computation. 2012;218(22):10900–10905.
- [18] Malik S, Singh R. An improved estimator using two auxiliary attributes. Applied Mathematics and Computation. 2013;219(23):10983–10986.
- [19] Solanki RS, Singh HP. Improved estimation of population mean using population proportion of an auxiliary character. Chilean Journal of Statistics. 2013;4(1):3–17.
- [20] Zaman T. New family of estimators using two auxiliary attributes. International Journal of Advanced Research I Engineering & Management (IJAREM). 2018;4(11):11–16.
- [21] Zaman T, Kadilar C. New class of exponential estimators for finite population mean in two-phase sampling. Communications in Statistics - Theory and Methods; 2019. DOI: 10.1080/03610926.2019.1643480

- [22] Kumar M, Bahl S. Class of dual to ratio estimators for double sampling. Statistical Papers. 2006;47(2):319–326.
   DOI:10.1007/s00362-005-0291-6
- [23] Singh R, Chauhan P, Sawan N, Smarandache F. Ratio-product type exponential estimator for estimating finite population mean using information on auxiliary attribute. Auxiliary Information and a Priori Values in Construction of Improved Estimators. 2007;1:18.
- [24] Kalita D, Singh BK. Exponential dual to ratio and dual to product-type estimators for finite population mean in double sampling. Elixir Statistics. 2013;59:15458–15470.

© 2021 Erinola et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) https://www.sdiarticle4.com/review-history/74092