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ABSTRACT 
 

Digital soil mapping is a growing technology for mapping soil properties instead of conventional soil 
mapping. Especially for what are all countries have large geographical areas and human, not 
accessible areas. Compared to conventional soil mapping it is cost-wise less and more accurate. At 
the world level, globalsoilmap.net has taken the initiative for creating digital soil maps. In India like 
countries very much needed for digital soil mapping, is essential for agricultural planning, and 
decision-makers decide on it.  This study predicted the soil properties such as sand, silt, clay, pH, 
and OC using the Quantile Regression Forest machine learning algorithm also provides 
uncertainty. The main aim of this study was to predict the soil properties in the top two depth 
intervals such as surface and subsurface. For achieving this goal, 56 soil samples were collected 
across the study area, and many environmental covariates were used for that such as DEM 
derivatives, satellite imagery, and Climatic Data. This study, using 56 soil samples data taken from 
the traditional soil survey, is a limited number of soil samples this tried to achieve a higher accuracy 
result using QRF. 
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1. INTRODUCTION 
 

Soils are an important part of the environment 
and necessary for life, it’s a habitat for many 
living organisms, provide nutrients and a medium 
for plant growth, work as a filtration system for 
surface water, store Carbon and maintain 
atmospheric gases. So, it should be maintained 
and monitored properly. Continuous digital soil 
information is needed to make most environment 
models, especially for the larger-scale area [1-4].  
This digital soil information is always not 
available at the needed scale [5] and high-
accuracy mapping needs more time, and cost 
and is always challenging [6]. 
 

“Digital Soil Mapping (DSM) also known as 
Predictive Soil mapping is the creation of a digital 
soil information system using numerical models, 
soil observation, and their related environmental 
variables” [7]. “Digital maps of soil carbon stock 
are replacing conventional polygon-based soil 
maps. DSM techniques can be used not only to 
estimate SOC stock but also to quantify 
associated uncertainties in these estimates. DSM 
techniques can therefore be used to map new 
areas and upgrade the quality of the previous 
mapping. As these digital soil maps are stored in 
digital spatial formats, they have the advantage 
that numerous geospatial data handling tools in a 
spatial soil information system can be used to 
analyze and interpret large volumes of data” 
[8,9,10]. In DSM, soil properties are predicted 
through the quantitative relationship between 
measured soil attributes and soil environmental 
covariates based on the SCORPAN model [3]. 
The Digital Soil Mapping working group of the 
International Union of Soil Sciences (IUSS) has 
taken the initiative of the GlobalSoilMap project, 
the main objective of the project is to make new 
digital soil map at the world level using state-of-
the-art and advanced technologies for mapping 
soil and predicting soil attributes at a fine 
resolution [11]. According to the GlobalSoilMap 
scenario, can be predicted 12 soil properties 
along with uncertainties over the six depth 
intervals. 
 

“Recent day usage of machine learning 
approaches in DSM has increased. Compared to 
multiple machine learning techniques RF gives 
better results in the prediction of soil properties. 
Soil organic carbon concentrations, clay content, 

and pH were predicted with RF” [12,13]. RTs on 
the other hand are widely applied. McKenzie and 
Ryan (1999) used them to predict soil properties 
from terrain attributes and gamma radiometric 
surveys. QRF is an expansion of the Random 
Forest technique; the main objective of this study 
is to predict a surface soil property (sand. silt, 
clay, and pH) along with uncertainty using 
Quantile Regression Forest techniques with            
the use of limited soil sample data. Similar work 
was discussed and carried out by several 
researchers, proving the efficiency of the model 
in DSM [14,15,16]. DSM techniques are very 
much needed for large countries like India 
because conventional soil mapping needs more 
money, is time-consuming, and has less 
accuracy compared to Digital Soil Mapping 
[7,17]. 
 

2. STUDY AREA 
 

The paper discusses, derivative work of digital 
soil mapping, wherein soil properties were 
mapped using the SCORPION model for Salem 
and Rasipuram blocks (Fig. 1). Salem lies in the 
foothills of Shevaroy hills which houses the 
famous hill Station 'Yercaud'. The soil in the 
district can be broadly classified into six major 
soil types viz., Red in-situ, Red Colluvial Soil, 
Black Soil, Brown Soil, Alluvial and Mixed Soil. 
The major part of the district is covered by Red 
in-situ and Red Colluvial soils. Black soils are 
mostly seen in Salem, Attur, Omalur and Sankari 
taluks. Brown Soil occupies a major portion of 
Yercaud and parts of Salem and Omalur taluks. 
Rasipuram block is in the Namakkal district of 
Tamil Nadu. The district identifies red loam, black 
soil, laterite soil, sandy coastal alluvium, red 
sandy soil, and clay loam. The black or regar 
lands are considered the most fertile. It absorbs 
moisture from the atmosphere, retains it, and 
helps the cultivation of different crops. 
 

3. MATERIALS AND METHODS 
 

Fig. 2 explains the workflow in the form of a flow 
chart. The data necessary for digital soil 
classification were collected from secondary 
sources provided by Tamil Nadu for Salem and 
Rasipuram blocks (Table 1). Then the necessary 
parameters for the modelling are derived from 
the data. Finally using QRF, soil properties are 
mapped. 
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Fig. 1. Study area 
 

3.1 Estimation of Model Parameters 
 

A different set of environmental covariates were 
used for predicting the soil properties. In arid and 
semi-arid regions relief or topography is one of 
the main soil farming factors [14]. The digital 
elevation model was obtained from the Phased 
Array type L-band Synthetic Aperture Radar 
(ALOS PALSAR) data. The Derivatives of DEM 
like Elevation, Slope, Aspect, Topographic 
wetness index, Topographic position index, 
Curvatures (Plan and Profile), Multiresolution 
valley bottom flatness (MrVBF), and 
Multiresolution ridge flatness (MrRTF) were 
derived using SAGA GIS. Vegetation/organism is 
important for predicting soil organic carbon. So, 
the Normalized Difference Vegetation Index 
(NDVI) and Enhanced Vegetation Index (EVI) 

were derived from MODIS 13Q data. In 
additional remote sensing imageries sentinel 2 all 
bands download from USGS and climatic data 
such as mean temperature, and precipitation 
data downloaded from Worldclimate.net are used 
for prediction. Also, the soil properties of sample 
data of the region of interest (ROI) are 
incorporated as part of the model. Totally 56 soil 
samples are collected in the study area. Surface 
and sub-surface soil samples (0-30 and 30-60 
cm respectively) of the study area were used for 
mapping of soil properties of the study area 
(USDA 2017). Summary statistics of surface and 
subsurface soil properties are shown in Tables 2 
and 3. This can be further used in validating the 
prediction results by comparing them with 
statistics post prediction. 
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3.2 Scorpon Model 
 

Digital soil mapping is performed using the 
SCORPAN model. The word SCORPAN is a 
mnemonic of the parameters of the empirical 
relationship between soil and environmental 
factors to use these as soil spatial prediction 
functions for DSM. [3] proposed the SCORPAN 
model (Fig. 3), where soil (as either soil classes, 
Sc, or soil attributes, Sa) at a point in space and 
time is an empirical quantitative function of seven 
environmental covariates: soil (s), climate (c), 
organisms (o), relief (r), parent material (p), age 
(a), and spatial location (n): 
 

                      
 

In the commonly used SCORPAN model of 
DSM, predictor variables are represented 
implicitly or explicitly by a combination of one or 
more categorical or continuous variables [3]. For 
example, [11,18] used a range of surrogate 
measures of climate – humidity indices, 
mean/max/median rainfall, and air temperature 
which could be used to represent ‘C’ factors of 
the SCORPAN model. Because the relationships 
are based on the soil observations, the quality             
of the resulting soil map depends also on the soil 
observation quality. Usually, a digital soil    
mapper tries to optimize the accuracy of the 
models and minimize errors [19]. 

 

3.3 Quantile Regression Forest (QRF) 
 
The quantile regression forest (QRF) model was 
used for the prediction of soil properties and 
uncertainty estimates in the study area. QRF is 
an extension of the Random Forest model and 
the advantage of QRF over the Random Forest 
model (RFM) is for each node in each tree, RFM 
keeps only the mean of the observations that fall 
into this node and neglects all other information 
whereas QRF keeps the value of all observations 
in this node, and assesses the condsitional 
distribution based on this information. Many 
studies proved RF algorithm performed better in 
the prediction of soil properties. The random 
forest model basic assumption further improved 
as a quantile regression forest [20]. The main 
difference between QRF and RF is Random 
Forest keeps only the observations of mean 
values for each node in each tree, that falls into 
this node and ignores all other information 
whereas QRF keeps the all-observation values in 
this node, not just their mean and assesses             
the conditional distribution based on this 
information. In this study randomfores SRC and 
quantreg Forest packages are used for prediction 
in R studio. After the execution of the model, 
model performance was evaluated through the 
values of coefficient of determination (R2), Mean 
Error, Root Mean Square Error (RMSE) and 
uncertainty accuracy estimated via PICP. 

 
 

Fig. 2. Methodology flowchart 
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Table 1. Environmental variables used for prediction and their sources 
 

 
 

Table 2. Summary statistics on the surface properties of the samples collected 
 

Statistics PH OC (%) sand clay silt 

Min 6.4 0.11 40 5 1.8 
Max 9.1 1.3 93 48 15 
Mean 8.15 0.498 61.132 30.181 8.358 
S.D 0.612 0.234 12.43 9.108 3.633 
Skewness -0.990 0.91 0.165 -0.188 0.009 
Kurtosis 0.311 1.459 -0.583 -0.101 -0.726 

 

Table 3. Summary statistics on the sub-surface properties of the samples collected 
 

Statistics OC (%) sand clay silt 

Min 0.07 40 16 2.8 
Max 0.93 78 45 18 
Mean 0.356 56.148 33.892 10.194 
S.D 0.172 9.649 6.716 3.93 
Skewness 0.885 0.268 -0.557 0.079 
Kurtosis 1.689 -1.06 -0.497 -0.785 

 

 
 

Fig. 3. Illustration of scorpan model 
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4. RESULTS AND DISCUSSION 
 

4.1 Environmental Variables 
 

Different environmental parameters were derived 
from DEM data (Fig. 4) and are used in the 
model. The slope is the measure of steepness or 
the degree of inclination of a feature relative to 
the horizontal plane. This map provides a 
colorized representation of the slope (Fig. 5). 
Aspect is the compass direction that a slope 
faces. Its values indicate the directions the 
physical slopes face. Aspect direction is 
classified based on slope angle with a descriptive 
direction. An output aspect raster will typically 
result in several slope direction classes as shown 
in Fig. 6. 
 

The topographic Position Index (TPI) compares 
the elevation of each cell in a DEM to the mean 
elevation of a specified neighbourhood             
around that cell (Fig. 7). Topographic Wetness 
Index (Fig. 8) also known as the compound 
topographic index is a steady state wetness 
index. It is commonly used to quantify 
topographic control on hydrological processes. 
The index is a function of both the slope and             
the upstream contributing area per unit width 
orthogonal to the flow direction. 
 

Profile curvature is parallel to the direction of the 
maximum slope (Fig. 9). A negative value 
indicates that the surface is upwardly convex at 
that cell. A positive profile indicates that the 

surface is upwardly concave at that cell. A value 
of zero indicates that the surface is linear. Profile 
curvature affects the acceleration or deceleration 
of flow across the surface. Planform              
curvature (commonly called plan curvature) is 
perpendicular to the direction of the maximum 
slope. A positive value indicates the surface is 
sideward convex at that cell. A negative plan 
indicates the surface is sideward concave                  
at that cell. A value of zero indicates the surface 
is linear. Profile curvature relates to the 
convergence and divergence of flow across               
a surface. (Fig. 10). Other variables are 
multiresolution ridge top flatness (MrRTF), 
multiresolution index of valley bottom flatness 
(MrVBF) and Slope length and steepness (LS) 
factor as shown in Figs. 11, 12, and 13. 
 

4.2 Other Covariates 
 

In addition to the environmental variables, other 
parameters act as part of the model in predicting 
soil properties. These include Vegetation 
attributes namely NDVI, EVI, and climate 
variables like annual mean temperature, 
isothermally, and precipitation. Based on NDVI 
and EVI, the study area was classified of sparse 
to dense vegetation. The health of the vegetation 
is also an indirect indicator of the presence of 
organic carbon content, one of the soil properties 
to be predicted. From Figs. 14 and 15, it can be 
inferred that both the index provided a similar 
pattern of vegetation cover. 

 

 
 

Fig. 4. DEM visualization of salem and rasipuram block 
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Fig. 5. Slope map 

 
Fig. 6. Aspect map 
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Fig. 7. TPI map 

 
Fig. 8. TWI map 
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Fig. 9. Profile curvature from DEM 
 

Fig. 10. Plan curvature from DEM 
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Fig. 11. MrRTF derived from DEM for salem and rasipuram block Fig. 12. MrVBF derived from DEM for salem and rasipuram block 
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Fig. 13. Slope length and steepness factor 

 
Fig. 14. NDVI map 
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4.3 Prediction of Soil Properties 
 

The model was run to predict the composition of 
sand, silt, and clay, and pH, Organic carbon for 
surface and composition of sand, silt, and clay, 
and organic carbon for sub-surface. The 
prediction results and uncertainty of prediction 
are mapped as shown in Figs. 16, 19, 22, 25, 28, 
31, 34, 37, and 40. Scatterplots of observed 
against predicted were plotted for surface and 
sub-surface properties as shown in Figs. 17, 20, 
23, 26, 29, 32, 35, 38 and 41. The importance             
of variables against each soil property was                
also plotted in the form of a bar chart as shown    
in Figs. 18, 21, 24, 27, 30, 33, 36, 39, and 42. 
 

At the surface level, uncertainty is low in the 
prediction of silt composition when compared 
with the prediction of sand and silt. The pH value 
at the surface is around 8 with a very low 

uncertainty range of 1.5 to 2.7. At sub-surface 
level, once again the slit prediction uncertainty is 
low, proving that the samples and the 
parameters of the model aid sufficiently in silt 
prediction. 

 
4.4 Performance Measure of QRF 

 
The performance of the Random Forest model 
was evaluated for each property by calculating 
uncertainty indicators. Ten folds cross-validation 
techniques with 20 times repetition were used to 
evaluate the performance of the QRF model. The 
performance of models was evaluated using 
classic indicators such as Coefficient of 
determination (R2), Root. Mean Square Error 
(RMSE), mean error (ME) and Prediction interval 
coverage percentage (PICP). The accuracy 
assessment report is provided in below Table 4.  

 

 
 

Fig. 15. EVI map 
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Fig. 16. Prediction of surface – sand 
 

 
 

Fig. 17. Scatterplot of surface – sand 
 

 
 

Fig. 18. Variable importance of surface – sand
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Fig. 19. Prediction of surface – silt 
 

 
 

Fig. 20. Scatterplot of surface – silt 
 

 
 

Fig. 21. Variable importance of surface – silt
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Fig. 22. Prediction of surface – clay 
 

 
 

Fig. 23. Scatterplot of surface–clay 
 

 
 

Fig. 24. Variable importance of surface – clay
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Fig. 25. Prediction of surface – pH 
 

 
 

Fig. 26. Scatterplot of surface – pH 
 

 
 

Fig. 27. Variable importance of surface - pH
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Fig. 28. Prediction of surface-organic carbon

 
 

Fig. 29. Scatterplot of surface – organic carbon 
 

 
 

Fig. 30. Variable importance of surface – organic carbon
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Fig. 31. Prediction of sub surface – sand 
 

 
 

Fig. 32. Scatterplot of sub surface – sand 
 

 
 

Fig. 33. Scatterplot of sub surface – sand
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Fig. 34. Prediction of sub surface – silt 
 

 
 

Fig. 35. Scatterplot of sub surface – silt 
 

 
 

Fig. 36. Variable importance of sub surface – silt
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Fig. 37. Prediction of sub surface – clay 
 

 
 

Fig. 38. Prediction of sub surface – clay 
 

 
 

Fig. 39. Prediction of sub surface – clay
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Fig. 40. Prediction of sub surface – organic carbon 
 

 
 

Fig. 41. Scatterplot of sub surface – organic carbon 
 

 
 

Fig. 42. Variable importance of sub surface – organic carbon 
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The performance of the model is also depending 
on sampling density. The sampling density for 
this study is very low. Whereas higher sample 
density is required for better results in tropical 
countries where soil pattern is complex due to 
the geological uplift than in other regions. 
Overall, complex regional soil patterns with 
changing land use are the causes for weak 
prediction of these dynamic soil properties 
[21,22]. The prediction accuracy of the                  

RFM model was low in surface soil compared              
to subsurface. 

 
Further assessment was done by computing 
statistics on the predicted properties of soil at the 
surface and sub-surface levels (Tables 5 and 6). 
These values are compared with original values 
and found that there is much deviation in values 
except for the mean. 

 
Table 4. Model validation for prediction of soil properties 

 

Model accuracy assesment 

Parameters Layer Mean error RMSE    PICP 

      SD   SD   SD   SD 

Sand Surface 1.22 0.34 12.61 0.50 -0.04 0.08 84.30 2.30 

subsurface 1.01 0.49 11.81 0.31 -0.51 0.09 86.30 1.95 

Silt Surface -0.12 0.08 3.48 0.09 0.07 0.05 89.30 2.12 

subsurface 0.26 0.12 4.14 0.10 -0.12 0.06 85.00 1.58 

Clay Surface -0.50 0.34 9.96 0.31 -0.22 0.08 87.0 1.48 

subsurface -1.14 0.14 7.04 0.14 -0.09 0.04 92.70 1.63 

pH Surface -0.19 0.01 0.63 0.01 0.02 0.03 89.70 2.38 

OC Surface 0.02 0.01 0.22 0.01 0.09 0.04 87.90 1.80 

subsurface 0.02 0.00 0.17 0.00 0.03 0.04 90.50 2.10 

 
Table 5. Summary statistics on the predicted surface properties of the soil 

 

Statistics PH OC (%) sand clay Silt 

Min 8.0 0.305 45 18 4.2 

Max 8.5 0.7 76.9 45 12 

Mean 8.37 0.495 63.323 29.15 7.99 

S.D 0.079 0.074 5.784 4.924 1.301 

Skewness -1.884 0.451 -0.143 -0.297 -0.322 

 
Table 6. Summary statistics on the predicted sub-surface properties of the soil 

 

Statistics OC (%) sand clay silt 

Min 0.27 45 30 4.2 

Max 0.46 67 39 15 

Mean 0.340 56.76 34.272 9.86 

S.D 0.019 4.80 2.761 1.520 

Skewness 0.542 0.345 -0.497 0.968 

 

5. CONCLUSION 
 

Soil is the habitat of plants and hence it is a must 
to conserve it. In order to manage soil resources, 
an inventory of soil properties has to be made. 
Traditional techniques are quite laborious and 
time-consuming. With the advancements in 
remote sensing technology, we could map soil 
properties digitally. This study has adopted 

SCORPAN model to predict five major soil 
properties for surfaces such as sand, silt, clay, 
pH, OC, and four major soil properties for 
subsurfaces such as sand, silt, clay, and OC. 
The model is quite flexible with the input of 
covariates and soil samples. For this study, 
different covariates including vegetation, terrain, 
legacy soil information, and derivatives of DEM 
and satellite imagery were used for prediction. 
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Results show that with very low sampling density 
and freely available limited resources, we 
achieved moderately accurate results. The model 
works well at a global level but the study applies 
the model at the local level and hence the lack in 
achieving high accuracy. This can be overcome 
with an increase in the soil samples, and 
environmental covariates with high-resolution 
satellite imagery and DEM data. 
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