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ABSTRACT 
 

Enzymatic browning is associated with the action of polyphenol oxidases (PPO) and peroxidases 
(POD). The products of these enzymes cause undesirable changes of color and flavor of 
processed eggplant products. The present study aimed to evaluate kinetic properties and 
thermodynamics parameters of PPO and POD activities for controlling this undesirable process in 
extract from of violet eggplant. The effect of heat treatment on polyphenol oxidase and peroxidase 
activities in violet eggplant were studied over a range of 30 to 80 °C. T1/2-values of enzymatic 
activities are between 6.15 ± 0.03 and 13,27 ± 0,04 min at 80 °C, they decreased with increasing 
temperature, indicating a difference thermostability of each enzyme. D- and k-values decreased 
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and increased, respectively, with increasing temperature, indicating faster of these enzymes 
inactivation at higher temperatures. Results suggested that polyphenol oxydase and peroxidase 
were relatively thermostable enzymes with a Z-value which from 50.25 and from 88.33 °C and Ea 
of 41.21 and of 27.78 kJmol

-1
. Thermodynamic parameters were also calculated. The Gibbs free 

energy ΔG values range from 43.24 ± 0,03 to 91.45 ± 0,01 kJ/mol. These kinetic data can be used 
to predict prevention of browning in the violet eggplant (Solanum melongena L.) by thermal 
inactivation of enzymes. 
 

 
Keywords: Violet eggplant; peroxidase; polyphenol oxidase; enzymatic browning; Inactivation kinetics; 

thermodynamics parameters. 
 

1. INTRODUCTION  
 
Eggplant fruits (Solanum melongena L.) are 
widely consumed around the world due to their 
generous composition of nutraceuticals [1]. He is 
grown as an annual vegetable crop in warm 
climates and several years in the form of a bushy 
in tropical climates [2]. It was produced 54.07 
million tons in 2018, according to FAO statistic 
[3]. Eggplant has been found to be among the 
top ten vegetables with regards to antioxidants 
claimed to have several health benefits [4,5]. 
Eggplant (Solanum melongena L.) is important 
for its richness in phytonutrients with antioxidant 
capacity, mainly phenolic acids such as 
chlorogenic acid, caffeic acid and p-coumaric 
acid [6,7].  

 
Despite all the advantages, its consumption is 
limited due browning that occurs after 
mechanical damage, during long term storage 
and long-distance transportation, or when it is 
peeled and crushed in processing [8], which 
results in the appearance of dark color 
compounds [9]. Many studies have shown that 
polyphenol oxidase (PPO) and peroxidase (POD) 
activities increase in response to biotic and 
abiotic stresses. On general, enzymatic browning 
is related to the action of the PPO and POD 
isozymes, which use phenolic compounds as 
substrates and cause undesirable changes in the 
color and flavor of fruits, vegetables and tubers 
[10].  
 

PPOs (EC 1.14.18.1 monophenol 
monooxygenase and EC 1.10.3.2 o-diphenol: 
oxygen oxidoreductase) are proteins that 
catalyze oxidation reactions of phenolic 
compounds to quinones, with further 
polymerization to brown or black pigments known 
as melanin [11]. The enzyme has great 
heterogeneity regarding substrate, sensitivity to 
inhibitors, optimum pH, latency, thermal 
inactivation, number of isoforms and molecular 
mass [12]. PODs (EC 1.11.1.7) are enzymes that 

catalyze peroxidation, oxidation- catalytic, and 
hydroxylation reactions [13]. They are the most 
studied protein in plant, since they have been 
found in every major plant division [14]. They are 
involved in ripening and senescence, plant 
defense, and darkening reactions [13].  
 
The inactivation of the PPO and POD is essential 
in order to minimize losses that are caused by 
enzymatic browning, in such a manner that 
several methods and technologies have been 
studied. Currently, one of the most applied 
methods for the inactivation of oxidative enzymes 
is thermal treatment, which is also being used to 
ensure product quality in the food industry [15]. 
Short exposures to 70-90°C are mostly sufficient 
for destruction of the enzymes catalytic function 
[16]. The enzymes represent quite a challenge 
for large industrial processors due to their high 
thermostability even at pasteurization 
temperatures, which can lead to organoleptic and 
nutritional properties deterioration of the food. 
However, knowing the inactivation parameters is 
an important factor in optimizing a treatment or a 
combination of treatments, in order to obtain the 
desired product [15]. The aim of this work was to 
investigate the thermal inactivation of violet 
eggplant PPO and POD on a kinetic basis, a 
method that permits to determine accurate 
calculations of kinetic and thermodynamic 
parameters. These results can indicate an 
adequate choice of temperature conditions to 
inactivate violet eggplant enzymes and allow to 
predict the impact of a given heat-treatment and 
to design processes suitable to obtain the 
desired product properties.  
 
2. MATERIALS AND METHODS  
 

2.1 Plant Material and Chemicals 
 

Fresh eggplant violet (Solanum melongena L.) 
was purchased from tall market, of Lobia (Daloa, 
Côte d’Ivoire), during September and October 
2020. All chemicals and reagents were analytical 
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grade and purchased from the Merck A.G. 
(Darmstadt, Germany) and from the Sigma 
Chemical Company (St. Louis, USA). 
 

2.2 Methods 
 

2.2.1 Extraction of polyphenol oxidase (PPO) 
and peroxidase (POD) 

 

A sample of eggplant (150 g) was crushed in a 
blender (Moulinex, France) and homogenized for 
10 min in 300 ml of NaCl 0.9% (w/v). The 
resulting homogenate was centrifuged at 8000 g 
for 10 min at 4°C (Refrigerated centrifuge TGL-
16M, China). The collected supernatant was the 
crude enzymatic extract used for PPO and POD 
activities assays [17].  
 

2.2.2 Assay of polyphenol oxidase (PPO) and 
peroxidase (POD) and protein 
determination 

 

To determine the enzymatic activity of PPO, the 
reaction mixture adjusted to 2 mL consisted of 
the 100 μL of the enzyme extract, 1.1 mL of 100 
mM phosphate buffer (pH 6.6), supplemented 
with 0.8 mL of pyrocatechol substrate (10 mM). 
The blank assays had all the components for the 
reaction, except the enzymatic extract, which 
was replaced with buffer [18].  
 

To determine the enzymatic activity of POD, the 
reaction mixture adjusted to 3 mL, an aliquot of 
100 μL of the enzyme extract was added to the 
reaction medium containing 0.5 mL of guaiacol 
(1.68%), 1.9 mL of 100 mM citrate buffer (pH 6.0) 
and 0.5 mL H2O2 (1.8%). Blanks were 

constituted by all components of the reaction 
medium, except the enzymatic extract, which 
was replaced with citrate buffer [19].  
 

This reaction mixture was incubated at 25°C for 
10 min, and enzymatic activity was analyzed in a 
spectrophotometer, observing the variation in 
absorbance units at wavelengths of 480 nm for 
POD and 420 nm for PPO (standard conditions). 
Experiments were performed in triplicate, and the 
results expressed as units of enzymatic activity 
per mg of protein. One unit of enzymatic activity 
(U) was defined as an increase in absorbance of 
0.001 per min. Protein concentrations were 
determined spectrophotometrically at 660 nm by 
method of Lowry et al. [20]. using bovine serum 
albumin as a standard.  
 

2.2.3 Thermal inactivation 
 

The thermal inactivation of PPO and POD 
activities was determined at temperatures 

ranging from 30 to 80 °C. The crude enzymatic 
extract in appropriate buffers [100 mM phosphate 
pH 6.6 (for PPO) and citrate pH 6.0 (for POD) 
was preincubated at different temperatures. 
Aliquots were withdrawn at intervals and cooled 
at room temperature for 10 min. The residual 
enzymatic activity, determined in both cases at 
30 °C under the standard test conditions, was 
expressed as percentage activity of zero-time 
control of the untreated enzyme. 
 
2.2.4 Kinetic data analysis  

 
The temperature dependence of the reaction rate 
constant for the studied enzyme served as the 
basis for fitting to the Arrhenius equation [21]:  
 

Ln [At/A0]= -kt                               (Eq. 1)  
 
where; 
At is the residual enzyme activity at time t (min),  
A0 is the initial enzyme activity,  

k (min-1) is the inactivation rate constant at a 
given condition.  
k-values were obtained from the regression line 
of ln (At/Ao) versus time as slope.  
 
D-value is defined as the time needed, at a 
constant temperature, to reduce the initial 
enzyme activity (Ao) by 90 %. For first-order 
reactions, the D-value is directly related to the 
rate constant k (Eq. 2) [22,23]: 
 

D =2.303/k                                       (Eq. 2)  
 

The Z-value (°C) is the temperature increase 
needed to induce a 10-fold reduction in D-value 
22. This Z-value follows the Eq. 3: 
 

Log [D1/D2] = [T2-T1]/ZT                  (Eq. 3)  
 
where,  
T1 and T2 are the lower and higher temperatures 
in °C or K.  
 

Then, D1 and D2 are D-values at the lower and 
higher temperatures in min, respectively.  
The Z-values were determined from the linear 
regression of log (D) and temperature (T).  
 

2.2.5 Thermodynamic analysis  
 
The Arrhenius equation is usually utilized to 
describe the temperature effect on the 
inactivation rate constants and the dependence 
is given by (Eq. 4 or 5): 
 

k = Ae 
(-Ea/RT)

                         (Eq. 4)  
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Eq. 4 can be transformed to: 
 

 ln k = lnA–Ea/R × T.                 (Eq. 5)  
 
where,  
k is the reaction rate constant value,  
A the Arrhenius constant,  

Ea (kJ.mol-1) the activation energy,  

R (8.31 J.mol-1K-1) the universal gas constant  
T is the absolute temperature in Kelvin (K).  
 
When the “ln” of “k” is plotted against the 
reciprocal of the absolute temperature, a linear 
relationship should be observed in the 
temperature range studied. The slope of the line 
obtained permitted to calculate the activation 
energy and the ordinate intercept corresponds to 
ln A [24,25].  
 
The values of the activation energy (Ea) and 
Arrhenius constant (A) allowed the determination 
of different thermodynamic parameters [26] such 
as variations in enthalpy, entropy and Gibbs free 
energy, ΔH, ΔS and ΔG, respectively, according 
to the following expressions [27]: 
 
 ΔH# = Ea - RT                                   (Eq. 6)  
 
ΔS# = R (lnA-ln KB/hP-ln T)                 (Eq. 7)  
 
ΔG# = ΔH# - T ΔS#                             (Eq. 8)  
 
Where;  
KB is the Boltzmann constant (1.38 x 10-23 J/K),  
hP is the Planck constant (6.626 x 10

-34
 J.s), 

T is the absolute temperature. 
 

2.2.6 Statistical analysis  
 
All determinations reported in this study were 
carried out in triplicate. Results were expressed 
as means ± standard deviation.  
 

3. RESULTS AND DISCUSSION 
 

The optimum temperatures of polyphenol 
oxidase (PPO) and peroxidase isolated from 
violet eggplant (Solanum melongena L.) were 25 
°C and 35 °C respectively [28]. The residual 
activities of PPO and POD were studied as a 
function of temperature ranging from 30 to 80 °C 
for PPO and 40 to 80 °C for POD to determine 
their thermodynamic properties. The thermal 
stability profile of the PPO and POD presented in 
the form of the residual percentage activity is 
shown in Table 1. the activities of PPO and POD 
decreased with increasing temperature and 

treatment time (5 - 60 min). Indeed, at 
temperatures between 30 - 80 °C, heat-
denaturation of the enzymes occurred after 5 min 
of incubation (98.19 to 77.11 %) for PPO and 
(89.10 to 56.23 %) for POD. POD is not a very 
heat-stable enzyme as seen in Table 1. After the 
treatment at 40 °C for 20 min, POD retained 70 
% of its activity, whereas at 55, 65, and 75 °C for 
the same time interval, it retained less than 46 % 
of its activity. Although heating at 60 °C for 15 
min resulted in partial (55.40 %) inactivation. 
However, the enzyme is completely inactivated 
after 30 min pre-incubation at 80 °C (97 % loss 
of activity). On one hand, the decrease of 
percentage residual activity at temperatures 
higher than 40 °C was most likely due to the 
unfolding of the tertiary structure of the enzyme 
to form the secondary structure and on other 
hand, it could be explained by the chemical 
modification [29]. It has been noted that heat 
stability of the enzyme may be related to 
ripeness of the plant and molecular forms of 
enzyme [30]. 
 
PPO showed greater stability than POD in a 
temperature range of 40 - 70°C, displaying 81.87 
and 49.66 % of residual activity after 20 min of 
incubation at 50 and 70 °C, respectively (Table 
1), POD activity was found to be completely 
inactive after 30 min of incubation at 80 °C (91 % 
loss of activity). The data indicated that high 
temperature blanching is necessary to control the 
enzymatic browning caused by PPO and POD in 
violet eggplant (Solanum melongena L.). 
 
The logarithmic linear relationship between the 
PPO and POD activities and heat treatment time 
for the temperature range of 30 - 80°C and 40 - 
80 °C respectively followed first-order kinetics 
each (Figs. 1 and 2). These results were 
consistent with those reported for polyphenol 
oxidase and peroxidase of Loquat fruit [31] and 
PPO and POD of potato tubers [32]. 
  
The rates of the PPO and POD inactivation, after 
Ln transformation, decreased linearly with the 
inverse of temperature (Fig. 2). This relationship 
was described by the equation: ln k = -4959 (1/T) 

+ 11.22 (R
2 

= 0.908) and ln k = -3344 (1/T) + 

6.92 (R
2 

= 0.86) respectively for the PPO and 
POD, where T represents absolute temperature 
(K). From 30 to 80 °C, the activation energy (Ea) 
value for thermal inactivation of the PPO and 
POD were calculated to be 41.21 kJ/mol and 
27.78 kJ/mol respectively for the two enzymes 
(Table 2).  
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Table 1. Effect of treatment temperature and time on inactivation of polyphenol oxidase (PPO) and peroxidase from violet eggplant (Solamun melongena L.) 
 

Temperatue 
(°C) 

                                                      Residual activity (%) at each time (min) of heat treatment 
            5           10           15          20         25          30 
PPO POD PPO POD PPO POD PPO POD PPO POD PPO POD 

30 98.19±3.1
a
  95.78±5.3  93.24±2.3  91.39±3.6  88.55±1.5  86.94±3.2  

35 97.64±2.5  95.21±1.8  92.31±0.7  90.48±4.1  87.88±1.4  85.27±2.2  
40 95.12±2.8 89.10±4.1 90.48±2.5 77.62±2.5 86.07±1.5 70.79±4.1 81.87±5.1 61.54±2.3 78.66±2.7 53.70±1.2 75.58±1.8 47.44±1.1 
45 88.69±3.5 85.11±3.3 81.87±1.6 74.13±2.1 74.08±3.1 65.22±3.5 67.29±3.4 56.23±0.7 61.26±1.2 48.98±1.3 54.34±1.3 41.69±1.6 
50 88.69±1.3 83.18±2.4 78.66±0.6 72.44±1.2 71.18±1.2 60.26±2.3 64.40±2.7 52.48±2.3 57.06±0.8 44.67±0.9 52.20±0.6 38.02±0.7 
55 86.94±0.8 78.26±1.6 77.88±1.2 67.61±2.1 69.77±2.1 56.23±1.1 62.50±2.1 45.71±4.5 55.99±2.3 38.02±2.1 49.66±0.8 30.90±1.1 
60 84.37±1.2 77.62±1.4 75.58±2.1 64.75±1.1  67.31±1.7 55.40±1.2 58.86±1.9 42.66±2.3 52.20±2.5 33.88±1.6 45.84±1.1 28.18±1.3 
65 83.53±2.1 75.86±3.5 71.89±0.9 61.68±0.5 60.65±1.1 50.12±2.3 52.20±1.6 39.81±2.6 45.38±1.8 30.90±0.9 39.06±2.5 25.12±1.1 
70 81.87±1.7 74.13±2.9 70.47±1.3 58.88±1.8 59.45±1.8 47.86±1.1 49.66±2.3 37.15±1.7 42.54±0.8 28.18±1.1 37.16±1.0 22.39±0.7 
75 79.45±3.2 74.13±1.7 65.05±2.2 54.95±2.1 52.73±0.6 42.66±2.7 43.60±3.1 32.36±2.0 35.67±1.3 24.55±1.3 29.82±1.1 18.62±1.0 
80 77.11±1.2 56.23±0.7 60.65±1.1 30.90±2.1 45.38±1.1 19.05±0.6 34.99±2.1 10.47±1.4 27.25±0.8 5.93±0.6 8.80±0.3 3.47±0.4 

a
Mean (±SD) for triplicate experiments 

 

Table 3. Thermodynamic parameters of polyphenoloxidase (PPO) and peroxidase (POD) from violet eggplant (Solamun melongena L.) under heat treatment between 30 and 80°C 
(assuming a 1st-order kinetic model) 

 

Temperature (°C)                                                                    Thermodynamic parameters 

         ∆H# (kJ.mol-1)        ∆S# (J.mol-1K-1)         ∆G# (kJ.mol-1) 
PPO POD PPO POD PPO POD 

30 38.69 ± 0,02
a
  -151.74 ± 0,02  43.24 ± 0,03  

35 38.65 ± 0,01  -151.87 ± 0,01  43.96 ± 0,02  
40 38.60 ± 0,01

f
 25.18 ± 0,02 -152.01 ± 0,03 -187.66 ± 0,03 44.68 ± 0,04 83.92 ± 0,04 

45 38.56 ± 0,04 25.14 ± 0,01 -152.14 ± 0,04 -187.79 ± 0,04 45.41 ± 0,12 84.86 ± 0,12 
50 38.52 ± 0,02 25.10± 0,01

f
 -152.27 ± 0,02 -187.92 ± 0,02 46.13 ± 0,01 85.80 ± 0,01 

55 38.48 ± 0,02 25.06 ± 0,04 -152.40 ± 0,01 -188.05 ± 0,01 46.86 ± 0,03 86.74 ± 0,03 
60 38.44 ± 0,03 25.02 ± 0,02 -152.52 ± 0,03 -188.17 ± 0,03 47.59 ± 0,02 87.68 ± 0,02 
65 38.40 ± 0,01 24.97 ± 0,01 -152.65 ± 0,02 -188.30 ± 0,02 48.32 ± 0,01 88.62 ± 0,01 
70 38.35 ± 0,02 24.93 ± 0,02 -152.77 ± 0,04 -188.42 ± 0,04 49.05 ± 0,01 89.56 ± 0,01 
75 38.31 ± 0,04 24.89 ± 0,04 -152.89 ± 0,01 -188.54 ± 0,01 49.78 ± 0,02 90.50 ± 0,02 
80 38.27 ± 0,01 24.85 ± 0,01 -153.01 ± 0,03 -188.66 ± 0,03 50.51 ± 0,01 91.45 ± 0,01 
Mean 38.48 ± 0,03 25.02 ± 0,01 -152.39 ± 0,02 -188.17 ± 0,02 48.87 ± 0,01 87.68 ± 0,01 

a 
Mean (±SD) for triplicate experiments 
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Fig. 1. Thermal inactivation curves of polyphenol oxidase from violet eggplant (Solamun 
melongena L.) in phosphate buffer (pH 6.6) in the temperature range 30-80 °C. A0 is the initial 

enzymatic activity and At the activity at each holding time. Each data point is the mean of three 
determinations 

 

 
 

Fig. 2. Thermal inactivation curves of peroxidase from violet eggplant (Solamun melongena L.) 
in citrate buffer (pH 6.0) in the temperature range 40-80 °C. A0 is the initial enzymatic activity 
and At the activity at each holding time. Each data point is the mean of three determinations 

 

A large value of Ea is indicative that more energy 
is required to inactivate the enzyme [33]. They 
further stated that high Ea is indication that the 
process is strongly temperature dependent, at 
lower temperature, this rate becomes 

insignificant [33]. ΔE# and ΔH# for POD were 
lower than those for PPO. Then considering the 

lower values of ΔE# and ΔH# for POD in 
comparison with those for PPO, it is possible to 
state that violet eggplant POD is less stable than 
PPO (Table 1). This suggests that the 
denaturation process requires a high energy 
input to the enzyme substrate complex to initiate 
denaturation probably due to a possible compact 
structure of enzymes and the strength of the thiol 
groups (SH) or disulfide bond at the active site 

[34]. The results are similar to those for 
strawberry fruit, showing that PPO is more 
thermostable than POD [35], but different from 
those for melon [36]. 
 

The values of the kinetic parameters, D and the 
inactivation rate constant k, were determined 
using Equations 1 and 2 (Eq. 1 and Eq. 2). The 
obtained D-values showed that successive 
increase as the temperature was increasing in all 
the enzymes assayed. Eze et al. [33] reported 
that corresponding decrease with increasing 
temperature is indicative of fast enzyme 
inactivation at higher temperature. The D-values 
were increasing as the temperature (K) was 
increasing this implies faster enzyme inactivation 
at higher temperature.  
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Table 2. D-, Z- and Ea-values for thermal inactivation of polyphenol oxidase (PPO) and 
peroxidase from violet eggplant (Solamun melongena L.) at temperature range (30-80 °C) 

 
Kinetic parameters  Polyphenol oxidase Peroxidase 
D-values (min)    
D30  490.00 ± 1.98a  
D35  442.88 ± 2.25  
D40 239.89 ± 1.05 93.49 ± 1.43 
D45  115.15 ± 1.74 79.58 ± 2.67 
D50  103.73 ± 1.07 70.98 ± 0.8 
D55  98.00 ± 2.65 58.82 ± 1.76 
D60  87.56 ± 1.03 54.24 ± 1.43 
D65  21.72 ± 1.05 49.46 ± 1.32 
D70  67.73 ± 0.9 45.81 ± 2.12 
D75  55.89 ± 1.03 40.78 ± 2.23 
D80  44.11 ± 1.05 20.42 ± 1.78 
Z-value (°C)  50.25 ± 0.71 41.21 ± 0.68 

Ea (kJ.mol-1)  41.21 ± 0.62 27.78 ± 1.23 
a
Mean (±SD) for triplicate experime 

 

The effect of temperature on D-values is shown in Figs. 3 and 4 respectively for PPO and POD, and 
from this representation, the Z-values were calculated and found to be 50.25 °C at 30 - 80 °C for the 
PPO and 88.33 at 40 - 80 °C for the POD (Table 2). High Z-value indicates that high amount of 
energy was required to initiate denaturation and vice versa 33, low Z-values was obtained for the 
enzyme. High Z- values indicates more sensitivity to the duration of heat treatment, while low Z-value 
implies more sensitivity to increase in temperature [37].  
 

 
 

Fig. 3. Variation of decimal reduction times with temperature for of polyphenol oxidase from 
violet eggplant (Solamun melongena L.). Each data point is the mean of three determinations 

 
The thermodynamic parameters for thermal 
inactivation of the PPO and POD from violet 
eggplant are shown in Table 3. At temperatures 
of 30 – 80 °C, the average values of ΔH, ΔS and 
ΔG were respectively 38.48 (kJ/mol), -152.39 (J 

mol
-1 

K
-1

) and 48.87 (kJ/mol) for PPO. While at 
temperatures of 40 - 80 °C these average values 
were respectively of 25.02 ± 0.01 (kJ/mol), -

188.17 ± 0.02 (J mol
-1

 K
-1

) et 87.68 ± 0.01 
(kJ/mol). The high values of change in enthalpy 
obtained for the different treatment temperatures 
indicate that enzyme undergoes a considerable 
change in conformation during denaturation. 
Positive values of ΔH of the enzymes indicate 
the endothermic nature of the oxidations 
reactions.  

y = -0.016x + 2.9191
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Fig. 4. Variation of decimal reduction times with temperature for of peroxidase from violet 
eggplant (Solamun melongena L.). Each data point is the mean of three determination 

 
Free energy (ΔG) is defined as the maximum 
amount of energy available to a thermodynamic 
process that can be converted into useful work 
[38]. The change in free energy (ΔG) can be 
used to predict the direction of a reaction at 
constant temperature and pressure [39]. If ΔG 
has a negative value, there is a net loss of 
energy, and the reaction occurs spontaneously, if 
ΔG has a positive value, there is a net gain of 
energy, and the reaction does not go 
spontaneously, if ΔG value is equal to zero, the 
reactants are in equilibrium [38]. Enzyme 
molecule with high or positive ΔG is considered 
to be stable [40]. This indicates that values 
obtained for violet eggplant polyphenol oxidase 
and peroxidase were stable at 303 and 343 K, 
which suggested that these enzymes would not 
disintegrate non-spontaneously, hence, the 
enzymes could be said to be stable. Also, these 
positive values at all temperatures for the 
enzymes indicate that the inactivation processes 
were not spontaneous. 
 
Entropy (ΔS) is a measure of degree of 
randomness or disorder of a system; it increases 
(ΔS is positive) when the system becomes more 
disordered 38. The rate of any chemical 
reaction is a function of the temperature and 
energy difference between the reactants and the 
activation energy Ea [41].  
 
Eze [40] stated that a negative ΔS show there is 
an aggregation process in which a few inter or 
intra molecular bonds are formed. The negative 
values observed for the variation in entropy 
indicate that there are no significant processes of 

aggregation, since, if this would happen, the 
values of entropy would be positive [42].  
 

4. CONCLUSION  
 
Thermal inactivation of polyphenol oxidase 
(PPO) and peroxidase (POD) could be described 
by a first-order kinetic model for each enzyme. 
The efficient and effective heat treatment to 
reduce PPO and POD and enzymatic browning 
in violet eggplant (Solamun melongena) can be 
derived from any of the D-, z-, Ea- or k-values. 
The D-, Z-, k-values and the high values 
obtained for activation energy and change in 
enthalpy indicate that a high amount of energy is 
required to initiate denaturation of these 
enzymes, most likely due to its stable molecular 
conformation. POD was much more thermolabile 
than PPO, losing more than 50 % of the activity 
after 30 min of heating at 40 °C. The results 
obtained in this study indicate that PPO and POD 
characteristics are variable and dependent on 
eggplant fruit, and that PPO of eggplant fruit 
plays an important role in browning, which is an 
item of knowledge that will significantly help to 
control the enzymatic browning taking place 
during processing and storage of violet eggplant 
(Solamun melongena) 
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