
  

_____________________________________________________________________________________________________ 
 
*Corresponding author: Email: nwjulius@imsu.edu.ng; 
 
 
 

Archives of Current Research International 
 
19(4): 1-7, 2019; Article no.ACRI.54325 
ISSN: 2454-7077 

 
 

 

 

Design Optimality Criteria of Reduced Models for 
Variations of Central Composite Design 

 
J. C. Nwanya1*, H. I. Mbachu1 and K. C. N. Dozie1 

 
1
Department of Statistics, Imo State University, Owerri, Imo State, Nigeria. 

 
Authors’ contributions 

 
This work was carried out in collaboration among all authors. Author JCN designed the study, 

performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. 
Authors HIM and KCND managed the analyses and literature searches of the study. All authors read 

and approved the final manuscript 
 

Article Information 
 

DOI: 10.9734/ACRI/2019/v19i430164 
Editor(s): 

(1) Amal Hegazi Ahmed Elrefaei, Division of Radioisotope Production, Hot Laboratory and Waste Management Center, Atomic 
Energy Authority, Egypt. 

Reviewers: 
(1) Francisco Bulnes, USA. 

(2) Gajendra Sharma, Kathmandu University, Nepal. 
Complete Peer review History: http://www.sdiarticle4.com/review-history/54325 

 
 

 
Received 24 November 2019 

Accepted 28 January 2020 
Published 11 February 2020 

 
 

ABSTRACT 
 

Choosing a response surface design to fit certain kinds of models is a difficult task. This work 
focuses on the reduced second order models having no quadratic and  no interaction terms for five 
variations of Central Composite Design (SCCD, RCCD, OCCD, Slope-R and FCC) using the D-, 
G- and A- optimality criteria. Results show that for models having no quadratic terms that G- and 
A-optimality criteria are equivalent and replication of the axial portion with increase in center points 
tends to decrease the D-, A- and G-optimality criteria values of the CCDs while for models having 
no interaction terms, replication of the axial portion with increase in center points increases the D-
optimality criterion values of SCCD, RCCD and OCCD in all the factors considered. Finally, the 
work have shown that replication of the axial portion reduces the performance of the CCDs with 
models having no quadratic terms and Slope-R is a better design with respect to D- and A-
optimality criteria. 
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1. INTRODUCTION 
 
When modelling an experiment, the researcher’s 
aim is to choose a design which allows for good 
estimation of relationship between the 
explanatory factors and the response of interest. 
This relationship can be written as y = η(x1, x2, 
…, xk) + ε where y is the response, η is the true 
unknown function, x1, x2, …, xk are the 
independent variables, and ε is the error term 
that represents sources of variability not 
accounted for in η.  

 
The standard approach in response surface 
methodology is to model the relationship and 
approximate it with a low-order polynomial such 
as a second order model. 
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Where y is the measured response, β’s are 
parameter coefficients; xi’s are the input 
variables and   is an error term. Central 
composite design is among the second order 
design that utilize this stated model of Eq. (1).  

 
Assessment of every design begins with the 
specification of a model that is proposed for the 
resulting analysis once the data have been 
collected. After data collection, and individual 
effects are tested, some terms may not be 
significant in the model. In such situation, the 
experimenter will decide to use a reduced model, 
which has only a portion of the terms included 
that were in the original model for which the 
design was chosen. Design optimality criteria 
based on the new adopted reduced model are 
equally or even better than the optimality criteria 
for the proposed full model. Therefore, a design 
should be robust over classes of reduced model. 
The reduced model may only have a fraction of 
the quadratic terms, or it may be a first order 
model with some of the interaction terms 
included. It may be such that the principal of 
hierarchy may not be appropriate. With this new 
chosen model, the design may no longer have its 
desired Properties of the prediction variance. The 
distribution of the scaled prediction variance 
(SPV) may change drastically depending on 
which terms are excluded from the model. The 
experimenter wants to know how different if any, 
the SPV curves for each model for a certain 
design will be. The robustness of the design to 
model changes is determined by examining the 
behavior of SPV. 

Some authors have studied the design-selection 
problem when the proposed approximating 
model is an under parameterized approximation 
of a true response surface. Box and Draper [1] 
developed a mean square error design criterion 
which provides protection against bias error due 
to model inadequacy. Karson, et al. [2] also 
studied the design-selection problem when the 
proposed approximating model is an 
underparameterized approximation of the true 
response surface. Chipman [3] applied a 
Bayesian approach to reduce the number of 
possible models through heredity properties. 
Using the hierarchical nature of different model 
terms, he developed prior relationships between 
predictors that were then incorporated into the 
stochastic search variable selection for any type 
of linear model. Li and Nachtsheim [4] developed 
a class of model robust designs for estimating 
main effects and a combination of interactions. 
After obtaining an upper bound, g, on the number 
of possible two-way interactions from the 
experimenter, a model robust factorial design 
was conducted guaranteeing the estimability of 
any combination of the g interactions. Borkowski 
and Valeroso [5] did a comparison of design 
optimality criteria of reduced models for response 
surface designs (central composite design, 
computer generated design and small composite 
design) in the hypercube. They used D-, G-, A- 
and IV-optimality criteria to evaluate the 
performance of the designs. They presented 
some interesting conclusion on how the inclusion 
or non-inclusion of linear, cross product and 
quadratic terms affect the behavior of the 
optimality criteria. Unlike Borkowski and Valeroso 
[5], Chomtee and Borkowski [6] did a comparison 
of design optimality of reduced models of seven 
response surface design in a spherical region 
using only D- and G-optimality criteria to evaluate 
them. Their results suggest that replication 
affects different criteria in different ways. That is, 
what improves one criterion may be detrimental 
to another. Yakubu and Chukwu [7] compared 
optimality criteria of reduced models of split-plot 
CCD under various ratios of the variance 
components (or degrees of correlation d). They 
observed that the optimality criteria for these 
models strongly depend on the values of d and 
are robust to changes in the interaction terms. 
Iwundu and Jaja [8] did a precision of full 
polynomial response surface designs on models 
with missing coefficients using the D- and G-
efficiency measures. Their results show that 
studying the precision of using constructed full 
model designs on reduced models, the first-order 
designs had lower loss in D-efficiency as well as 
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G-efficiency when used on reduced first-order 
model. 
 
Oyejola and Nwanya [9] did a comparative study 
of five variations of the central composite design 
using the D-, A-, G-, and IV-optimality criteria. 
The optimal values were estimated under full 
second order model. Their result show that the 
replicating the star points tends to decrease the 
D and G-optimality criterion of CCDs. Onyeneke 
and Effanga [10] applied reduced second order 
model of convex optimization in paper producing 
industries. They used the rotatable central 
composite designs (RCCD), and obtained a 
reduced quadratic model that met our barite and 
calcite production prerequisites used in favor of 
improving grinding conditions in paper producing 
industries. 
 

This study examines the performance of the 
CCDs under reduced models using the optimality 
criteria (D, G and A). The variations of central 
composite design were considered without any 
particular region of interest. The reduced second 
order model considered in this paper are models 
having no quadratic and no interaction terms 
only. The variation of central composite 
considered are the spherical central composite 
design (SCCD), rotatable central composite 
design (RCCD), orthogonal central composite 
design (OCCD), slope-rotatable central 
composite design (Slope-R) and face centered 
cube design (FCC). The basis of variation in 
these designs are the distance of the axial points 

from the center of the design. Also the 
performance of these designs were examined 
when the axial portions are replicated twice with 
one and three center points. All these were 
considered for factors k = 3, 4, 5 and 6.  
 

2. METHODOLOGY 
 

Reduced second order model is a technique for 
reducing the computational complexity of 
mathematical models in numerical simulation. 
These values are computed for the proposed 
model in Eq. (1) and for “reasonable” reduced 
models that are formed by removing terms based 
on hierarchy. The set of reduced models is 
consistent with the definition of weak heredity 
given in [3] that is as follows 
 

1. If a model contains an 2
ix  term, then it 

must contain the corresponding 
ix  term 

2. If a model contains an 
ji xx  term, then it 

must contain the corresponding 
ix  or 

jx or 

both terms. 
 

Let 1’s and 0’s in the L, Q, and C columns 
indicate, respectively the presence or absence of 
the term 

ix  in the reduced model, p indicate the 

number of model parameters, dv indicates the 
number of design variables present in the model, 

and ,,cl and q indicate the number of linear, 

cross-product, and quadratic terms in the model 
respectively. Tables 1-4 displays the number of 

 
Table 1. Reduced second order models for factor k = 3 

 

Model P dv L Q C (l, q, c ) 
1 
2 

7 
7 

3 
3 

 (1, 1, 1) 
(1, 1, 1) 

(0, 0, 0) 
(1, 1, 1) 

 (1, 1, 1) 
(0, 0, 0) 

 (3, 0, 3) 
(3, 3, 0) 

 

Table 2. Reduced second order models for factor k = 4 
 

Model p dv L Q C (l, q, c) 
1 
2 

11 
9 

4 
4 

 (1,1,1,1) 
(1,1,1,1) 

 (0,0,0,0) 
(1,1,1,1) 

(1,1,1,1,1,1) 
(0,0,0,0,0,0) 

 (4, 0, 6) 
(4, 4, 0) 

 

Table 3. Reduced second order models for factor k = 5 
 

Model p dv L Q C (l, q, c) 
1 
2 

16 
11 

5 
5 

(1,1,1,1,1) 
(1,1,1,1,1) 

 (0,0,0,0,0) 
(1,1,1,1,1) 

(1,1,1,1,1,1,1,1,1,1) 
 (0,0,0,0,0,0,0,0,0,0) 

 (5, 0,10) 
 (5, 5, 0) 

 

Table 4. Reduced second order models for factor k = 6 
 

Model   p dv         L        Q                     C (l, q, c) 
1 
2 

22 
13 

6 
6 

(1,1,1,1,1,1) 
(1,1,1,1,1,1) 

(0,0,0,0,0,0) 
(1,1,1,1,1,1) 

(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

 ( 6, 0, 15) 
 ( 6, 6, 0 ) 
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models and terms in each of the factors k 
considered. 
 

This information matrix is used in calculating the 
robustness of design optimality criteria of 
reduced second order models. For each of the 
design considered, robustness is quantify by 
calculating the optimality measure over reduced 
model of the second order model in Eq. (1) 
 

D-efficiency pT
1

100





       

                                                                                 

G-efficiency = 
2
maxˆ

100

N

p        

                                                                                          

A-efficiency = 

  1
100


TNtrace

p

 
                                                                                                    

Where N is the design size, p is the number of 

model parameters, and 2
max̂ is the minimum of 

the maximum of   )()(
1
xfxf TT 

  approximated 

over the set of candidate points. 
 

3. NUMERICAL RESULT AND 
DISCUSSION  

 

The D-, G- and A-optimality criteria for the 
reduced second order model comparisons of the 
five variation of CCD (RCCD, SCCD, OCCD, 

FCC and Slope-R) for factors k = 3, 4, 5 and 6 
are summarized in Tables 5-8. For the optimality 
criteria; larger values imply a better design (on a 
per point basis). Let rs indicate the replication of 
axial portion of the design, n0 is the number of 
center points, p the number of parameters in the 
model and N the number of design runs.  
 
3.1 Reduced Second Order Models 

having no Quadratic Terms (q = 0) 
 
The reduced second order models having no 
quadratic terms in all the factors k considered (k 
= 3, 4, 5, and 6) show that G- and A- optimality 
criteria values of all the CCDs are the same. This 
implies that G- and A- optimality criteria are 
equivalent. Increase in the center points when 
the axial portion are not replicated decreases the 
D-, A- and G-optimality criteria values of the 
CCDs. Also replicating the axial portion 
(increasing rs) with increase in the center points 
tend to decrease the D-, A- and G-optimality 
criteria of the CCDs. See Tables 5–8. 
 
3.2 Reduced Second Order Models with 

No Interaction Terms(c = 0) 
 
The reduced second order models with no 
interaction terms show different outcomes in 
each of the factors k considered.  

 
Table 5. Summary statistics of variation of central composite designs of reduced second order 

model for K = 3 
 

 No Quadratic term No Interaction term 
Design no rs P N D-eff G-eff A-eff P D-eff G-eff A-eff 
SCCD 1 1  

 
7 

15 74.16 71.14 71.14  
 
7 

80.47 46.67 27.74 
3 1 17 66.61 63.53 63.53 83.07 66.52 51.88 
1 2 21 64.76 58.21 58.21 85.91 33.33 21.43 
3 2 23 59.90 46.96 53.54 91.76 83.00 45.65 

RCCD 1 1  
 
7 

15 73.37 70.57 70.57  
 
7 

76.58 47.21 27.39 
3 1 17 65.91 63.01 63.01 78.96 67.78 50.35 
1 2 21 63.80 57.68 57.68 81.22 33.89 21.23 
3 2 23 59.01 53.04 53.04 86.63 84.33 44.40 

OCCD 1 1  
 
7 

15 66.75 65.22 65.22  
 
7 

51.49 81.33 33.46 
3 1 17 61.60 59.58 59.58 57.10 74.64 42.27 
1 2 21 61.78 56.50 56.50 53.27 98.77 35.19 
3 2 23 59.12 53.11 53.11 60.49 91.95 41.40 

Slope-
R 

1 1  
 
7 

15 86.10 78.71 78.71  
7 

56.90 59.76 71.40 
3 1 17 69.65 65.11 65.11 69.60 55.51 80.63 
1 2 21 75.53 63.22 63.22 48.80 71.50 50.63 
3 2 23 66.08 56.59 56.59 58.80 75.50 61.46 

FCC 1 1  
7 

15 64.20 62.92 62.92  
7 

41.46 83.99 26.58 
3 1 17 57.67 56.11 56.11 39.05 79.88 25.69 
1 2 21 52.03 49.56 49.56 42.23 89.65 31.33 
3 2 23 48.12 45.53 45.53 40.00 82.73 30.72 
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Table 6. Summary statistics for variations of central composite designs of reduced second 
order model for K = 4 

 

 No Interaction term No Quadratic term 
Design no rs P N D-eff G-eff A-eff P D-eff G-eff A-eff 
SCCD 1 1  

 
9 

25 86.59 36.00 23.67 11 77.24 75.64 75.64 
3 1 27 90.58 57.15 48.48 72.02 70.40 70.40 
1 2 33 96.97 27.27 19.08 66.63 62.86 62.86 
3 2 35 92.22 74.82 43.12 63.16 59.46 59.46 

RCCD 1 1  
 
9 

25 86.59 36.00 23.67 11 77.24 75.64 75.64 
3 1 27 90.58 57.15 48.48 72.02 70.40 70.40 
1 2 33 93.23 52.23 28.95 66.63 62.86 62.86 
3 2 35 97.65 79.96 43.66 63.16 59.46 59.46 

OCCD 1 1  
 
9 

25 54.58 64.29 33.96 11 72.28 71.54 71.54 
3 1 27 60.80 62.02 42.41 68.35 67.40 67.40 
1 2 33 59.84 84.86 39.50 60.00 58.28 58.28 
3 2 35 67.16 81.53 44.83 58.21 56.12 56.12 

Slope-
R 

1 1  
 
9 

25 92.10 48.97 76.11 11 85.43 81.29 81.29 
3 1 27 90.97 47.18 83.67 78.38 74.88 74.88 
1 2 33 97.27 67.98 54.96 74.11 66.85 66.85 
3 2 35 95.00 66.77 63.71 68.31 62.32 62.32 

FCC 1 1  
 
9 

25 34.96 67.54 18.19  
11 

69.57 69.05 69.05 
3 1 27 33.53 65.85 17.42 64.87 64.23 64.23 
1 2 33 37.37 92.83 24.64 56.16 55.07 55.07 
3 2 35 35.99 90.35 23.76 53.23 52.07 52.07 

 

Table 7. Summary statistics for variation of central composite designs of reduced model for  
K = 5 

 

 No Interaction term No Quadratic term 
Design no rs P N D-eff G-eff A-eff P D-eff G-eff A-eff 
SCCD 1 1  

11 
27 95.15 40.74 27.53  

16 
59.57 69.34 69.34 

3 1 29 92.40 60.13 55.78 55.71 64.48 64.48 
1 2 37 84.80 29.73 21.47 52.59 61.11 61.11 
3 2 39 80.90 76.92 48.26 50.05 58.09 58.09 

RCCD 1 1  
11 

27 87.01 66.67 31.37  
16 

56.56 68.81 68.81 
3 1 29 88.22 63.07 52.94 52.90 63.50 63.50 
1 2 37 96.27 42.94 27.30 49.69 60.52 60.52 
3 2 39 98.84 80.40 47.99 47.30 57.53 57.53 

OCCD 1 1  
11 

27 42.26 72.58 28.86  
16 

50.45 65.62 65.62 
3 1 29 47.58 68.74 36.13 48.71 61.85 61.85 
1 2 37 67.06 87.98 47.00 43.88 59.22 59.22 
3 2 39 72.14 84.45 51.75 43.24 56.63 56.63 

Slope-
R 

1 1  
11 

27 52.30 55.10 65.49  
16 

67.29 72.62 72.62 
3 1 29 61.90 53.83 75.97 60.97 67.04 67.04 
1 2 37 67.83 29.94 22.20 58.03 62.10 62.10 
3 2 39 51.90 73.22 56.20 52.69 58.59 58.59 

FCC 1 1  
11 

27 31.68 75.15 16.55  
16 

42.07 63.04 63.04 
3 1 29 30.16 72.40 15.65 39.35 58.80 58.80 
1 2 37 33.03 95.20 21.87 36.13 57.60 57.60 
3 2 39 31.74 90.43 20.95 34.39 54.66 54.66 

 

For factor k = 3,  Table 5 showed that            
replication of the axial portion with increase in 
center points increases the D-optimality                 
criterion values of SCCD, RCCD and OCCD.  
Also replication of the axial portion with           
increase in center points increases the G-

optimality criterion values of SCCD, RCCD and 
Slope-R.  Finally, replication of the axial             
portion with increase in center points             
increases the A-optimality criterion values of the 
CCDs (SCCD, RCCD, OCCD, Slope-R and 
FCC). 
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Table 8. Summary statistics for variation of central composite designs of reduced model for  
K = 6 

 
 No Interaction term No Quadratic term 
Design no rs P N D-eff G-eff A-eff P D-eff G-eff A-eff 
SCCD 1 1  

 
13 

45 98.60 28.89 20.99  
 
22 

78.77 77.94 77.94 
3 1 47 94.70 48.04 46.21 75.57 74.73 74.73 
1 2 57 84.10 22.81 17.39 67.14 65.05 65.05 
3 2 59 80.00 66.11 41.29 64.96 62.90 62.90 

RCCD 1 1  
13 

45 96.37 29.75 21.28  
22 

78.44 77.66 77.66 
3 1 47 99.90 48.64 45.59 75.25 74.46 74.46 
1 2 57  81.21 23.89 17.92 66.68 64.75 64.75 
3 2 59 80.11 66.99 41.05 64.52 62.62 62.62 

OCCD 1 1  
13 

45 61.94 51.61 38.06  
22 

75.80 75.45 75.45 
3 1 47 68.24 50.80 45.58 73.18 72.74 72.74 
1 2 57 71.42 72.70 47.01 63.02 62.11 62.11 
3 2 59 78.85 70.89 51.16 61.65 60.58 60.58 

Slope-
R 

1 1  
13 

45 53.90 40.02 70.34  
22 

83.01 81.01 81.01 
3 1 47 55.50 39.62 77.55 79.06 77.29 77.29 
1 2 57 39.60 60.21 53.21 70.94 67.26 67.26 
3 2 59 43.60 60.01 62.12 67.85 64.61 64.61 

FCC 1 1  
13 

45 25.15 53.14 9.84  
22 

73.43 73.25 73.25 
3 1 47 24.51 52.29 9.52 70.44 70.23 70.23 
1 2 57 29.21 82.81 15.29 59.51 59.11 59.11 
3 2 59 28.46 81.18 14.85 57.59 57.16 57.16 

 
For factor k = 4, Table 6 show that replication of 
the axial portion with increase in center points 
increases the D-optimality criterion values of 
SCCD, RCCD and OCCD. Replication of the 
axial portion with increase in center points also 
increases the G-optimality criterion values of 
SCCD and RCCD. Finally, replication of the axial 
portion with increase in center points increases 
the A-optimality criterion values of the CCDs 
except the FCC. 
 
For factor k = 5, Table 7 shows that replication of 
the axial portion with increase in center points 
increases the D-optimality criterion values of 
SCCD, RCCD and OCCD. Also replication of the 
axial portion with increase in center points 
increases the G-optimality criterion values of the 
CCDs. Finally, replication of the axial portion with 
increase in center points increases the A-
optimality criterion values of the CCDs except the 
FCC.  

 
For factor k = 6, Table 8 shows that replication of 
the axial portion with increase in center points 
increases the D-optimality criterion values of 
SCCD, RCCD and OCCD.  Also replication of the 
axial portion with increase in center points 
increases the G-optimality criterion values of 
SCCD and RCCD. Finally, replication of the axial 
portion with increase in center points increases 
the A-optimality criterion values of the CCDs.  

4. CONCLUSION 
 
This study have shown that the CCDs in the 
reduced second order models considered in this 
work are sensitive when D-, A- and G-optimality 
criteria are used. The reduced second order 
models having no quadratic terms in all the 
factors k considered show that G- and A- 
optimality criteria values of all the CCDs are the 
same. This implies that G- and A- optimality 
criteria are equivalent. Increase in the center 
points when the axial portion are not replicated 
decreases the D-, A- and G-optimality criteria 
values of the CCDs. 
 
The reduced second order model with no 
interaction terms results showed that replication 
of the axial portion with increase in center points 
increases the D-optimality criterion values of 
SCCD, RCCD and OCCD in all the                   
factors considered. Finally, the work have 
showed that replication of the axial portion 
reduces the performance of the CCDs with 
models having no quadratic terms and Slope-R is 
a better design with respect to D- and A-
optimality criteria. 
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