Journal of Engineering Research and Reports

Data Mining and Statistical Analysis for Available Budget Allocation Pre-procurement of Manufacturing Equipment

O. O. Ojo^{1*}, B. O. Akinnuli² and P. K. Farayibi²

¹Department of Mechanical Engineering, Adeleke University, P.M.B. 250, Ede, Osun State, Nigeria. ²Department of Industrial and Production Engineering, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. Author OOO designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors BOA and PKF managed the analyses of the study. Author PKF managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JERR/2019/v5i316926 <u>Editor(s):</u> (1) Dr. Guang Yih Sheu, Associate Professor, Chang-Jung Christian University, Taiwan. <u>Reviewers:</u> (1) Srinivasa Rao Kasisomayajula, Jawaharlal Nehru Technological University, India. (2) M. Bhanu Sridhar, GVP College of Engineering for Women, India. (3) Choon Sen Seah, Universiti Tun Hussein Onn, Malaysia. (4) Kholil, Sahid University Jakarta, Indonesia. Complete Peer review History: <u>http://www.sdiarticle3.com/review-history/49157</u>

Original Research Article

Received 02 March 2019 Accepted 15 May 2019 Published 28 May 2019

ABSTRACT

In a situation where a decision maker faces problems of allotting the available budget on the strategic decisions in a manufacturing industry, data information plays an important role to maintain long run profit in the industry. Statistical analysis was incorporated to determine the correlational strength between the number of years and each of the strategic decisions, their confidence level, and the predicted values. This study identified the strategic areas of addressing the issues which are machine (A_1), accessory (B_1), spare part (C_1) and miscellaneous (D_1), exploring the hidden data of the selected strategic decisions from International Brewery Plc, Ilesha and statistical analysis between the number of years and each of the selected strategic decisions. The model used in this work is simple linear regression while Statistical Analysis Software "SAS" was used for its applications. After exploring the hidden data from a case study, the suggested cost of

*Corresponding author: Email: ojo.oluwaseun@adelekeuniversity.edu.ng;

procurement for machines, accessories, spare-parts and miscellaneous are: №119,975,000.00; №127,968,000.00; №134,965,000.00 and №33,491,500.00 respectively. From appendix, the probability of each of the strategic decision is less than 0.05 which implies that the Null-Hypothesis is rejected. The number of years has significant effect on Machines, Accessories, Spare-parts and Miscellaneous. As the number of years increases, the cost of procurement of the strategic decisions increases due to high rate of demand and consumption of their products. However, the cost of procurement may fall depending on the level of demand and maintenance culture. Besides, management of the company may ask decision maker to maintain the cost before procurement. This result may be used for further research on optimization of the available budget for equipment procurement.

Keywords: Data mining; statistical analysis; pre-procurement; budget allocation; manufacturing equipment.

1. INTRODUCTION

Allocation of limited available budget on the strategic decisions has been a major problem in However, information industry. plays an important role to maintain long run profit in the industry. Thus, data Mining (DM) and Statistics are the two disciplines which are commonly used in data analysis and knowledge extraction. Though Statistics is a traditional branch that has evolved from applied Mathematics while Data Mining is a multidisciplinary branch that has evolved from computer science, but both are used for the same purpose [1]. The growth of data mining has been massive in past decade. Its application has increased with the increase of data generation as more and more data being captured through various means of Information Technology like internet. There is a growing research in the area of databases with the help of data mining. Since data mining can be used in advance data research analysis and is capable of extracting valuable knowledge from large data sets [2].

It has emerged as a new scientific and engineering discipline to meet such requirements. Data Mining is commonly quoted as "solving problems by analysing data that already exists in databases". In addition to the mining of structured and numeric data stored in data warehouses, more and more interest is now being experienced in the mining of unstructured and non-numeric data such as text and web in recent times [3].

DM is a combination of computational and statistical techniques to perform exploratory data analysis (EDA) on rather large and mostly not very well cleaned data sets (or data bases). In recent times, the issue of capturing data is not considered to be a major issue but since a huge amount of data does not convey any information, screening of useful and non-useful data has become a major challenge. Most modern problems can electronically deal with the cumulative data from many years ago [4]. This leads to a requirement for training the data miners in statistics or statistics graduates in data mining [5].

1.1 Major Goals of Data Mining

There are different goals of data mining method for statistical analysis, but [6] identified the two types as follows:

- a. Verification of user's hypothesis
- b. Discovery of new patterns that can be used for *prediction* and *description*

Data mining methods seek to discover unexpected and interesting regularities, called patterns, in presented data sets. Statistical significance testing also called as Hypothesis testing can be applied in these scenarios to select the surprising patterns that do not appear as clearly in random data. As each pattern is tested for significance, a set of statistical hypotheses are considered simultaneously. The multiple comparisons of several hypotheses simultaneously are often used in Data Mining [7].

Jure Leskovec [8] added that prediction involves using some variables or fields in the database to forecast unknown or future values of other variables of interest. Description focuses on finding human-interpretable patterns describing the data.

Various complexities in the stored data (data interrelations) have limited the use of Verification–Driven Data Mining in decision-making. It must be complemented with the

discovery-driven data mining. Furthermore, in the context of Data Mining, description tends to be more important than prediction. This is contrast to pattern recognition and machine learning applications where prediction is often the primary goal [9,10].

Moore [11] defined Statistics in different ways but the most suitable for this work is as illustrated below:

Data: Facts, especially numerical facts, collected together for reference or information [11]; [12].

Statistics: Knowledge communicated concerning some particular facts. Statistics is a way to get information from data. It is a tool for creating an understanding from a set of numbers [11]; [13].

1.2 Major Approaches in Statistics

A decision maker needs to be aware of the limited available resources. However, in order to minimize shortages, the past procurement records must be critically analysed to prevent unforeseeable occurrences. Hence. the development of the model on machines cost, spare parts cost and accessories cost, miscellaneous cost. The study would help to determine the cost of purchase of any selected strategic decisions beforehand and create a room for adjustment due to flexibility of the developed model and software. The study proposed to use Statistical Analysis Software (SAS) to analyse the extracted data of the key strategic decisions used in International Brewery Plc, Ilesha, Nigeria, and determine the level of



Fig. 1. Analysis of information through data [11]

S/No.	Statistics Technique	Description
1	Descriptive Statistics	Central Tendency
		Dispersion
		Shape (Graphical Display)
2	Regression	
	-Linear	
	-Logistic	
	-Non linear	-Prediction
3	Correlation Analysis	-Modelling
	-Pearson correlation	-Association
	-Spearman correlation	
4	Probability Theory	
	-Marginal	
	-Union	
	-Joint	
	-Conditional	Prediction of the behaviour of the system
5	Probability Distribution	defined
	-Discrete Probability Distribution	
	-Continuous Probability Distribution	
6	Bayesian Classification	Bayes' Theorem and Naïve Bayesian
		classification
7	Estimation Theory	-Model Selection
		-Estimating Confidence
		interval and significance level
		-ROC Curves
8	Analysis of Variance	Test equality of more than two groups
	(ANÓVA)	mean

 Table 1. Major approaches for solving statistical problems

S/No.	Statistics Technique	Description
9	Factor Analysis (FA)	Reduction of large no. of variables into some general ones, also known as Data reduction Technique
10	Discriminate Analysis	Predict a categorical response variable
11	Time series analysis	Forecasting trends and seasonality
	-Moving Average Method	
	-Exponential smoothing -Auto regression method	
12	Quality Control Charts	Display the spread of individual
	-Attributes Charts	observation with reference to mean
	-Variable charts	
13	Principal Component	
	Analysis	
14	Canonical Correlation	
	Analysis	
15	Cluster Analysis	Data Reduction
	-Hierarchal	
	-Non Hierarchal	
16	Sampling	
	-Random Sampling	
	-Non Random Sampling	

Source: [14].

confidence, error terms and to predict the cost of parameters (i.e. machines cost. accessories cost, spare parts cost and miscellaneous cost) with the available budget allocation before procurement.

2. METHODOLOGY

In order to analyse the extracted data for preprocurement of manufacturing equipment, the International Brewery Plc, Ilesha was visited to explore past procurement records. These are the following steps taken:

- Identification i. of the equipment procurement such as machines cost, accessories cost, spare parts cost and miscellaneous cost.
- Historical data from a case study ii. International Brewery Plc, Ilesha, Nigeria to determine the correlational strength between the number of years and each of the strategic decisions, their confidence interval, and to predict the cost for each parameter.
- iii. Modified adopted models for prediction of the cost of purchase of each strategic decision.

Determination of the hypothesis of (iii) above.

2.1 Strategic Decisions for Model **Development**

In this study for proper analysis, four strategic decisions were identified for pre-procurement of manufacturing equipment. They are:

- a) Machine (A): A machine is a tool that consists of one or more parts, and uses energy to meet a particular goal e.g. labeller, washer, filler, pasteurizer etc.
- b) Accessories (B): An accessory aids the performance of a machine e.g. beer spoon, beer paddle, beer siphon etc.
- c) Spare parts (C): Spare part is an interchangeable part that is kept in an inventory and used for the repair or replacement of failed parts e.g. hose tail, cask racking spear, female equal tee etc.
- d) Miscellaneous (D): Other costs not planned for but can still occur.

2.2 Statistical Analysis of the Data

2.2.1 Simple linear regression analysis from data set

The models below explain the simple linear regression of the relationship between the number of years of procurement and each of the strategic decisions (i.e. machine, accessory, spare-part and miscellaneous).

Shen et al. [15] expressed the general form of a simple linear regression analysis as:

$$\hat{y} = \beta_0 + \beta_1 x + e_t \tag{2.1}$$

Where:

 \hat{y} is the predicted value for machine, accessory, spare-part and miscellaneous.

x is the independent variable (i.e. number of years)

 β_0 is the intercept of the regression

 β_1 is the slope

 e_t is error term or residual

Where:

$$\beta_0 = \frac{\sum y - m(\sum x)}{n}$$
(2.2)

$$\beta_1 = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$
(2.3)

2.2.2 Correlational strength between the number of years of procurement and the strategic decisions

Witten and Frank [16] made known that, in calculating a correlation coefficient, three different sums of squares (SS) are needed. The sum of squares for variable X, the sum of square

for variable Y and the sum of the cross-product of XY.

The sum of squares for variable X is:

$$SS_{XX} = \sum (x_i - \bar{x})^2 \tag{2.4}$$

Where:

 SS_{XX} is the sum of squares for variables X \bar{x} is the average value of X x_i denotes data point

The sum of squares for variable Y is:

$$SS_{YY} = \sum (y_i - \bar{y})^2 \tag{2.5}$$

The sum of the cross-products (SS_{XY}) is:

$$SS_{XY} = \sum (x_i - \bar{x})(y_i - \bar{y})$$
 (2.6)

Therefore, Pearson's correlation coefficient is given by:

$$r = \frac{SS_{XY}}{\sqrt{(SS_{XX})(SS_{YY})}}$$
(2.7)

Shen et al. [15] added that coefficient of determination established a relationship between two variables which determines their best of fits:

$$R^{2} = \frac{s^{2} x_{Y}}{s_{XX} s_{YY}}$$
(2.8)

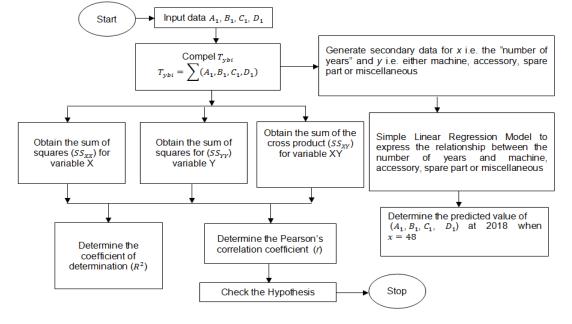


Fig. 2. Flowchart for statistical models developed

Date	Number	Machine	Accessory	Spare parts	Miscellaneous	TOTAL
	of years	(A ₁)	(B_1)	(<i>C</i> ₁)	(D_1)	
1971	1	2,000,000	1,000,000	1,700,000	500,000	5,200,000
1978	8	2,500,000	1,500,000	2,000,000	600,000	6,600,000
1980	10	2,600,000	1,600,000	2,100,000	650,000	6,950,000
1981	11	2,600,000	1,600,000	2,100,000	650,000	6,950,000
1982	12	2,600,000	1,600,000	2,100,000	650,000	6,950,000
1983	13	2,600,000	1,600,000	2,100,000	650,000	6,950,000
1985	15	2,650,000	1,700,000	2,300,000	1,000,000	7,650,000
1986	16	2,650,000	1,700,000	2,300,000	1,000,000	7,650,000
1988	18	3,000,000	5,500,000	8,000,000	2,000,000	18,500,000
1989	19	3,000,000	5,500,000	8,000,000	2,000,000	18,500,000
1991	21	5,500,000	6,000,000	10,000,000	2,500,000	24,000,000
1992	22	5,500,000	6,000,000	10,000,000	2,500,000	24,000,000
1993	23	7,300,000	6,500,000	10,500,000	3,000,000	27,300,000
1994	24	32,200,000	40,000,000	45,000,000	10,000,000	127,200,000
1995	25	32,200,000	40,000,000	45,000,000	10,000,000	127,200,000
1996	26	32,200,000	40,000,000	45,000,000	10,000,000	127,200,000
1997	27	32,200,000	40,000,000	45,000,000	10,000,000	127,200,000
1998	28	32,200,000	40,000,000	45,000,000	10,000,000	127,200,000
2001	31	42,000,000	45,500,000	50,550,000	10,500,000	148,550,000
2002	32	42,000,000	45,500,000	50,550,000	10,500,000	148,550,000
2007	37	82,000,000	85,000,000	95,000,000	20,000,000	282,000,000
2008	38	82,000,000	85,000,000	95,000,000	20,000,000	282,000,000
2009	39	82,000,000	85,000,000	95,000,000	20,000,000	282,000,000
2013	43	95,000,000	96,000,000	100,000,000	25,000,000	316,000,000
2014	44	95,000,000	96,000,000	100,000,000	25,000,000	316,000,000
2017	47	120,000,000	128,000,000	135,000,000	33,500,000	416,500,000
ΤΟΤΑ	L	845,500,000	907,800,000	1,009,300,000	232,200,000	2,994,800,000

Table 2. Available data from international brewery, llesha Nigeria

Source: International Brewery Plc, Ilesha, 2017

2.2.3 Rule of thumb

To test the hypothesis, let the null hypothesis represents $\mu_1 = \mu_0$ which means that there is no significant difference and alternate hypothesis represents $\mu_1 \neq \mu_0$ shows that there is significant difference between the number of years and each of the strategic decisions. If probability $P_r \leq 0.05$, "reject null hypothesis".

The hypothesis can be tested with a t-statistic:

$$t_{stat} = \frac{r}{se_r} \tag{2.9}$$

Where:

 se_r represents the standard error of the correlation coefficient.

$$se_r = \sqrt{\frac{1-r^2}{n-2}}$$
 (2.10)

Witten and Frank [16] stated that under null hypothesis, t-statistics has n-2 degrees of

freedom but test results are converted to P_r before conclusions are drawn.

3. RESULTS and DISCUSSION

3.1 Application of Simple Linear Regression Model between the Number of Years and the Strategic Decisions

In order to predict or forecast the costs of procurement of machines, accessories, spare parts and miscellaneous for the year 2018, the method below suggests the amount to be spent for each of them before procuring them:

3.1.1 Predicted value for machines

Machine = $\beta_0 + \beta_1$ (Number of years)

Machine = 119,975,000.00

Standard Error:

$$se_r = \sqrt{\frac{1-r^2}{n-2}}$$

 $se_r = 11,171,425$

95% Confidence Limits

95% C.I. = predicted ± S.E (2.064) Upper bound = 141,870,591.60 Lower bound = 98,079,408.40

To determine how well the model fits the data: variables machine and number of years:

$$R^2 = \frac{S^2_{XY}}{S_{XX}S_{YY}} = 0.8589$$

3.1.2 Predicted value for accessories

Accessories = $\beta_0 + \beta_1$ (Number of years)

Accessories = 127,968,000.00

Standard Error:

$$se_r = \sqrt{\frac{1-r^2}{n-2}}$$

 $se_r = 12,446,682$

95% Confidence Limits

95% C.I. = predicted \pm S.E (2.064) Upper bound = 152,363,049.30 Lower bound = 103,572,950.70

To determine how well the model fits the data: variables accessory and number of years:

$$R^2 = \frac{S^2_{XY}}{S_{XX}S_{YY}} = 0.8716$$

3.1.3 Predicted value for spare-parts

Spare-parts = $\beta_0 + \beta_1$ (Number of years) Spare-parts = 134,965,000.00

Standard Error:

$$se_r = \sqrt{\frac{1-r^2}{n-2}}$$

 $se_r = 13,392,197$

95% Confidence Limits

95% C.I. = predicted \pm S.E (2.064) Upper bound = 161,213,224.30 Lower bound = 108,716,775.70

To determine how well the model fits the data: variables spare-part and number of years:

$$R^2 = \frac{S^2_{XY}}{S_{XX}S_{YY}} = 0.8808$$

3.1.4 Predicted value for miscellaneous

Miscellaneous = $\beta_0 + \beta_1$ (Number of years) Miscellaneous = 33,491,500.00

Standard Error:

$$se_r = \sqrt{\frac{1-r^2}{n-2}}$$

 $se_r = 3,087,991.40$

95% Confidence Limits 95% C.I. = predicted ± S.E (2.064)

Upper bound = 39,543,851.93Lower bound = 27,439,148.06

To determine how well the model fits the data: variables miscellaneous and number of years:

$$R^2 = \frac{S^2_{XY}}{S_{XX}S_{YY}} = 0.8727$$

After exploring the hidden data from a case study, the suggested cost of procurement for machines. accessories, spare-parts and miscellaneous ₦119.975.000.00: are: ₦127.968.000.00: ₦134.965.000.00 and ₩33,491,500.00 respectively. From the appendix table A2, B2, C2 and D2, the probability of each of the strategic decision is less than 0.05 which means that the Null-Hypothesis has to be rejected. The coefficient of determination between the number of years and each of the strategic decisions has strong correlations and 95% C.I. (confidence interval) means that the amount proposed for budgeting is within the range of upper bound and lower bound which implies that the amount sets cannot exceed the upper bound but falling under the limit is good while the amount sets for lower bound cannot fall under but exceeding the limit is fine. The amount predicted is within the range of the upper and lower bound.

4. CONCLUSION AND RECOMMENDA-TION

4.1 Conclusion

The model used in this work was simple linear regression while Statistical Analysis Software "SAS" was used for its applications. Having explored the data or past equipment procurement records, this study helped to determine the cost of purchase of each strategic decisions and create a room for adjustment due to flexibility of the developed model and software. The result may be used for further research work on optimization of the available

budget for equipment procurement. The number of years has significant effect on Machines, Accessories, Spare-parts and Miscellaneous. As the number of years increases, the cost of procurement of those strategic decisions increases due to high rate of demand and consumption of their products. However, the cost of procurement may fall depending on the level of demand and maintenance culture. Besides, management of the company may ask decision maker to maintain the cost before procurement, this would help the decision maker with data exploration to know exactly the amount before procurement.

4.2 Recommendation

As it is stated, data mining is the extraction of hidden information in the company. This study made use of old records for pre-procurement of the manufacturing equipment (such as machine, accessory, spare-part and miscellaneous) for available budget allocation which will subsequently be used for budgeting with the limited available budget. Therefore, this work is recommended that the procedures developed with the software "SAS" be used for budgeting, to determine the cost of procurement beforehand with the use of past procurement data and the limited available budget. This would further assist decision maker to forecast the amount to be spent on them using another tools.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- 1. Java. Srivastava. Abhav. Kumar Srivastava. Understanding linkage between data mining and statistics. International Journal of Engineering Technology, Management and Applied Sciences (IJETMAS). 2015;3(10). [ISSN 2349-4476] Available:www.ijetmas.com
- 2. Ganesh S. Data mining: Should it be included in the statistics curriculum? The 6th international conference on teaching statistics (ICOTS 6), Cape Town, South Africa; 2002.
- 3. Goodman A, Kamath C, Kumar V. Data analysis in the twenty-first century. Lawrence Livermore National Laboratory (LLNL), Livermore, CA. 2008;1(1):1-3.

Ojo et al.; JERR, 5(3): 1-13, 2019; Article no.JERR.49157

- Fayyad U, Chaudhuri S, Bradley P. Data mining and its rule in database systems, Proceeding of 26th VLDB Conference. Cairo, Egypt, Morgan Kaufmanu. 2000;63– 124.
- 5. Stephen M. Stigler. Statistics on the table: The history of statistical concepts and methods. Cambridge, Mass: Harvard University Press; 2002.
- Kurt Thearling. An introduction to data mining; 2010. Available:http://www.thearling.com/text/dm
- white/dmwhite.htm
 7. Neal Leavitt. Data mining corroborate masses; 2011. Available:http://www.leavcom.com/ieee_m

ay02.htm Robert Nisbet et al. The handbook of statistical analysis and data mining applicants, Academic Press, ISBN: 0123747651; 2009.

Available:www.elsevierdirect.com/datamini ng

8. Jure Leskovec. Data mining: Introduction; 2010.

Available:http://www.stanford.edu/class/cs 345a/slides/01- intro.pdf

- 9. Gorunescu F. Data mining concepts, models and techniques. Intelligent systems reference library, Springer. 2011;12.
- Berry MJA, Linoff GS. Mastering data mining -The art and science of customer relationship management, New York, Wiley; 2000.
- 11. Moore David S. The basic practice of statistics. Third edition. W.H. Freeman and Company. New York; 2003.
- 12. Wiley Inter Science. Data analysis in the 21st Century; 2007.

Available:www.interscience.wiley.com

- Stephen M. Stigler. The history of statistics: The measurement of uncertainty before 1900, Cambridge, MA: Belknap Press of Harvard University Press; 1986.
- Lomax RG. An introduction to statistical concepts for education and behavioural sciences (2nd ed.). New York: Routledge; 2007.
- 15. Shen KS, Crossley JN, Lun WC. The nine chapters on the mathematical art. Companion and Commentary. Oxford: Oxford University Press; 1999.
- Witten IH, Frank E. Data mining: Practical machine learning tools and techniques. Morgan Kaufmann, San Francisco, 2nd edition; 2005.

Appendices

Table A

Pearson correlation coefficients, N = 26 Prob > r under H0: Rho=0					
	years	Machine	Accessory	Spare_Part	Miscellaneous
years	1.00000	0.92678	0.93359	0.93849	0.93421
-		<.0001	<.0001	<.0001	<.0001
Machine	0.92678	1.00000	0.99682	0.99450	0.99454
	<.0001		<.0001	<.0001	<.0001
Accessory	0.93359	0.99682	1.00000	0.99894	0.99681
-	<.0001	<.0001		<.0001	<.0001
Spare_Part	0.93849	0.99450	0.99894	1.00000	0.99366
	<.0001	<.0001	<.0001		<.0001
Miscellaneous	0.93421	0.99454	0.99681	0.99366	1.00000
	<.0001	<.0001	<.0001	<.0001	

The SAS System The REG Procedure Model: MODEL1 Dependent Variable: Machine

Table A1

Number of observations read	26
Number of observations used	26

Table A2

Analysis of variance						
Source	DF	Sum of squares	Mean square	F value	Pr > F	
Model	1	2.922218E16	2.922218E16	146.11	<.0001	
Error	24	4.800132E15	2.000055E14			
Corrected Total	25	3.402232E16				

Table A3

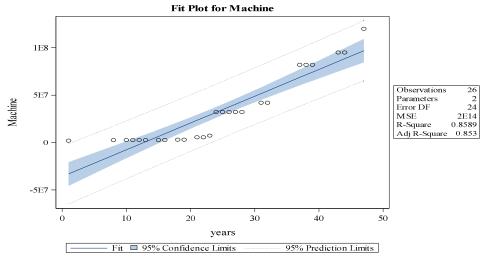

Root MSE	14142330	R-Square	0.8589
Dependent Mean	32519231	Adj R-Sq	0.8530
Coeff Var	43.48913		

Table A4

	Parameter estimates					
Variable	DF	Parameter estimate	Standard error	t Value	Pr > t	
Intercept	1	-35979715	6309256	-5.70	<.0001	
years	1	2826941	233874	12.09	<.0001	

Table A5

	Forecasts for variable machine						
Obs	Obs Time Forecasts Standard error 95% confidence limits						
48	2018	119975000.0	11171425	98079408.4	141870591.6		
49	2019	119975000.0	15790884	89025436.0	150924563.9		
50	2020	119975000.0	19336579	82076001.5	157873998.5		

The SAS System The REG Procedure Model: MODEL1

Dependent Variable: Accessory

Table B1

Number of Observations Read	26
Number of Observations Used	26

Table B2

Analysis of variance					
Source	DF	Sum of squares	Mean square	F Value	Pr > F
Model	1	3.236141E16	3.236141E16	162.90	<.0001
Error	24	4.767925E15	1.986635E14		
Corrected Total	25	3.712933E16			

Root MSE	14094805	R-Square	0.8716
Dependent Mean	34915385	Adj R-Sq	0.8662
Coeff Var	40.36847		

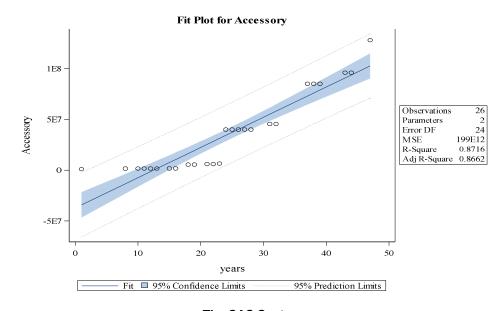

Table B3

Table B4

	Parameter estimates					
Variable	DF	Parameter estimate	Standard error	t Value	Pr > t	
Intercept	1	-37169013	6288054	-5.91	<.0001	
years	1	2974912	233088	12.76	<.0001	

Table B5

Forecasts for variable accessory								
Obs	Obs Time Forecasts Standard error 95% confidence lin							
48	2018	127968000.0	12446682	103572950.7	152363049.3			
49	2019	127968000.0	17593468	93485436.0	162450564.0			
50	2020	127968000.0	21543917	85742699.4	170193300.6			

The SAS System The REG Procedure Model: MODEL1 Dependent Variable: Spare-part

Table C1

Number of Observations Read	26
Number of Observations Used	26

Table C2

Analysis of variance					
Source	DF	Sum of squares	Mean square	F value	Pr > F
Model	1	3.684116E16	3.684116E16	177.28	<.0001
Error	24	4.987551E15	2.078146E14		
Corrected Total	25	4.182872E16			

Root MSE	14415777	R-Square	0.8808
Dependent Mean	38819231	Adj R-Sq	0.8758
Coeff Var	37.13566		

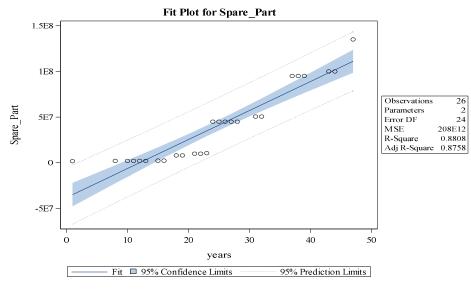
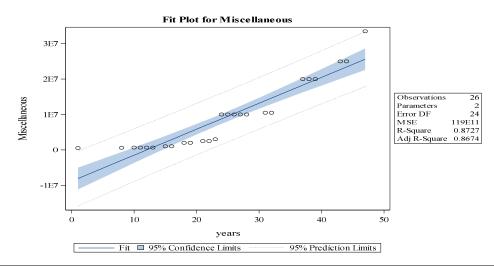

Table C3

Table C4

	Parameter estimates					
Variable	DF	Parameter estimate	Standard error	t Value	Pr > t	
Intercept	1	-38092792	6431248	-5.92	<.0001	
years	1	3174147	238396	13.31	<.0001	

Table C5

	Forecasts for variable spare_part								
Obs	Obs Time Forecasts Standard error 95% Confidence limit								
48	2018	134965000.0	13392197	108716775.7	161213224.3				
49	2019	134965000.0	18929960	97862960.8	172067039.2				
50	2020	134965000.0	23180505	89532045.7	180397954.3				


The SAS System The REG Procedure Model: MODEL1

Dependent Variable: Miscellaneous

Table D1

Num	ber of Obse	ervations I	Read				26
Num	ber of Obse	ervations	Used				26
				Table I	D2		
				Analysis of v	variance		
Sour	се	Γ	DF	Sum of squares	Mean square	F Value	Pr > F
Mode	əl	1	1	1.966149E15	1.966149E15	164.60	<.0001
Error	r	2	24	2.86676E14	1.194483E13		
Corre	ected Total	2	25	2.252825E15			
				Table I	D3		
Root	MSE			3456130	R-Square		0.8727
Dependent Mean		8930769	Adj R-Sq		0.8674		
Coef	f Var			38.69913			
				Table I	D4		
				Parameter es	stimates		
Varia	able	DF	Par	ameter estimate	Standard error	t Value	Pr > t
Inter	cept	1	-88	37119	1541868	-5.73	<.0001
years	S	1	733	278	57154	12.83	<.0001
				Table I	D5		
			Fo	precasts for variabl			
Obs	Time	Forecast	-	standard e		% confidenc	e limits
10	2010	22401500	<u> </u>	2007001 /	27/201/0	06 2054	2051 02

Obs	Time	Forecasts	standard error	95% coi	onfidence limits	
48	2018	33491500.00	3087991.4	27439148.06	39543851.93	
49	2019	33491500.00	4364896.3	24936460.39	42046539.60	
50	2020	33491500.00	5344992.9	23015506.42	43967493.57	

© 2019 Ojo et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sdiarticle3.com/review-history/49157