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ABSTRACT 
 

There is a definite need for representations of and tools for conditional probability that enhance 
understanding, simplify calculations, foster insight, and facilitate reasoning. Such representations 
and tools are useful in a wide variety of disciplines, but their utility in medical contexts and 
applications are stressed herein, so as to address a clinical rather than a mathematical audience. 
We employ a plethora of time-tested pedagogical representations or tools of conditional probability 
including: (a) Visualization on Venn diagrams or Karnaugh maps, (b) Reformulation as natural 
frequencies, (c) Entity interrelations via Signal Flow Graphs, as (d) Specification of certain problem 
formats such as the format of Trinomial Graphs. The new representations or tools have well known 
histories of pedagogical advantages, but are still to be tested in the specific realm of conditional 
probability. Further assessment of the novel representations or tools proposed herein is needed. 
Each of these is to be taught to a group of students, and a control group of students is to be 
instructed via the conventional representation. Detailed statistical analysis of the                        
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outcomes is warranted. Similar investigations were performed earlier, but they were on a limited 
scale. Therefore, the need arises for an explorative study that exhausts all proposed 
representations or tools.  
 

 

Keywords: Conditional probability; visualization; Karnaugh map; signal flow graph; trinomial graph; 
natural frequency. 

 

1. INTRODUCTION  
 
The notion of conditional probability is 
indispensable within many walks of life, and in 
diverse realms of scientific disciplines. In 
particular, this notion is of critical importance in 
many medical contexts, and constitutes an 
invaluable useful piece of knowledge for the 
physician and the patient alike. However, there 
are many contemporary complaints of collective 
probabilistic illiteracy, and even a widespread 
inability to merely understand the meaning of 
numbers [1]. Currently, there are many research 
efforts aiming at making the concepts of 
conditional probability more transparent and 
accessible to ordinary and professional people 
[1-37]. This paper is a serious attempt to review 
the aforementioned research topic via four 
avenues, to be depicted as representations or 
tools. Some of these avenues are novel methods 
and some have already appeared in the literature 
but are still subject to ongoing vigorous research. 
This research topic is of an obviously 
interdisciplinary nature as it combines elements 
from widely diverse areas such as mathematics, 
clinical medicine, epidemiological diagnostic 
testing, probability and statistics, problem solving, 
and educational psychology. We hope that this 
paper is of general interest to researchers in the 
aforementioned areas. However, we mainly 
target a clinical audience, in general, and 
medical researchers and educators, in particular. 
In addition, we hope that the paper might be of 
some benefit, at least partially, to practicing 
physicians as well as to medical students 
(perhaps with some graceful help from their 
competent educators). 
 
Targeting a clinical audience, we strived to clarify 
our technical jargon, simplify our terminology, 
and illustrate the concepts being introduced via 
diversified means. We include a classic clinical 
example as a running computational example. 
We solve this example using the various 
proposed tools. Medical students and general 
physicians might be content to understand and 
master a single tool, and not necessarily all tools. 
However, medical researchers and educators 
might need (and are encouraged) to explore all 

tools. For them, further analytical and 
experimental comparisons between the proposed 
tools are definitely needed.  
 

The organization of the rest of this paper reflects 
our choice of methods that facilitate the learning 
of concepts of conditional probability in medical 
disciplines. Section 2 summarizes some useful 
pertinent nomenclature. Section 3 proposes 
visualization via Venn diagrams, or, preferably, 
via Karnaugh maps. Section 4 reviews the 
concepts of natural frequencies and contingency 
tables. This section supplements its expository 
review with a detailed running computational 
example. This example reveals the connections 
and subtle differences among various 
representations. Section 5 suggests the 
utilization of signal flow graphs, and points out 
their utility in specified problem formats such as 
that known as the ternary problems of conditional 
probability, which are typically represented               
by trinomial graphs. Section 6 concludes the 
paper. 
 

2. LIST OF NOMENCLATURE  
 

2.1 Bayesian Reasoning 
 

Bayesian reasoning denotes the issue of 
computing the conditional probability (or 
frequency) of a cause given an effect. Usually, 
Bayes' Theorem is employed to obtain this 
probability in terms of the conditional probability 
of the effect given the cause together with the 
absolute probability of the cause and that of the 
effect [36]. 
 

2.2 Natural Frequencies 
 

Natural frequencies are integers counting the 
numbers of samples favorable to certain 
conjunctive events. These are the entries of a 
two-by-two contingency table that assesses a 
certain test � with respect to another �, which is a 
gold standard (the status quo or true (perfect) 
test). Both variables � and � are dichotomous such 
that [36,37] 
 

{ � = +1} = {Disease is present} 
{ � = −1} = {Disease is absent} 
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{ � = +1} = {Test � indicates disease presence}  
{ � = −1} = {Test � indicates disease absence} 
 

The natural frequencies are the True Positives 
������, False Positives  ������, False 

Negatives  ������, and True Negatives 

������, whose ratios to the total sample 

expresses probabilities of respective conjunctive 
events, namely [1, 14, 36] 
 

���� = � ∗ ��(� = +1) ∩ (� = +1)�                     

 

���� = � ∗ ��(� = +1) ∩ (� = −1)� 

 

���� = � ∗ ��(� = −1) ∩ (� = +1)� 

 

���� = � ∗ ��(� = −1) ∩ (� = −1)� 
 

2.3 Signal Flow Graphs 
 

A linear signal flow graph (SFG), is a specialized 
directed graph in which nodes represent system 
variables, and branches or edges represent 
transmittances or functional connections 
between pairs of nodes. An edge emanating from 
a certain node and incident on a particular node 
brings to the latter node the value of the former 
node weighted (multiplied) by the transmittance 
carried by the edge. There are two main closely-
related types of an SFG [37], namely 
 

1.  Mason SFG (employed herein) [38-39]: 
This is an SFG in which the value of a 
specified non-source node equals the 
weighted sum of nodes having arrows 
incident on the specified node (sum of the 
values of the nodes, each multiplied by the 
transmittance on its edge towards the 
specified node). 

2.  Coates SFG [40]: This is an SFG in which 
the aforementioned weighted sum of 
nodes with arrows incident on a specified 
non-source node is equal to zero. 

 

2.4 Conditional-probability Problems 
 

A conditional-probability problem is a probability 
problem that is formulated with at least one of the 
quantities explicitly mentioned (either as known 
quantity or as the unknown to be found) being 
interpreted as conditional probability [30,37]. 
 

2.5 Ternary Problems of Conditional 
Probability 

 

A ternary problem of conditional probability is a 
conditional-probability problem formulated with 

exactly three known quantities and a single 
unknown quantity to be solved for [30]. Such                  
a problem is represented by a trinomial graph 
[30], or by an SFG that mimics a trinomial graph 
[37]. 
 

3. VISUAL REPRESENTATION 
 
The conditional probability of event A given event 
B is given by [37, 41] 

 

 

�(�|�) =
�(�∩�)

�(�)
, �(�) ≠ 0 

 
Equation (5) deliberately denies the existence of 
conditional probability when the conditioning 
event B has zero probability (such as when B is 
the impossible event ∅ ). If the event B is an 
extremely rare event (i.e., of an ultra-small 
probability), the definition (1) is somewhat 
problematic and dubious, and might be 
associated with intriguing questions or even 
misconceptions.  
 
There is a long history for employment of visual 
techniques in comprehending and manipulating 
probability [42-52]. We visually represent (5) by 
the Venn diagram in Fig. 1(a) and equivalently by 
the Karnaugh map in Fig. 1(b). We supplement 
each of these two figures by:  
 

(a)  A light red loop depicting the probability of   
the conditional (conditioned) event P(A). 

(b) A bold blue loop representing the 
probability of the conditioning event P(B). 
This loop replaces the full rectangle in 
either figure as the entire sample space, or 
as the certain event. 

(c) A bold black loop representing the 
intersection or overlapping of the two 
aforementioned loops or the probability 
�(� ∩ �)  of the intersection of the two 
corresponding events. Hence the 
conditional probability �(�|�)  is given by 
the area of the black loop divided by that of 
the blue loop. 

 
Fig. 2 makes the general notion of Fig. 1 more 
specific by employing concepts of medical 
diagnostic testing. In particular, event A is 
interpreted as { � = −1} or {disease absence} 
while event B is replaced by { � = −1} or {Test � 
says that disease is absent}. We call the 
complements { � = +1} and {� =  +1} of these 
two events the events of true prevalence and 
perceived (apparent) prevalence, respectively. 

(1) 

(2) 

(3) 

(4) 

(5) 
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As pointed out earlier by Rushdi and Badawi [53] 
and Rushdi [54], the Karnaugh map has many 
advantages over the Venn diagram. An extra 
advantage, peculiar to our current study, is that 
the Karnaugh map can easily be interpreted as a 
contingency table or matrix [36,37]. As an 
offshoot of the beneficial use of Karnaugh maps, 
we use Figs. 3-5 to visualize the eight most 
prominent measures or indicators in medical 
diagnostic testing [36,37]. Fig. 3 depicts the eight 
possible conditional events, and is based on the 
use of three independent Boolean variables 
��, �� and �� defined as follows: 

 

�� = �� = �� = �� = {A is associated with 

an � value, and hence B is associated with a 
� value}. 

�� = �� = �� = ��  = {A is associated with 

a � value, and hence B is associated with an 
� value}. 

�� = ��= {A is associated with a positive value}. 

�� = ��= {A is associated with a negative value}. 

�� = ��= {B is associated with a positive value}. 

B� = B�= {B is associated with a negative value}. 

 
Note that despite the appearance of many 
variables, the three variables ��, �� and �� 

suffice for full specification. For example, the cell 

������ in the Karnaugh map of Fig. 3 represents 

the conditional event {�|�} = {� = +1|� = −1}. 
 
Fig. 4 presents the probabilities of the events in 
Fig. 3 as conditional probabilities. Fig. 5 re-
expresses these probabilities as quotients of 
natural frequencies. As stated earlier, symbols 
used in Figs. 4 and 5 express the eight most 
prominent measures or indicators used in 
diagnostic testing [36,37]. These are the 

Sensitivity or True Positive Rate  �������, the 

Specificity or True Negative Rate �������, the 

Positive and Negative Predictive Values 
������  and ������, together with their respective 

complements, namely the False Negative Rate 
�������, False Positive Rate �������, False 

Discovery Rate �������, and False Omission 

Rate ������� [36, 37]. We stress that the first 

four among these measures could be viewed as 
basically independent (at first sight), while the 
remaining four are definitely dependent on the 
former four, being simply their complements (to 
1). The solvability of a ternary problem (in which 
the known quantities are any three of the former 
four measures) means that only at most three of 
the eight measures could be independent. 

4. REFORMULATION OF CONDITIONAL 
PROBABILITIES AS NATURAL 
FREQUENCIES 

 
This section summarizes a really appealing 
thesis advocated by Gigerenzer, Hoffrage and 
coworkers [1,4,10,12-16,21] that representations 
of conditional probabilities as quotients of natural 
frequencies facilitate the computation of a 
cause's probability (or frequency) given that of an 
effect. This thesis is supported by many 
experimental studies conducted by these 
researchers and others, but it is sometimes 
confused with variations thereof that manifest 
different assumptions, and even fallacious 
misconceptions [14]. 
 
Hoffrage, et al. [14] start from the premise that 
“solving a problem simply means representing it 
so as to make the solution transparent,” and then 
proceed to assert that “natural sampling is the 
way humans encountered human information 
during their history,” and that “collecting data by 
means of natural sampling results in natural 
frequencies.” 
 
In addition to resulting from natural sampling, 
natural frequencies carry information about the 
base rates, and correspond to conjunctive events 
of the form { � ∩ �}  or {� = ∓1 ∩ � = ∓1} . They 
can be displayed in the form of natural-frequency 
trees, such as the one shown in Fig. 6. Such a 
tree is embedded on the 2-variable Karnaugh 
map of Fig. 7, which serves also as a 2 × 2 
contingency table. We believe that the most 
prominent question in diagnostic testing is to 
compute the Positive Predictive Value 
 
P {The disease is present | The available test 

says the disease is present}  
 
=�{ � = +1|� = +1}. 
 
With natural frequencies, the probability is simply 
given by 
 

 ���� ����� + �����⁄ . 

 
With conditional probability format, this 
probability is computed via Bayes' rule as 
 
�{ � = +1|� = +1} =

�(���� | ����) �(����)

�(���� | ����) �(����) � �(���� | ��� �) �(��� �)
 

 
Hoffrage, et al. [14] lamented the fact that 
several other authors confused the concept of

(6) 

(7)

(8) 
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natural frequencies (frequency format) with that 
of normalized frequencies. These other authors 
“ran experiments with normalized frequencies, 
found that these did not improve Bayesian 
reasoning, and concluded that this result 
disproves the thesis that natural frequencies 
facilitate Bayesian reasoning” [14]. Fig. 8 
pinpoints the trouble with the use of normalized 
frequencies, and explains why normalization 
defeats the purpose of employing frequencies 
rather than probabilities. The figure clearly shows 
that normalization is simply a retreat to the 
original realm of conditional probabilities.  
Hoffrage, et al. [14] indicate that, “normalized 
frequencies do not stem from the natural 
sampling of one population,” and therefore, 
“require three different tress describing three 
different samples rather than a single tree.” Fig. 8 
uses symbolic notation to generalize the 
numerical values in Fig. 2 of [14], and clearly 
indicates that normalization restores conditional 
probabilities in place of conjunctive ones.  
 
We now discuss a celebrated example of 
Gigerenzer et al. [1] using our present notation. 
This example is apparently the most cited 
example in the literature of diagnostic testing, 
and we are using it as a running example 
throughout the paper. The example has the 
conditional-probability formulation [1]: 
 
“Assume you conduct breast cancer screening 
using mammography in a certain region. You 
know the following information about the women 
in this region: 
 

(a)  The probability that a woman has breast 
cancer is 1% (true prevalence) 

(b)  If a woman has breast cancer, the 
probability that she truly tests positive is 90% 
(sensitivity) 

(c) If a woman does not have breast cancer, 
the probability that she nevertheless tests 
positive is 9% (false-positive rate)  

 
A woman tests positive. She wants to know from 
you whether that means that she has breast 
cancer for sure, or what the chances are. What is 
the best answer?” 
 
In our notation, we are given the information: 
 
(a) �(� = +1) = 0.01    
 
(b) �(� = +1|� = +1) = 0.90 
 
(c) �(� = +1|� = −1) = 0.09 

and it is desired to determine �(� = +1|� = +1). 
First, we apply the Total Probability Theorem [36, 
41]  to obtain the perceived prevalence  

 

�(� = +1) =  �(� = +1|� = +1) �(� = +1) +
 �(� = +1|� = −1) �(� = −1) 

 
 

Then, we apply Bayes' Theorem [7,31,41] to 
obtain the required probability as  

 

�(� = +1|� = +1) =
�(����|����)�(����)

�(����)
=

�.����

�.����
=

                   
��

���
  = = 0.0917 = 9.17 % 

 

An equivalent solution is to construct the 
normalized contingency table in Fig. 9. Initially, 
we enter the given true prevalence �(� = +1) =
0.01, complement it to obtain  �(� = −1) =
0.99. The top two conjunctive probabilities in the 
table are given by 

 

 ���� �⁄ = �(� = +1|� = +1)�(� = +1) =
(0.90)(0.01) = 0.0090                            (12 a) 

 

 ���� �⁄ = �(� = +1|� = −1)�(� = −1) =
(0.09)(0.99) = 0.0891                            (12 b) 

 

in agreement with our earlier calculations. The 
lower conjunctive probabilities are obtained via 
complementation as  

 

 ���� �⁄ = �(� = −1 ∩ � = +1) = �(� = +1) −

�(� = +1 ∩ � = +1) 

 

 

���� �⁄ = �(� = −1 ∩ � = −1) = �(� = −1) −

�(� = +1 ∩ � = −1) 

 

 

Once the four conjunctive probabilities are 
obtained, pairs of them sharing the same row are 
added to obtain 

 

 �(� = +1) = �(� = +1 ∩ � = +1) + �(� = +1 ∩
�=−1 

     

= (0.90) (0.01) +  
(0.09) (1 – 0.01) 
= 0.0090 + 0.0891 
= 0.0981 

(9 a)

(9 b) 

(9 c)

(11) 

     (12 c) 
= 0.0100 – 0.0090 = 0.0010 

     (12 d) = 0.9900 – 0.0891 = 0.9009 

   (13) = 0.0090 + 0.0891 = 0.0981 

(10)
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 �(� = −1) = �(� = −1 ∩ � = +1) + �(� = −1 ∩
� = −1) = 0.0010 + 0.9009 = 0.9019 
 
 
Or alternatively 
 
 �(� = −1) = 1 − �(� = +1) = 1 − 0.0981 
= 0.9019  
 
The required probability is simply 
 

�(� = +1|� = +1) =
�(����∩����)

�(����)
=

��

���
 = 0.0917 = 

9.17% 
 
Based on the normalized contingency table of 
Fig. 9 the initial problem can be reformulated as 
follows [1]: 
 
“Assume you conduct breast cancer screening 
using mammography in a certain region. You 
know the following information about the women 
in this region: 
 

(a)  One hundred out of every 10000 women 
have breast cancer 

(b)  Of these 100 women with breast cancer, 
90 test positive 

(c)  Of the 9900 women without cancer, 891 
nevertheless test positive.” 

 
The above formulation is the natural-frequency 
formulation. In a sense, this formulation              
presents the problem with half of the solution 
included. This is clear from our highlighting (in 
red) in Fig. 9 of the numbers given in the new 
formulation. In other words, the solution process 
is considerably simplified by representing the 
data in such a way that the solution becomes 
really obvious and less computationally 
demanding. 
 

5. SIGNAL FLOW GRAPHS (SFGs) 
 
Signal Flow Graphs are very useful in 
representing and manipulating linear relations. 
They find extensive uses in areas as diverse as 
microwave measurements [55], automatic control 
theory [56], DNA replication [57], two-
dimensional recursive relations [58-65], and 
multidimensional recursive relations [66]. 
 
Following a proposal by Rushdi and Rushdi [36], 
Rushdi and Talmees [37] developed many SFGs 
for the diagnostic testing problem, which 
culminated with the somewhat sophisticated SFG 
presented in their Fig. 8. This figure is 

reproduced herein with several enhancements 
and improvements in Fig. 10. The SFG in this 
figure is used to relate the conditional, marginal 
and conjunctive probabilities of any contingency 
table. This SFG differs from a standard one, 
since in it a conjunctive probability should be 
understood to be expressed via one only of the 
two arrows incident on it. Another non-standard 
feature of this SFG is that each of the marginal 
probabilities makes its appearance thrice in the 
graph, and once computed in a certain location, it 
should be considered known at the two other 
locations. Nevertheless, the SFG has several 
particularly useful features. Each marginal 
probability is characterized with its related 
entities by a unique color. The SFG is supplied 
by an appropriate combination of three known 
probabilities and is then used to evaluate the 
remaining thirteen probabilities, and moreover to 
provide several checks on the correctness of the 
calculations. The SFG tool does not necessarily 
adopt the probability format, but might                      
support the natural-frequency format as well.                
Fig. 11 is a replica of Fig. 10, with each of the 
conditional, marginal and conjunctive 
probabilities being replaced by a quotient of 
natural frequencies.  Computations associated 
with the SFG might be algebraic in some cases 
such as the example solved in [37] in which all 
three known quantities are conditional 
probabilities. However, in most cases the SFG 
computations are arithmetic in nature.                         
The running example in this paper (in which                   
the known quantities are two conditional 
probabilities and one marginal probability) is 
amenable to arithmetic SFG computation as 
shown in Fig. 12. In fact, the detailed 
computations of this example in Sec. 4 can be 
followed and traced on the SFG of Fig. 12. The 
computations in Fig. 12 are accomplished in five 
stages (a)-(e) with stage (a) used simply for 
inserting the input data, and they go beyond 
obtaining the required unknown to achieving a 
complete characterization of the whole SFG, as 
well as checking correctness of the results. The 
results in Fig. 12 are the same as                         
those in Equations (9)-(15) as well as those in 
Fig. 9.  
 

Figs. 10-12 have striking similarity with trinomial 
graphs, which are special graphs designed by 
Pedro Huerta and coworkers [30] to represent a 
special kind of conditional-probability problems 
called ternary problems. The trinomial graphs are 
slightly enhanced with colors and arrows by 
Rushdi and Talmees [37] to stress their 
parallelism with  signal flow graphs. 

     (14 b)

   (15)

(14 a) 
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Fig. 1. Equivalence of the visualizations of  conditional probability 

�(�|�) = � (� ∩ �) �⁄ (�), �(�) ≠ 0 
by the Venn diagram (a) and the Karnaugh map (b) 

 

 
 

 Fig. 2. The Venn diagram and Karnaugh map in Fig. 1 with A replaced by { � = −�} and B 
replaced by { � = −�}. Various areas are designated as natural frequencies. The Karnaugh 

map can be immediately viewed as a contingency table 
 

 
 

Fig. 3. A Karnaugh map depicting the eight possible conditional probability events {A|B}. 
complementary events are encircled together 

B 

(a) (b) 
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Fig. 4. The Karnaugh map in Fig. 3 redrawn to classify the probabilities of the corresponding 
conditional events. These are the eight most prominent indicators of diagnostic testing 

 

 
 

Fig. 5. The Karnaugh map in Fig. 4 with its entries of conditional probabilities being replaced 
by quotients of natural frequencies 

 

 
 
Fig. 6. A tree explanation of natural frequencies or a tree interpretation of the Karnaugh map in 

Fig. 2(b). which serves as a contingency table 



Fig. 7. The Karnaugh map plays an intermediary role o
table in (a) and a natural frequency tree in (b)

 

Fig. 8. A tree explanation of normalized frequencies. Obviously, normalization causes a loss of 
the advantage of using (natural) 

Rushdi et al.; JAMMR, 25(10): 1-15, 2018; Article no.
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map plays an intermediary role or a liaison between a 2 by 2 contingency 
table in (a) and a natural frequency tree in (b) 

 

 
Fig. 8. A tree explanation of normalized frequencies. Obviously, normalization causes a loss of 

the advantage of using (natural) frequencies. This figure has three different trees rather 
than a single tree 

 
 
 
 

; Article no.JAMMR.40240 
 
 

 
a liaison between a 2 by 2 contingency 

Fig. 8. A tree explanation of normalized frequencies. Obviously, normalization causes a loss of 
frequencies. This figure has three different trees rather 
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(a) 

 
(b) 

 
Fig. 9. Normalized contingency table for use in the example problem. The table is essentially 2 

by 2, but it is augmented by a third column that equals the sum of the two leftmost 
columns, and also augmented by a third row that equals the sum of the top two rows. 
Highlighted in red are the input numbers used in a natural-frequency formulation 

 

 
Fig. 10. Treatment of diagnostic testing via a Signal Flow Graph (in a fashion that mimics a 

trinomial graph) so as to relate the conditional, marginal and conjunctive probabilities of a 
contingency table. This SFG differs from a standard one, since a conjunctive probability is 

expressed via one only of the two arrows incident on it. 
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Fig. 11. The Signal Flow Graph in Fig. 10 with natural-frequency format. Each of the conditional, 
marginal and conjunctive probabilities in Fig. 10 is replaced by its expression as a quotient of 

natural frequencies 
 

 
 

Fig. 12. Complete evaluation of all the conditional, marginal and conjunctive probabilities of 
the contingency table for the running example problem. The evaluation is accomplished in five 

stages (a)-(e) with stage (a) for simply inserting the input data 
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6. CONCLUSION 
 

This paper is a tutorial review of novel 
representations or tools of conditional 
probabilities that enhance understanding, 
simplify calculations, foster insight, and facilitate 
reasoning. Such representations are of general 
utility, but their benefits to medical disciplines are 
stressed herein. One of the proposed 
representations, viz., visualization via a 
Karnaugh map has many distinctive advantages. 
In particular, the Karnaugh map acts as a liaison 
or a link between the theoretically-rigorous 
concept of conditional probability and the 
pedagogically-popular concept of a contingency 
table (with the associated natural frequencies) 
[36]. Another representation via Signal Flow 
Graphs is quite promising and leads to obvious 
enhancements for specific problems such as the 
ternary problem of conditional probability. The 
bulk of this paper is devoted to understanding 
problem reformulation in terms of natural 
frequencies. Advantages of, and misconceptions 
about, this reformulation are highlighted. A 
detailed numerical example is also used to reveal 
the nature of such a reformulation, and to 
demonstrate other tools as well. The moral or 
significance of the example is that a good 
representation leads to a problem already half 
solved. 
 
Though all the representations or tools discussed 
herein seem appealing and produce the same 
results for the same clinical example, they need 
to be tested in real-life situations with groups of 
physicians and medical students.  Many research 
questions are still to be addressed in future 
investigations. These might include deciding the 
effect of employing one particular tool on how 
clinicians might interpret diagnostic test results, 
as well as the determination of the clinical 
instances where one tool is more appropriate 
than another.   
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