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ABSTRACT 
 
The total number of co-occurring species (“true species richness”) and the way their respective 
abundances are distributed (“species abundance distribution”) are two major descriptive traits of 
species assemblages, in numerical terms. Moreover, beyond mere description, the species 
abundance distribution may help to infer how ecological factors/constraints are currently shaping the 
hierarchical structure of species assemblages and thereby, may contribute to shed light upon 
general traits regarding the functional organisation within communities of species. Unfortunately, 
both total species richness and exhaustive abundance distributions are not available when dealing 
with more or less incomplete species inventories, a situation which becomes increasingly frequent 
with the generalisation of the so-called “quick surveys” and “rapid biodiversity assessments”, which 
are almost unavoidable when addressing very species-rich assemblages, such as, for example, 
invertebrate communities. Hence, the necessity of extrapolating with minimum bias (i) the species 
accumulation curve, thereby deriving reliable estimates of the total species richness of sampled 
assemblage and (ii) the species abundance distribution to get an exhaustive pattern including the 

Method Article 



 
 
 
 

Béguinot; AIR, 13(4): 1-24, 2018; Article no.AIR.39002 
 
 

 
2 
 

full set of co-occurring species. Previous reports from the same author already dealt with the least-
biased extrapolation of species accumulation and the associated derivation of total species 
richness. Now, an appropriate method is proposed, hereafter, to extrapolate with minimum bias the 
Species Abundance Distribution itself, when having to deal with only partial species inventories. The 
method shares in part some theoretical results that had already served to support the extrapolation 
of species accumulation process. The procedure leading to the extrapolation of the Species 
Abundance Distribution is first detailed in principle and then put into practice utilising a few 
examples. Improvements as compared to an earlier attempt at the same goal are discussed.  

 
 
Keywords: Quick survey; rapid biodiversity assessment; ranked abundance distribution; least-biased 

extrapolation; unveiled S.A.D; least-biased estimation; broken-stick; log-normal; species 
community, butterfly, Bhutan. 

 
1. INTRODUCTION 
 
Numerical characterisation of species 
communities requires, first of all, the evaluation 
of the total (true) species richness, as accurately 
as possible. As important as the evaluation of 
total species richness may be [1,2], this remains, 
however, insufficient to thoroughly characterise a 
species assemblage numerically. Assessing also 
the more or less uneven distribution of species 
abundances within species communities is an 
essential complement to the estimation of total 
species richness [3–10]. This, in turn, can help 
shed light on the processes at work to shape the 
internal structuring of species communities. 
Hence the long-standing interest devoted to the 
specific shape of the Species Abundance 
Distribution (the “S.A.D.”) – also designed as 
“Ranked Abundance Distribution” when species 
abundances are conveniently ranked by 
decreasing order of values, as will be the case all 
along the text below. 
 
Thorough representations of “S.A.D.s”, including 
the whole set of species that occur in the studied 
assemblage of species, is indeed required to get 
a deeper understanding of the processes 
involved in the hierarchical structuration of 
species assemblages [11]. This, however, would 
imply, first of all, achieving a (sub-) exhaustive 
inventory of the whole set of co-occurring 
species within the community of interest. 
Unfortunately, samplings may rarely be carried 
out exhaustively in practice, especially when 
dealing with highly multi-species communities, as 
is often the case, for example, with invertebrate 
faunas. Hence, the increasingly frequent 
recourse to the so-called “quick surveys” or 
“rapid biodiversity assessments”, imposed as a 
frustrating but inevitable compromise between 
the desires of thorough investigations on the one 

hand and the limiting practical constraints on the 
other hand. Thus, time-limited sampling 
scenarios often result in sample sizes that are far 
too small to capture the (sub-) total species 
richness of the sampled communities [1,7,12]. 

  
Numerical extrapolation is a suitable surrogate to 
compensate for the lack of completeness of 
sampling, taking account of unrecorded species, 
at least numerically.  

 
Various numerical extrapolation procedures have 
been implemented for the estimation of the 
number of unrecorded species and, thereby, for 
the evaluation of the total species richness of the 
studied community, using nonparametric 
estimators of the number of unregistered species 
[13,14]. Several attempts to improve the 
accurateness of estimations have been proposed 
more recently: see [15–20].  

 
On the opposite, the numerical extrapolation of 
“S.A.D.s” has hardly been addressed so far. Yet, 
a significant attempt in this direction has recently 
been proposed by Chao et al. [21], but with some 
substantial limitations, resulting in particular from 
the sole recourse to “Chao-1” estimator, known 
to exceedingly underestimate the number of still 
unrecorded species in most cases [15–20]. 
  
Hereafter, I report a new procedure to 
extrapolate Species Abundance Distributions 
with minimised bias, based on the prior,                 
least-biased extrapolation of the corresponding 
“Species Accumulation Curve” [19,20].                      
The practical application of this new procedure is 
subsequently illustrated using a series of 
examples that, moreover, highlight the interest of 
considering fully extrapolated rather                       
than incomplete Species Abundance 
Distributions. 
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2. METHODS 
 
A BRIEF DESCRIPTION OF THE NEW 
PROCEDURE OF LEAST-BIASED EXTRAPO-
LATION OF “SPECIES ABUNDANCE 
DISTRIBUTIONS” 

 

As already underlined by Chao et al. [21], two 
main steps are to be considered in order to 
elaborate a relevant and complete representation 
of the Species Abundance Distribution:  
 

1) first, it is recommended to provide relevant 
bias corrections to the as-recorded part of 
the “S.A.D.”, by inferring, as accurately as 
possible, the true abundances of species 
on the basis of their crude recorded 
frequencies;  

2) then, comes the extrapolation of the 
missing part of the “S.A.D.” (i) by 
estimating  the number of the still 
unrecorded species and then, (ii) by 
extrapolating their expected abundance 
distribution. 

 

Conversion of the as-recorded frequencies 
into true species abundances 
 
The frequencies of occurrence of recorded 
species within a sample of finite size provide a 
biased evaluation of the true abundances of 
species within the sampled assemblage. This is 
already intuitive and may be confirmed by 
numerical simulations. Consider, for the 
argumentation, a community of species all of 
them having ideally equal levels of abundance. 
Obviously, a finite sampling extracted from this 
community will inevitably lead to some scatter 
among the recorded frequencies of occurrence of 
these species, with the range of scatter 
increasing with decreasing sampling size. Crude 
recorded frequencies of species occurrence will 
thus provide biased evaluations of the real 
proportional abundances of these species in the 
community. Typically, this bias (i) will show up 
differences between abundances even when 
such differences yet do not really exist and (ii) 
will tend to exaggerate the magnitude of 
differences of abundances when differences truly 
exist. So that converting frequencies in true 
abundances actually requires bias corrections. 
  
According to Appendix 1 (equation A1.14), the 
estimated true abundance ãi of species ‘i', having 
a recorded frequency pi = ni/N0 in a sample of 
size N0, is given by:  
  

ãi  =  pi.(1+1/ni)/(1+R0/N0).(1–f1/N0)            (1) 

where N0 is the achieved sample size, R0 
(=R(N0)) the number of recorded species, among 
which a number f1 are singletons (species 
recorded only once), ni is the number of recorded 
individuals of species ‘i’, so that pi = ni/N0 is the 
recorded frequency of occurrence of species ‘i', 
in the sample. 
 
The crude recorded part of the “S.A.D.” – 
expressed in terms of the series of as-recorded 
frequencies pi = ni/N0 – should then be replaced 
by the corresponding series of expected true 
abundances, ãi, estimated according to equation 
(1). 
 
Extrapolation of the missing (unrecorded) 
part of the “S.A.D.” 
 
The extrapolation of the “S.A.D.” beyond the 
(previously bias corrected) recorded part, i.e. for 
ranks i > R(N0), involves two complementary 
aspects: 
 

i. the least-biased estimation of the number 
Δ of still unrecorded species, 

ii. the estimation of their abundance 
distribution, thereby extrapolating the 
“S.A.D.” beyond its recorded part until 
reaching its full completeness. 

 
As regards point (i), a relevant approach has now 
become instrumental for the extrapolation of the 
species accumulation curve. Applying this 
method allows, in particular, to select the least-
biased type of estimator of the number Δ of still 
unrecorded species, among the large set of now 
available types of estimators [19, 20]. 
 
As regards point (ii), several options are 
possible: 
 
** Option n° 1: this is the simplest option which 
consists, following Chao et al. [21], in simply 
assuming a uniformly log-linear shape of the 
“S.A.D.” all along its extrapolated part. Given the 
number Δ of unrecorded species and the fact 
that the cumulated abundances of unrecorded 
species is equal to Au(N) = f1/N0 (Appendix 1, 
equation (A1.5)), the uniform slope of the log-
linear extrapolation of the  “S.A.D.” is thereby 
entirely determined. 
 
** Option n° 2: the extrapolation of the “S.A.D.” 
is now “articulated” in two successive parts; this 
offers better opportunities to approach a little 
more realistically the various possible shapes of 
“S.A.Ds.” towards their end. Indeed, beyond their 
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archetypal, grossly log-linear shape [8], “S.A.D.s” 
most often display, in details, a large range of 
variations in shape.  In conventional, log-
transformed abundance representation, one may 
roughly distinguish three main categories [11]: (i) 
more or less symmetric sigmoidal shapes as in 
Preston “log-normal” or MacArthur “broken stick” 
distributions, (ii) shapes remaining more or less 
(sub-) log-linear as in geometric- or log-series 
and (iii) shapes consistently retaining, all along, a 
positive curvature (power law models). In any 
cases, an articulated, two-part extrapolation may 
comply more easily with such variations of shape 
towards the end of the “S.A.D.”. 
 
In practice, let Δ1 and Δ2 (with Δ1+Δ2 = Δ) be the 
respective extents of the two successive stages 
of the extrapolation (respective ranks [R0+1 to 
R0+Δ1] and [R0+Δ1+1 to R0+Δ]). These two 
successive stages may be either: 
 
*option n° 2.1: both log-linear, with different 
slopes s1 and s2, that is ai/ai+1 = s1 and then 
ai/ai+1 = s2; the first slope, s1, being chosen to 
match the slope of the end of the recorded part 
of the “S.A.D.”;  
  
*option n° 2.2: a log-linear first-part, with the 
slope s1 (once again chosen to match the slope 
at the end of the recorded part of the “S.A.D.”) is 
then followed by an incurved second-part along 
which the slope is consistently increasing in 
module (as in log-normal or broken-stick models) 
or decreasing (as in Zipf’s models). For this 
second part, an appropriate expression may be 
of the type (ai/ai+1) = s1.(1+(i – i0)

a
), with i0 as the 

species rank at the beginning of the second 
stage (i0 = R0+Δ1+1) and the exponent ‘a’ being 
positive, for example a = 3. 
 

Let focus a little further upon this more flexible 
and adaptable option. Four parameters 
characterise this type of extrapolation, namely: 
the numbers Δ1 and Δ2 of species involved in 
each of the two successive stages, the slope s1 
of the log-linear first part and the rate of variation 
of the slope during the second stage (related to 
‘a’). In turn, four parameters are thus necessary 
to determine the shape of the extrapolation; 
these will be:  
 

i. the least-biased estimates of Δ, which 
constrains the sum Δ1+Δ2; 

ii. the recorded ratio f1/N0 which constrains 
the cumulated abundances of the Δ 
unrecorded species, according to TURING 
relationship (see equation (A1.5) in 
Appendix 1); 

iii. the slope at the end of the recorded part of 
the “S.A.D.”, to which the slope s1 of the 
first part of the extrapolation is expected to 
conform in order to respect the continuity 
of the first derivative in theoretical 
“S.A.D.s”; 

iv. the estimated abundance amin (= a(Ro+Δ)) of 
the last, rarest unrecorded species.  

 

The estimation of this last parameter proceeds 
from equation (1) 

 
amin  = (1/Nf).(1+1/1)/(1+R0/Nf).(1–f1/Nf)   

                 =  (2/Nf)/(1+R0/Nf).(1–f1/Nf)  
  

with Nf as the sample size when the last species 
is just being recorded for the first time. Nf is 
obtained from the least-biased extrapolation of 
the species accumulation curve R(N) ([19, 20]; 
see also Appendix 1 for the expression of this 
extrapolation). In practice, as the species 
accumulation curve reaches the last species 
asymptotically, we follow the convention 
suggested by CHAO and coworkers [22]: Nf  is the 
computed sample-size which allows to reach 
total species richness minus 1 or 0.5  (i.e. R(Nf) = 
R0 + Δ – 1 or 0.5). 
 
In practice, as Nf >> R0 and Nf  >>  f1, it comes: 
 

amin  ≈ 2/Nf                                                   (2)   
 

** Option n° 3: a third (and quite preferred) 
alternative solution to relevantly extrapolate 
“S.A.D.s” takes advantage of the prior, least-
biased extrapolation of the species accumulation 
curve itself [19, 20]. This, approach features 
particularly relevant since the rate of species 
accumulation along progressive sampling is 
directly dependent upon the distribution of 
species abundances in the sampled assemblage 
of species [12, 21]. Indeed, consider the species 
‘i' of rank ‘i' in the “S.A.D.” and let Ni be the 
sample size when this species is detected at first 
during progressive sampling. At sampling size Ni, 
the number ni of individuals of species ‘i’ is thus 
ni = 1 and species ‘i’ is then assigned a 
frequency pi = 1/Ni. 
 

Then, according to equation (A1.14) in Appendix 
1, it comes: 
 

ai  =  (1/Ni).(1+1/1)/(1+R(Ni)/Ni).(1–f1(Ni)/Ni)   
 

that is: 
 

ai  =  (2/Ni)/(1+R(Ni)/Ni).(1–f1(Ni)/Ni)            (3) 
 

with Ni defined by R(Ni) = i.  
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The number f1(Ni) of singletons when the sample 
reaches size Ni is related to the first derivative 
∂R(N)/∂N of the expression of the species 
accumulation curve R(N) (see equation (A1.16) 
or [19]:  
 

f1 = N.∂R(N)/∂N).  
 

Accordingly, here, f1(Ni) = Ni.|∂R(N)/∂N|Ni with 
|∂R(N)/∂N|Ni  as the first derivative of R(N) at N = 
Ni. 
 
Thus, it comes finally: 
 

ai  =  (2/Ni)/(1+ R(Ni)/Ni).(1– [∂R(N)/∂N]Ni)  (4) 
 

which, in practice, comes down to:  
 

                ai  ≈  (2/Ni)/(1 + R(Ni)/Ni)            (4 bis)   
   
since f1(N) and, thus, ∂R(N)/∂N) already 
becomes  quite negligible as compared to N 
along the extrapolated part. 
 

This equation provides the extrapolated 
distribution of the species abundances ai (for i > 
R(N0)) as a function of the extrapolated species 
accumulation curve R(N) (for N > N0), with ‘i' 
being equal to R(Ni). The expression of R(N) to 
be selected is provided at Appendix 2. 
 

Nota – In actual “S.A.D.s”, the abundances ai are 
expressed as ratios of integers, thus giving 
“S.A.D.s” a discontinuous, “staircase-like” shape. 
In particular, the lowest level of recorded 
abundance (that is when ni = 1) is represented 
by a step often comprising not only one species 
but a number usually > 1, since the number f1 of 
singletons may often exceeds 1. The connection 
in continuity between the end of the recorded 
part of the “S.A.D.” and the beginning of the 
extrapolated part is thus located at i = R0 – f1/2 
(rather than i = R0, see Figs. 5 and 8); therefore, 
equation (4) is standardised accordingly. 
 

At last, from a more “heuristic” point of view, it 
should be noted that equation (4) clearly 
highlights the tight articulation that exists 
between: 
 

1) the “Species Abundance Distribution” [i.e. 
the species abundance ai as a function of 
the species rank i : ai = a(i) ]  
 and  

2) the “Species Accumulation Process” [i.e. 
the sampling size Ni when the species of 
rank i is expected to be first detected : i = 
R(Ni)]; 

finally leading to the linkage ai = a(i) = a(R(Ni)), 
detailed by equation (4). 
 
What can be reasonably learned from Species 
Abundance Distributions 
 
Beyond their purely descriptive contribution, it is 
usually expected from the “S.A.D.s” some 
additional insights on the procedural pathways 
that makes the corresponding assemblage of 
species hierarchically structured as it actually is, 
in terms of abundances distribution. 
  
 * comparison to classical “S.A.D.s” models 
 

A common practice consists in trying to select, 
among a series of referential models, which of 
them looks closest to the studied “S.A.D.” A large 
– and steadily increasing number of referential 
models (see [23, 24]) – is currently available. 
Most of these models often seem, however, 
more or less equally appropriate, for the bulk of 
empirical “S.A.D.s” [23]. For example, similarly 
high correlation coefficients, comprised between 
0.90 and 0.94, are reported by ALROY [24] when 
1055 empirical “S.A.D.s” are tested against each 
of four classic models, namely: geometric series, 
double-geometric series, log series, log-normal 
(although these models respectively refer to quite 
different causal mechanisms!). Strong 
disagreements may thus occur among the 
resulting interpretations, see for example the 
sharply different points of view that oppose 
Baldridge et al. [25] to either McGill et al. [23] or 
Alroy [24]. Indeed, this somewhat confusing 
situation has already been emphasised 
previously [8]. This especially holds true when 
having to deal with incomplete surveys. 
 

An alternative or comparative avenue would 
consist to compare in quantitative terms – rather 
than trying to identify – the studied “S.A.D” with 
an appropriate model that may serve as a “null” 
model, having explicit simple significance. In this 
perspective, models referring to either strictly or 
statistically even abundances distributions would 
feature particularly adequate. The purpose being, 
here, to characterise (i) the degree of 
unevenness of abundance distribution as a 
whole and, moreover, (ii) to evaluate the 
respective contributions to unevenness of such 
or such particular species. Two types of “null” 
models can fairly well match these objectives: 
 

- a basically deterministic model, the trivial 
“ideally strictly even abundance distribution” {ei}, 
with abundance ei of the i

th
 species (labelled ‘e’ 

for ‘even’), defined, independently of rank ‘i’, as: 
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ei  = 1/St                                                       (5) 
  

with St as the total species richness of the 
assemblage of species (previously derived by 
least-biased extrapolation); 
 
 -  a basically stochastic model, the MacArthur 
“broken-stick” distribution {ri}, expected to 
provide the stochastic outcome issued from the 
randomisation of an ideally even distribution of 
abundances (that is, in practice, the statistically 
random apportionment of abundances values 
between all the co-occurring species [26]: 
 

ri  = (1/St).Σ (1/n)                                         (6) 
 

with ri as the abundance of the i
th
 species 

(labelled ‘r’ for ‘random’) and the summation Σ 
being extended from n = i to n = St. The “broken-
stick” distribution had already been suggested as 
an appropriate “null” by WILSON [27]. 
 
The degree of unevenness of any empirical 
“S.A.D.” is, of course, always greater than the 
zero unevenness of the deterministic “strictly 
even” model, while it may be either larger, equal 
or inferior to the unevenness level of the 
corresponding “broken-stick” model, depending 
on whether the structuring process at work in the 
species assemblage has a stronger, equal or 
weaker influence than has the randomisation 
process involved in the “broken-stick” model. In 
this respect, the “broken-stick” model may be 
considered a more suggestive and interesting 
referential model than the deterministic “ideally 
even” model (but in fact both approaches are 
complementary). 
 
Note that both “null” models require the previous 
knowledge of the total species richness St 
(equations (5) an (6)).  This is a second               
strong reason to implement extrapolations of 
“S.A.D.s”. 
 
*comparison between two or several  
“S.A.D.s”  
 
Two or several “S.A.D.s” may also be compared 
directly, by considering in each “S.A.D.” the 
abundances of species having a same rank ‘i’ (or 
for a same range of ranks) in each of compared 
“S.A.D.s”. Yet, if the “S.A.D.s” to be compared 
come from species assemblages that 
substantially differ by their respective species 
richness, the direct comparison between 
abundances may become somewhat irrelevant 
and can suggest “misleading conclusions” [11]. 

This is because, in such case, a trivial 
contribution from species richness, of purely 
numerical order, inopportunely adds to the direct 
influence of ecological factors upon the 
distribution of species abundances. Indeed, there 
is an unavoidable trend for species dominance to 
decrease when total species richness increases; 
the dominance tending to be somewhat “diluted” 
by the number of co-occurring species [11, 28, 
29]. This trend – and its essentially numerical 
rather than biological origin – are clearly 
exemplified (i) by the inversely proportional 
decrease of the flat level of abundances in the 
“ideally even abundance distribution” and (ii) by 
the decrease of the average steepness of the 
“broken-stick” distribution, when species richness 
St increases (see equations (5) and (6)). And it is 
precisely why, both “null” models can serve to 
cancel the influence of this non-biological trend, 
when “S.A.D.s” issued from communities having 
substantially different species richness are to be 
compared. 
  
Therefore, to ensure relevant comparisons in 
practice, the respective species abundances of 
compared “S.A.D.s” should be rationalised by 
reference to one or the other of the two “null” 
models: the accordingly “rationalised” abundance 
at rank ‘i’ is then identified to the ratio: ai/ei or ai/ri 
(see below). 
 
*synthetic indices to reflect the intensity of 
structuration within species assemblages 
 
The distribution of species abundances in a 
community may be understand either in term of: 
 
- pattern: the “S.A.D.” being, by itself, the 
complete and detailed description of the internal 
structuring of the assemblage; 
 
- process: the relative abundance of each 
species being, then, considered as reflecting the 
species relative “performance” in the particular 
context of the assemblage. “Performance” being 
understand, here, sensu latissimo, that is 
encompassing the factors of all kinds which 
together contribute to increase (or decrease) the 
relative abundances of each species: these 
factors may  be, for some of them, intrinsic to the 
species (its own capacities facing the ecological 
and syn-ecological context within the 
assemblage) and, for some others, opportunistic 
or stochastic (depending, in particular, upon the 
historical and environmental context which 
contribute also to the actual structuration): see 
schematic sketch in Fig. 1. 



 
Fig. 1. Schematic sketch showing how the relative “performance” 
species "i", occurring in a given 

the ecological and syn-ecological contexts which are peculiar to this assemblage
 
Accordingly, representative indices may address
either each species in particular
assemblage as a whole. 
 
  > Indexation per species: quantifying the 
relative “performance” of a species in particular
 
The degree of “performance” of each species 
makes full sense when compared to either the 
“ideally even distribution” {ei} or the randomly 
apportioned abundance distribution (“broken
stick”) {ri}, giving rise to the two following indices, 
respectively: 

IPe = ai/ei                                                          

IPr  = ai/ri                                          
 

Testing the statistical significance of the index 
IPe, comes down to test the significance of the 
gap between the true abundance, a
pi.(1+1/ni)/(1+R0/N0).(1–f1/N0)  (see equation (1)) 
and the reference value ei = 1/St (equation (5)). 
Which finally amounts to compare 
frequency of occurrence pi = (n
threshold (1/St)/[(1+1/ni)/(1+R0/N0).(1
 
Similarly, testing the statistical significance of the 
index IPr, comes down to test the significance of 
the gap between true abundance, a
pi.(1+1/ni)/(1+R0/N0).(1–f1/N0) and 
value ri = (1/St).Σ(1/n) (equation (6)). Which 
finally amounts to compare the recorded 
frequency of occurrence pi = (n
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Schematic sketch showing how the relative “performance” - sensu latissimo
 assemblage of species, depends upon both the historical and 

ecological contexts which are peculiar to this assemblage

Accordingly, representative indices may address 
rticular or the 

Indexation per species: quantifying the 
relative “performance” of a species in particular 

The degree of “performance” of each species 
makes full sense when compared to either the 

or the randomly 
apportioned abundance distribution (“broken-

}, giving rise to the two following indices, 

 
                                       (7) 

 
                  (8) 

Testing the statistical significance of the index 
IPe, comes down to test the significance of the 

true abundance, ai =  
)  (see equation (1)) 

(equation (5)). 
 the recorded 

(ni/N0) to the 
).(1–f1/N0)]. 

Similarly, testing the statistical significance of the 
index IPr, comes down to test the significance of 

true abundance, ai =  
the reference 

).Σ(1/n) (equation (6)). Which 
to compare the recorded 

= (ni/N0) to the 

threshold [(1/St).Σ(1/n)]/[(1+1/ni

f1/N0)]. 
 
Nota: “composite” indices, “IPc”, 
considered, each of them referring to 
models: 
 
IPc1 = (ai/ei)/(ri/ei)  =   ai /ri                   
 

or: 
 

IPc2 = (ai–ei)/(ri–ei) = (ai /ei  – 1)/ (ri 

 

These two kinds of composite indices are either 
> 1 or < 1, depending on whether the species 
abundance ai is larger or smaller than the 
corresponding abundance ri in the “broken
model. 
 

Moreover, the second composite index, IPC2, 
equals zero if the species abundance a
to the ideally even abundance ei 
makes this index being scaled, profiting 
“zero” threshold level and by the definition of a
“unit”, equal to the difference (ri – e
randomly apportioned abundance distribution 
and the ideally even abundance distribution. 
 

> Indexation relative to the whole assemblage: 
quantifying its relative degree of structuration
 

Once again, this indexation makes full sense 
when compared to either the “ideally even 
distribution” {ei} or the “broken-stick distribution” 
{ri}. 

 
 
 
 

; Article no.AIR.39002 
 
 

 

sensu latissimo - of a given 
assemblage of species, depends upon both the historical and 

ecological contexts which are peculiar to this assemblage 

i)/(1+R0/N0).(1–

 may also be 
considered, each of them referring to both “null” 

                     (9) 

 /ei  – 1)     (10)    

These two kinds of composite indices are either 
> 1 or < 1, depending on whether the species 

is larger or smaller than the 
in the “broken-stick” 

Moreover, the second composite index, IPC2, 
equals zero if the species abundance ai is equal 

 (=1/St), which 
profiting both by a 

by the definition of a 
ei) between the 

randomly apportioned abundance distribution 
and the ideally even abundance distribution.  

Indexation relative to the whole assemblage: 
quantifying its relative degree of structuration 

Once again, this indexation makes full sense 
when compared to either the “ideally even 

stick distribution” 
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Two complementary factors may be considered:  
  

i. the number of species, se or sr, whose 
abundances exceed the corresponding 
abundance in either the “ideally even” or 
the “broken-stick” models respectively, 

ii. the average values, IPe* or IPr*, of the 
indices of performance IPe or IPr (defined 
above), for each of these se or sr species 
respectively. 
 

A composite index may be derived accordingly: 
 

Ie = se.IPe*                                                 (11) 
 

Ir = sr.IPr*                                                   (12) 
 

The steepness of the decreasing abundance 
slope, along all or part of the “S.A.D.”, also offers 
a complementary synthetic characterisation. 
Comparisons may be simply carried out between 
slopes as such. But, as already emphasised, 
slopes may advantageously be previously 
standardised to the slope of the corresponding 
“broken-stick” (or “ideally even”) distribution, so 
as to cancel the direct contribution of total 
species richness and, thereby, highlight 
separately the influence of all the other 
parameters determining the species assemblage 
structuration. 
 
Testing the statistical significance of 
differences between “S.A.D.s” or between 
“S.A.D.” and a referential model 
 
The statistical significance of differences 
between recorded abundances, as well as the 
statistical significance of the indices derived 
above, can be tested using conventional 
statistical methods. Yet, the Bayesian inference 
approach (see equation A1.7 in Appendix 1) now 
offers an improved way to conduct accurate 
tests. 
 
PRACTICAL IMPLEMENTATION OF THE 
NUMERICAL EXTRAPOLATION OF THE 
SPECIES ABUNDANCE DISTRIBUTION 

 
In accordance with the mainly methodological 
objective of this contribution, the following 
examples are, first of all, intended at illustrating 
the practical implementation of the procedure of 
extrapolation of “S.A.D.s” described above. That 
means that the resulting ecological and biological 
implications pertaining to each of the two 
examples below, as interesting as they are, will 
be treated elsewhere. 

Among the different options of treatments 
provided above, the option n° 3 is duly selected 
in these examples for its better accurateness. 
Indeed, option n° 3 takes advantage of the least-
biased extrapolation of the corresponding 
species accumulation curve, serving as the 
steering guide to the extrapolation of the 
“S.A.D.s” itself. 
 
Example 1: partial inventory of butterfly fauna 
at “Manas Range Park” (Bhutan) 
 
The first example relates to a subtropical butterfly 
community at “Royal Manas Range National 
Park” (Bhutan), partially surveyed by Nidup et al. 
[30]. Based on the reported field data (a list of R0 
= 91 recorded species including their respective 
abundances issued from sampling of N0 = 1319 
individuals), an extrapolation of the Species 
Accumulation Curve was computed, after 
selection of the least-biased type of estimator of 
the number of still unrecorded species: in this 
case, the ‘Jackknife-5’ estimator, leading to an 
estimated number of 28 unrecorded species. The 
total species richness of butterfly fauna in the 
sampled ecosystem at “Manas Range” is thus 
evaluated at 119 species: 91 recorded + 28 
unrecorded (resulting completeness level of the 
inventory: 76%). The results above, as well as 
the extrapolated Species Accumulation Curve 
were derived in [31]. 
 
Based on this prior extrapolation of the Species 
Accumulation Curve, the extrapolation of the 
“S.A.D.” is subsequently obtained, by applying 
equation (4).  
 
The completed “S.A.D.”, including the least-
biased extrapolation (ranks i = 92 to 119), is 
provided in Figs. 2 to 5. While Fig. 2 is according 
to classical representation, using log-transformed 
abundances, the following figures comply with 
the convention of representation originally 
adopted by MACARTHUR [26], involving 
untransformed (rather than log-transformed) 
species abundances, a representation which 
provides a more straightforward visual 
appreciation of the relative abundances. 
 
Note that, restricted to its as-recorded part, the 
shape of the “S.A.D.” would likely comply with a 
“log-series” distribution (Fig. 2) leading to 
assume that only one (or, at most, very few) 
major factor(s) are expected being at work to 
shape the abundance structuration of the 
butterfly assemblage. Now, considering the 
whole “S.A.D.” – fully completed thanks to 
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extrapolation –  the pattern of distribution and the 
associated conclusion will strongly differ – hence 
the importance of implementing reliable 
numerical extrapolation. The completed 
distribution (Fig. 2) shows a sigmoidal shape, 
slightly dissymmetric (as is also, for example the 
“broken-stick”) which now looks closer to a “log-
normal” distribution, but slightly dissymmetrically 
skewed. This is more in favour of a multiplicity of 
mutually independent factors involved together in 
the process of hierarchical structuration of the 
community [3]. 
 

Interestingly, Ulrich et al. [11] also emphasised 
the fundamental importance of distinguishing 
between fully censused and incompletely 
sampled communities, when trying to provide a 
relevant interpretations of “S.A.D.s”. Also, they 
reported that “S.A.D.s” issued from completely 
censused animal communities often tend to 
follow the “log-normal” model. 
 

the practical computation procedure briefly 
reviewed step by step 
 

The prior least-biased extrapolation of the 
Species Accumulation Curve for the butterfly 
assemblage at Manas Range Park, reported in 
detail in [31], provides all numerical data 

necessary [ N0 = 1319, R0 = R(N0) = 91, f1 = 17  
and the least-biased expressions of the 
extrapolated species accumulation R5(N) and its 
first derivative ∂R5(N)/∂N)] to proceed, in turn, 
with the corresponding least-biased extrapolation 
of the Species Abundance Distribution. This data 
is subsequently introduced: 
 

 in equation (1), which provides the           
bias-corrected estimates of abundances 
for the already recorded part of the 
“S.A.D.” ; 

 in equation (4), which provides the least-
bias extrapolation of the abundance 
distribution of the still unrecorded species.  
 

Figs. 2 to 5 provide the graphical expressions 
of the results derived from equations (1) and 
(4). 

 

Example 2: partial inventory of butterfly fauna 
at “Sankosh River catchment” (Bhutan) 
 

This second example relates to a tropical 
butterfly inventory at “Sankosh River catchment”, 
partially surveyed by SINGH [32]. Based on the 
reported field data (a list of R0 = 213 recorded 
species including their respective abundances 
issued from sampling of N0 = 1731 individuals), 

 

 
 

Fig. 2. The completed Species Abundance Distribution derived from the partial inventory of 
butterfly fauna at “Royal Manas Range National Park” (Bhutan). Recorded data: 91 species 

(ranks i = 1 to 91). Least-biased extrapolation: 28 unrecorded species (ranks i = 92 to 119). The 
dashed line accounts for the corresponding MacArthur “broken-stick” model.  

Note that species abundances are presented on a log-transformed scale. 
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Fig. 3. The completed Species Abundance Distribution of Fig. 2, with species abundances 
presented on an untransformed scale, in compliance with the convention of representation of 

MACARTHUR [26]. The dashed line accounts for the corresponding “broken-stick” model 
 

 
 

Fig. 4. Same as Fig. 3, with logarithmic scale for species ranking, which provides a more easy 
reading of the beginning of the “S.A.D.”. The dashed line accounts for the corresponding 

MacArthur “broken-stick” model. 
 

an extrapolation of the Species Accumulation 
Curve was implemented after selection of the 
least-biased type of estimator of the number of 
still unrecorded species: in this case, the 

‘Jackknife-2’ estimator, leading to an estimated 
68 unrecorded species. The total species 
richness of butterfly fauna at “Sankosh river” is 
thus evaluated at 281 species: 213 recorded + 
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68 unrecorded (resulting completeness level of 
the inventory: 76%) and the extrapolated Species 
Accumulation Curve is given in [33]. The 

completed “S.A.D.” including the derived least-
biased extrapolation (ranks 214 to 281) is 
provided in Figs. 6 to 8. 

 

 
 
Fig . 5. Same as Fig . 3, with expanded scale for abundances, providing a more easy reading of 

the following part of the “S.A.D.” Note that the extrapolated part (ranks 92 to 119) definitely 
supports the expectation that the abundance distribution of the unrecorded species still stays 
lower than the “broken-stick” model (dashed line), as already initiated as soon as rank i ≈ 15. 

 

 
 

Fig. 6. The completed Species Abundance Distribution derived from the partial inventory of 
butterfly fauna at “Sankosh River catchment” (Bhutan). Recorded data: 213 species (ranks i = 
1 to 213). Least-biased extrapolation: 68 unrecorded species (ranks i = 214 to 281). The dashed 

line accounts for the corresponding MacArthur “broken-stick” model. 
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Fig. 7. Same as Fig. 6, with logarithmic scale for ranks providing a more easy reading of the 
beginning of the “S.A.D.” 

 

 
 
Fig. 8. Same as Fig. 6, with expanded scale for abundances, providing a more easy reading of 
the following part of the “S.A.D.” Note that the extrapolated part (ranks 214 to 281) definitely 

supports the expectation that the unrecorded species abundances distribution actually 
continue staying slightly lower than the “broken-stick” model, as initiated from rank ≈ 20. 
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Making relevant comparisons between 
species abundance distributions, issued from 
different species assemblages: comparing 
“Manas Range” and “Sankosh River”  
 
The butterfly assemblages considered above, at 
“Manas Range” and “Sankosh River”, markedly 
differ as regards their total species richness, with 
respectively St = 119 and St = 281. The 
(recorded) abundances of, say, the ten most 
abundant species (i = 1 to 10) in each 
assemblage are plotted in Fig. 9. On average, 
apart from some differences rank by rank, the 
abundances in both assemblages are relatively 
similar. But, in fact, the comparison is 
appreciably biased by the substantial difference 
of true species richness St existing between the 
two assemblages, as already underlined above. 
Thus, in the comparison, the abundances at 
“Sankosh River” (twice as species-rich as 
“Manas Range”) might be considered as 
“disfavoured” due to the highest number of co-
coccurring species at “Sankosh”. Accordingly, to 
put aside the effect of difference in total               
species richness, abundances can be 
rationalised by reference to an appropriate               
“null” model, the latter opportunely taking 
account of the specific contribution of                        
total species richness alone. The rationalisation 
of abundances thus makes it possible to               

identify and evaluate separately the respective 
contributions to the hierarchical structuring                      
of species abundances of (i) the total                    
species richness and (ii) the bulk of other 
ecological factors, which, they, are of specific 
interest. 
  
The rationalised abundances values Ipr (see 
equation (8)), computed by reference to the 
“broken-stick” model are plotted in Fig.10:  Ipr  =  
ai/ri = ai/[(1/St).Σ (1/n)], with St = 281 for Sankosh 
and St = 119  for Manas. This rationalisation of 
abundances reveals that the processes at work 
in both assemblages, leading to the hierarchical 
structuring of abundances, are considerably 
stronger (≈ 3 times) at “Sankosh” than at 
“Manas”, once deduced the specific effect of the 
difference of species richness. This, indeed, 
could not have been suspected from looking at 
the crude data from Fig. 9 alone. Hence the 
interest of this rationalisation with respect to 
“null” models. 
 
The rationalised abundances values Ipe (see 
equation (7)), by reference to the other “null” 
model, the “ideally even abundance distribution” 
(Ipe = ai/ei = ai/(1/St)), are plotted in Fig. 11. The 
highlighted trend remains quite similar to those 
derived from rationalisation to “broken-stick” 
model. 

 

 
 

Fig. 9. The abundances of the ten most frequent species in the butterfly assemblages at 
“Manas Range” and at “Sankosh River” (Bhutan) 
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Fig. 10. The normalised abundances of the ten first (most frequent) species in the butterfly 
assemblages at “Manas Range” and at “Sankosh River” (Bhutan), after rationalisation of the 

corresponding abundances by reference to the “broken-stick” model. The rationalisation 
relevantly cancels the specific contribution of the difference of species richness (twice larger 

at “Sankosh River”) 
 

 
 

Fig. 11. The normalised abundances of the ten first (most frequent) species in the butterfly 
assemblages at “Manas Range” and at “Sankosh River” (Bhutan), after rationalisation of the 
corresponding abundances by reference to the “ideally even abundance distribution” model. 

The rationalisation relevantly cancels the specific contribution of the difference of species 
richness (twice larger at “Sankosh River”) 
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3. DISCUSSION 
  
Species richness is often considered as the 
major numerical parameter dedicated to 
characterize a community of species [34-37]. 
Yet, an ecological community is not simply a 
collection of species, the number of which would 
suffice to summarize all that can be said about 
this community. The particular pattern of the 
species abundance distribution within the 
community admittedly conveys a great deal of 
additional information about its internal structure 
and functionality [3-5,8-10,38]. 
  
This is why incomplete “S.A.D.s”, resulting from 
only partial inventories, would remain deprived of 
a significant part of valuable data, unless they 
are properly extrapolated. And, first of all, a 
reliable evaluation of the number of                            
still unrecorded species and, thereby, a                
reliable estimation of the total species                
richness    of the focused assemblage of species 
is needed. 
 
A relevant procedure of estimation of the 
number of unrecorded species is a 
prerequisite to the appropriate extrapolation 
of “S.A.D.s” 
 
As mentioned in Introduction, Chao et al. [21] 
have already derived a method to extrapolate 
Species Abundance Distributions. The procedure 
advocated by these authors relies upon two 
main assumptions: 
 

1) that Chao 1 estimator of the number of still 
unrecorded species provides relevant estimates 
of the true value, which, indeed, supposes 
either: (i) unusually even distributions of species 
abundances [18,39], which, unfortunately, 
almost never occurs in practice and / or (ii) 

species inventories having already reached a 
level of completeness close to exhaustivity [15–
17]. But, here also, this second requirement is 
quite difficult to satisfy in practice, at least with 
highly species-rich assemblages which, most 
often, are the subject of only “rapid surveys”, 
thus remaining substantially incomplete. Table 1 
shows more precisely that “Chao” estimator 
becomes appropriate only when sampling 
completeness reaches 95% at least, a scarcely 
reached level in common practice. Brose et al. 
[15,16] even went so far as to discard the “Chao” 
estimator whatever the levels of sampling 
completeness, substituting Jackknife-1 estimator 
at highest completeness levels. Improper 
selection of the type of estimator generally 
results in considerable bias in the estimation of 
the number of unrecorded species, as shown, for 
example, in Fig. 12. 
 
As the reliable estimation of the number of 
unrecorded species is crucial for the relevant 
computation of the extrapolation of “S.A.D.s”, the 
arguments above should draw attention to what 
could well be a severe limitation of the range of 
application of the method proposed by ChaO et 
al. [21], as, indeed, suggested by the authors 
themselves, in a somewhat ambiguous manner: 
only “when sample size is large enough, this 
lower bound approaches the true number of 
undetected species” [21, p. 1195].  
 
2) that the extrapolated part of the “S.A.D.s” 
follows a log-linear trend which, although 
qualified of “natural”, is far from being adequate 
in most circumstances [3, 23]. Indeed, models 
commonly taken as reference, such as log-
normal, broken-stick, double-geometric series, 
are all ending by a more or less pronounced 
downwards curvature in the log-transformed 
representation.  

 
Table 1. Estimated levels of sampling completeness of 37 partial inventories of species 

communities (34 butterfly and 3 marine gastropod inventories) and the types of nonparametric 
estimators of the number of unrecorded species which were selected as being the least 

biased, among a set of six nonparametric estimators: “Chao” and the five first Jackknifes,  
JK-1 to JK-5 (BÉGUINOT, unpublished data) 

 
Sampling completeness Chao JK-1 JK-2 JK-3 JK-4 JK-5 

> 95% 3 0 0 0 0 0 

85% – 94% 0 3 1 0 0 0 

75% – 84% 0 3 2 2 0 2 

65% – 74% 0 0 1 4 3 3 

55% – 64% 0 0 0 2 1 2 

40% – 54% 0 0 0 0 0 5 
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Fig. 12. The estimated number of still unrecorded species in the partial inventory of butterfly 
fauna at “Gwangneung Forest Biosphere Reserve”, according to different types of 

nonparametric estimators: Chao and the ten first Jackknifes JK-1 to JK-10 (BÉGUINOT, 
unpublished). The estimates vary from simple to double according to the types of estimators, 
thus highlighting the interest of selecting among them which type of estimator provides the 

least-biased evaluation (in practice, the estimator providing the highest estimation, as 
demonstrated previously [40]. 

 

4. CONCLUSION 
  
When dealing with partial inventories – as it 
becomes most often the case in practice – it is 
highly desirable trying to extrapolate the Species 
Abundance Distribution beyond its uniquely 
recorded part. As discussed and illustrated 
above, completing Species Abundance 
Distributions by proper extrapolation has,  
indeed, major implications in both descriptive  
and functional perspectives (pattern and 
process). 
 
A first attempt in this direction was achieved by 
Chao et al. [21], but yet remains likely reserved 
to the too scarce species inventories already 
enjoying “large enough sampling size”, that is, in 
fact, with completeness level 95% at least. 
 
Otherwise, when sampling completeness is less 
than ≈ 95% – which, indeed, encompasses the 
great majority of cases in practice – another 
alternative approach should be considered, 
implying: 
 

i. to select first of all, in each case, the least-
biased type among classically available 
types of nonparametric estimators of the 
number of unrecorded species; 

ii. then, to compute the least-biased 
estimation of the number of still 
unrecorded species and derive, 
accordingly, the corresponding least-
biased extrapolation of the Species 
Accumulation Curve, associated to the 
selected estimator; 

iii. at last, to derive, from the latter, the related 
extrapolation of the Species Abundance 
Distribution, which will thereby benefit from 
a minimised level of bias. 

 
Basing the extrapolation of the Species 
Abundance Distribution on the previously derived 
extrapolation of the Species Accumulation Curve 
[19,20,41,42] avoids having to arbitrarily             
assume an hypothetical shape for the 
extrapolated section of the Species Abundance 
Distribution. 
 
Accordingly, a new method has been proposed, 
here, to reliably extrapolate the Species 
Abundance Distribution beyond the already 
recorded part, in order to get a complete and 
thorough description of this Distribution. This new 
method benefits by a strongly enlarged domain 
of applicability, encompassing most of the usual 
range of incompleteness of partial inventories of 
biodiversity, includingy when dealing with very 
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species-rich communities. Besides, being able to 
derive exhaustive Species Abundance 
Distributions, by means of reliable extrapolations 
is not a final achievement in itself, as interesting 
as it is. Completed Species Abundance 
Distributions moreover open up interesting 
prospects for going further in the overall 
understanding of the processes likely 
instrumental in the hierarchical structuring of 
relative species abundances within biological 
communities. 
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APPENDIX 1 
 

Preliminary: the sum of the abundances of the unrecorded species 
 
According to the two first equations of Appendix 1 in [19, 20, 42]: 
 
       - the expected number Δ(N)   of still unrecorded species in a sample of size N is: 
 

Δ(N)  = Σi (1-pi)
N                                                                                                                                                                                            

(A1.1) 
 

where pi is the proportional abundance (identified to the probability of drawing during sampling) of 
species 'i' and Σi  is the summation extended to the totality of the 'St' species 'i' present in the sampled 
assemblage;  
 
       -the expected number fx of species recorded x times in a sample of size N, is: 
 

fx  =  [N!/x!/(N-x)!] Σi [(1-pi)
N-x

 pi
x 
]  

 
and accordingly, for x = 1, the expected number f1 of singletons is: 
 

f1  =  N. Σi [(1-pi)
N-1

 pi
 
]         

                                                                                                                                                    
      (A1.2) 

 
Now, the expected value Au(N) of the cumulated abundances of the Δ(N) still unrecorded species in a 
sample of size N is: 
 

Au(N) = Σi [pi.(1-pi)
N
]    

                                                                                                                                                             
          (A1.3) 

 
Accordingly, 
 

f1  =  N.Au(N-1)           
                                                                                                                                                                             (A1.4) 

 
As, in practice, samplings of interest have sizes N (N recorded individuals) considerably larger than 
the species richness of the sampled assemblage, the difference between Δ(N) and Δ(N-1) is quite 
negligible, as also negligible is the difference between Au(N) and Au(N-1), so that, with a very good 
approximation: 
 

Au(N) = f1/N                                                                                                                                                                                         (A1.5) 
 

Accordingly, the cumulated abundances, Ar(N), of the already recorded species is the complement to 1 
of Au(N), that is: 
 

Ar(N) = 1 – f1/N                                                                                                                                                                                         (A1.6) 
 

This general relationship was originally derived by A. TURING [43]. 
 
Correction to be applied when estimating the true abundance of species, based on the 
corresponding recorded frequency of occurrence, in a sample of finite size 
 
Consider a sample of size N (N recorded individuals) with R(N) recorded species among which a 
number f1 of them are singletons (species recorded only once).  Let pi = ni/N be the frequency of 
occurrence of species ‘i', and let ‘ai’ be the true proportional abundance of this species in the sampled 
community. A way to evaluate the bias of the recorded frequency pi relative to the corresponding true 
abundance ai is to consider a Bayesian inference based on the binomial distribution. Accordingly, the 
probability ‘∂πi’ that the abundance of species ‘i' is comprised between ‘a’ and ‘a + ∂a’ is: 
 

∂πi(a)/∂a  =  (N+1).C(N, ni).a
ni
.(1–a)

(N–ni)
      

                                                                                                            
       (A1.7) 
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with: C(N, ni) = N!/(N–ni)!/ni! 
 
The probability πi(a) reaches its maximum (modal) value for a = pi (= ni/N), as is easily demonstrated. 
And the average value ãi of ai, which will be considered as providing the least-biased evaluation of the 
true abundance ai,, is computed as follows. 
 
In a first step, and accounting for equation (A1.7), ãi is identified to: 
 

∫ a.∂πi(a)   =  ∫ a.(∂πi(a)/∂a) da  =  (N+1).C(N, ni). ∫ a
(ni+1)

.(1–a)
(N–ni)

) da                                                       (A1.8) 
 

with the integral ∫ extended from a = 0 to a = 1. 
 
The integral may be resolved through successive iterations, accounting for the general classical 
formula: 
 

∫ x
m

.(1–x)
n
 dx  =  – x

m
.(1–x)

(n+1)
/(n+m+1) + m/(n+m+1).∫ x

(m–1)
.(1–x)

n
 dx 

 
with, for m = 1:  ∫ x.(1–x)n dx  =  – (1–x)(n+1).(x.(n+1)+1)/(n+1)/(n+2)                                               (A1.9) 

 
which finally yields: 
 

∫ a2.(1–a)(N–1) da  =  2/(N+1)/(N+2)2 

 
∫ a

3
.(1–a)

(N–2)
 da  =  6/(N+1)/(N+2)

3 

 
∫ a

4
.(1–a)

(N–3)
 da  =  24/(N+1)/(N+2)

4 

………………. 
 

∫ a
(ni+1)

.(1–a)
(N–ni)

) da =  (ni +1)! /(N+1)/(N+2)
(ni+1)                                                                                                          

(A1.10) 
 

As, at this first step of computation, ãi is identified to (N+1).C(N, ni). ∫ a
(ni+1)

.(1–a)
(N–ni)

) da, it comes :    
          

ãi  =  (N+1).N!/(N-ni)!/ni!.[(ni +1)!/(N+1)/(N+2)
(ni+1)

 ]   (A1.11) 
 

ãi  =  (ni +1).N!/(N-ni)!/(N+2)(ni+1) 

 
ãi  ≈  (ni +1)/N                                                                                                                          (A1.12) 

 
since sampling size N of interest are always far larger than ni. 
 
Now, according to equation (A1.6), the sum of abundances of the recorded species is (1 – f1/N), with 
f1 as the recorded number of singletons (species recorded only once): 
 

Σ ãi  ≈  Σ (ni +1)/N = (1 – f1/N) 
 

Now, Σ (ni +1)/N = [Σ (ni ) + Σ (1)] = [N + R]/N = (1 + R/N), with R as the number of recorded species. 
It then follows that a standardisation coefficient (1 – f1/N)/(1 + R/N) is to be applied to the preceding 
first step evaluation of ãi. In the frame of Bayesian approach, this standardisation coefficient 
corresponds to the initial setting of the so called “probabilities a priori”).  
 
Finally, the expression of ãi is thus: 
 

ãi =  (ni/N+1/N).(1–f1/N)/(1+R/N)                                                                                             (A1.13) 
            

and, accounting for pi = ni/N, it comes: 
 

ãi =  pi.(1+1/ni).(1–f1/N)/(1+R/N)                                                                                              (A1.14) 
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The bias correction applied to pi, to obtain the true abundance estimates ãi, thus includes: (i) the 
correction (1+1/ni)/(1+R/N) for the bias resulting from the finite size N of the sample, a bias which 
cancels, as expected, when N (and thus also ni = N.pi) tend to infinity; (ii) the correction (1–f1/N) 
resulting from the existence of the set of still unrecorded species, which cancels, as expected, when 
sampling reaches exhaustivity, that is when f1 is falling down to zero. 
 
Note that the estimated true abundances are less scattered than are the recorded frequencies. 
Indeed, considering the ratio of estimated abundances, ãi/ãj, between two species ‘i’ and ‘j’, it comes: 
 

ãi/ãj  =  (pi/pj).(1+1/ni)/(1+1/nj)                                                                                                 (A1.15) 
 

which confirms that, if pi/pj >1 then ãi/ãj  <  (pi/pj) and, reciprocally, if pi/pj <1 then ãi/ãj  >  (pi/pj). 
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APPENDIX 2  
 

Bias-reduced extrapolation of the Species Accumulation Curve and the associated bias-
reduced estimation of the number of missing species, based on the recorded numbers of 
species occurring 1 to 5 times 
 
Consider the survey of an assemblage of species of size N0 (with sampling effort N0 typically identified 
either to the number of recorded individuals or to the number of sampled sites, according to the 
inventory being in terms of either species abundances or species incidences), including R(N0) species 
among which f1, f2, f3, f4, f5, of them are recorded 1, 2, 3, 4, 5 times respectively. The following 
procedure, designed to select the less-biased solution, results from a general mathematical 
relationship that constrains the theoretical expression of any theoretical Species Accumulation Curves 
R(N) (see [19, 44,45]):  
 

∂xR(N)/∂Nx   =   (-1)(x-1) fx(N) /CN, x    ≈   (– 1)(x-1) (x!/Nx) fx(N)     ( ≈ as N >> x)                                (A2.1) 
 

Compliance with the mathematical constraint (equation (A2.1)) warrants a reduced-bias expression 
for the extrapolation of the Species Accumulation Curves R(N) (i.e. for N > N0).  Below are provided, 
accordingly, the polynomial solutions Rx (N) that respectively satisfy this mathematical constraint, 
considering increasing orders x of derivation ∂xR(N)/∂Nx.   Each solution Rx (N) is appropriate for a 
given range of values of f1 compared to the other numbers fx   (according to reference [19]): 
 
* for f1 up to  f2      R1 (N) = (R(N0) + f1) – f1.N0/N  
 
* for f1 up to  2f2 – f3      R2 (N) = (R(N0) + 2f1 – f2) – (3f1 – 2f2).N0/N –  
     (f2 – f1).N0

2
/N

2
  

 
* for f1 up to  3f2 – 3f3 + f4     R3 (N) = (R(N0) + 3f1 – 3f2 + f3) – (6f1 – 8f2 + 3f3).N0/N   
     – (– 4f1 + 7f2 – 3f3).N0

2
/N

2 
– (f1 – 2f2 + f3).N0

3
/N

3  
 

 
* for f1 up to  4f2 – 6f3 + 4f4 – f5       R4 (N) = (R(N0) + 4f1 – 6f2 + 4f3 – f4) – (10f1 –  
      20f2 + 15f3 – 4f4).N0/N – (– 10f1 + 25f2 – 21f3 + 6f4).N0

2/N2 – (5f1 – 14f2 + 13f3  
      – 4f4).N0

3/N3 – (– f1 + 3f2 – 3f3 + f4).N0
4/N4   

        
* for f1 larger than  4f2 – 6f3 + 4f4 – f5    R5 (N) = (R(N0) + 5f1 – 10f2 + 10f3 – 5f4 + f5) 
     – (15f1 – 40f2 + 45f3 – 24f4 + 5f5).N0/N – (– 20f1 + 65f2 – 81f3 + 46f4  
     – 10f5).N0

2/N2 – (15f1 – 54f2 + 73f3 – 44f4 + 10f5).N0
3/N3 – (– 6f1 + 23f2 – 33f3  

     + 21f4 – 5f5).N0
4
/N

4 
– (f1 – 4f2 + 6f3 – 4f4 + f5).N0

5
/N

5 
  

 
The associated non-parametric estimators of the number ΔJ of missing species in the sample [with  ΔJ 
= R(N = ∞) – R(N0) ] are derived immediately:  

 
  *  0.6 f2  <  f1  <  f2          ΔJ1 = f1  ;    R1 (N)           
 
  *  f2  <  f1  <  2f2 – f3          ΔJ2 = 2f1 – f2  ;    R2 (N)   
        
  *  2f2 – f3  <  f1  <  3f2 – 3f3 + f4          ΔJ3 = 3f1 – 3f2 + f3  ;     R3 (N)         
 
  *  3f2 – 3f3 + f4  <  f1  <  4f2 – 6f3 + 4f4 – f5          ΔJ4 = 4f1 – 6f2 + 4f3 – f4  ;     R4 (N)     
   
  *  f1  >  4f2 – 6f3 + 4f4 – f5          ΔJ5 = 5f1 – 10f2 + 10f3 – 5f4 + f5  ;     R5 (N)   
 
N.B. 1: As indicated above (and demonstrated in details in [19], this series of inequalities define the 
ranges that are best appropriate, respectively, to the use of each of the five Jackknife estimators, JK-1 
to JK-5. That is the respective ranges within which each estimator will benefit of minimal bias for the 
predicted number of missing species.  



 
 
 
 

Béguinot; AIR, 13(4): 1-24, 2018; Article no.AIR.39002 
 
 

 
24 

 

Besides, it is easy to verify that another consequence of these preferred ranges is that the selected 
estimator will always provide the highest estimate, as compared to the other estimators. Interestingly, 
this mathematical consequence, of general relevance, is in line with the already admitted opinion that 
all non-parametric estimators provide under-estimates of the true number of missing species [13,14], 
so that the least-biased estimator is expected to be the one providing the highest estimate. Also, this 
shows that the approach initially proposed by Brose et al. [15] – which has regrettably suffered from 
its somewhat difficult implementation in practice  – might be advantageously reconsidered, now, in 
light of the very simple selection key above, of far much easier practical use. 
 
N.B. 2: In order to reduce the influence of drawing stochasticity on the values of the fx, the as-
recorded distribution of the fx should preferably be smoothened: this may be obtained either by 
rarefaction processing or by regression of the as-recorded distribution of the fx versus x. 
 
N.B. 3: For f1 falling beneath 0.6 x f2 (that is when sampling completeness closely approaches 
exhaustivity), then Chao estimator may be selected: see reference [20]. 
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