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Abstract

The analysis of well test data for deviated wells penetrating layered reservoirs is usually a challenging
problem due to the complexity of interlayer flow within reservoirs. These problems are as a result of
insufficient data from unique layer flow into the wellbore. The aim of this work is to present a new

analytical pressure-transient solution for deviated wells (0° < HW < 12°) in layered reservoirs with cross-
flow. The individual layer skin property was also investigated. Green’s function for the layered system
was obtained by Laplace transformation and double Fourier cosine transform. The wellbore was
discretized into several segments and each segment was treated as a uniform flux source, a linear system
was set up and the pressure drop solution was obtained in the Laplace space and transformed back to the
real space. The nonlinear parameter estimation method was applied as a means to determine the layered
skin. Applying the model to field data obtained from published works; the pressure derivative curves
indicated that the early-time behaviours of reservoirs are totally different even with little change in well
inclination (except the bottom boundary is set as constant pressure), but late-time behaviours (radial flow)
are very similar for all the cases. The results also showed that early time pressure drop in commingled
reservoirs is much higher than that of cross-flow reservoirs, because the wellbore sees the boundary
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(interfaces between layers) earlier. Finally, the pressure responses of reservoirs are sensitive to the
thickness of the layers.

Keywords: Layered reservoir, cross-flow; well test; deviated well; green function, Laplace.

NOMENCLATURES
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L Total isothermal compressibility ( p )

C : Storage Coefficient (psi/ft)

G. Green's function

h . Formation thickness ()

k. : Permeability (md)

K, I : Modified Bessel Function

[ Segment length (ft)

L, Half wellbore length (ft)

h Outward normal

p Pressure (psi)

P; : Pressure of layer j (psi)

Pp : Dimensionless pressure

9 Flow rate (bbl/D)
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N X xS
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Production Rate from Layer j (bbl/D)

Total flow rate (bbl/D)
Position vector

Outer Boundary Radius (ft)

Wellbore radius (ft)

Local reflection coefficient

Upgoing global reflection coefficient

Downgoing global reflection coefficient

Parameter of Laplace transformation

Average Skin Factor

Skin factor
Time (hr)

Most Diagnostic Point of the Transitional Phenomenon

Local transmission coefficient

Vertical Distance (ft) or Laplacian Argument
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GREEKS

a, Parameters of double Fourier transformation
5()(?, X ) Dirac delta function

¢ Porosity

H Fluid viscosity (cp)

@ Dimensionless Storativity

4 Boundary constant (Euler Constant-0.57722)
s Boundary constant

ew Inclination angle

A Permeability ratio

n Hydraulic diffusivity

K Ratio of hydraulic diffusivity

Q Domain of the problem domain
r Boundary of the problem domain
SUBSCRIPTS

0 : Initial

D : Dimensionless

ET : Early Time Limiting

i, )1 : Integer indices

LT : Late Time Limiting

r : Reference

SUPERSCRIPTS

Laplace transformed variable

Double Fourier transformed variable
1 Introduction

A layered reservoir can be defined as a porous and permeable rock that contains hydrocarbon in commercial
quantities, usually characterized by a single pressure system and has a defined variation in thickness, in the
dip-normal direction. Most oil and gas reservoirs are layered to various degrees due to sedimentary
depositional processes and reservoir digenetic history. The transporting medium sorts the source materials
depositing one layer at a time in any given environment. When the depositional energy levels change the
subsequent overlying layers may be different in composition and texture forming a series of dissimilar units
or strata. In Layered reservoirs, the arrangement of layers is known as bedding. Each stratum has a bedding
plane above or below it. The resultant effect of this phenomenon is the occurrence of pressure anomalies in
such reservoirs. Layered reservoirs are composed of two or more layers that may have different formation
and fluid characteristics. These reservoirs are divided into two groups:

(1) Layered reservoirs with cross-flow, where the layers communicate at the contact planes throughout
the reservoir and reservoir fluid flow from one stratum to the other in a direction perpendicular to
the direction of fluid into the well.
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Fig. 1. A four-layer cross-flow system

(2) Layered reservoirs without cross-flow (commingled systems), where the layers communicate only
through the wellbore. This system can be converted to a cross-flow system by fracturing

Cross-flow is a vertical flow within a layer or from one layer to another in a stratified reservoir. There are
three contributing forces initiating cross-flow they are; viscous force, gravity force and capillary force.
Whenever there is a pressure difference between two adjacent layers, cross-flow tends to occur if there is a
communication between layers. Pressure transient analysis in such kind of reservoirs behaves similarly to a
homogenous system, i.e. a system whereby the properties of the layers are the same all through except in the
early flow period. The following relationships can be applied to such systems; Permeability-thickness
product

(kh), = (kh)j
= M

Porosity- compressibility product

@C ), = ($C, b,
= @

where the total number of layers is n.

The challenges in the characterization of layered reservoirs lie in a large number of unknown parameters.
Problem of reservoir heterogeneity has always been one of the major challenges in the prediction of the
reservoir performance. Although interpretation models can be used effectively in layered reservoirs if a
model is identified to display the characteristics shapes and slopes of each layer. It is, therefore, necessary to
use the measured layer flow rate with the pressure data for layer parameters estimation. These estimated
layer parameters can be converted into an equivalent pressure response that would have been obtained if the
well were producing at a constant flow rate. Hence, individual layer model is essential for characterization of
the layered reservoir.

Generation of a mathematical model for the pressure drop equation and time-dependent skin factor for
deviated wells in a stratified reservoir with cross-flow will enable the determination of the effects of
stratification, well angle and cross-flow on the reservoir performance. By comparing the performance of a
homogeneous, cross-flow and commingled systems, the effect of reservoir stratification, cross-flow and well
angle are obvious and can be estimated.
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This study was based on Gommard [1] and Kuchuk's [2] works on layered reservoirs and concentrates on the
pressure transient behaviour of deviated wells (0° < 0w < 12°) crossing several layers in multilayered
reservoirs with cross-flow.

2 Model Formulation

2.1 Basic assumptions

The formulation of this model for pressure transient analysis in Deviated wells penetrating stratified
reservoirs with cross-flow is based on the following assumptions:

1. An infinite anisotropic layered reservoir was considered.

The reservoir can be bounded by both top and bottom boundary planes (which can be either no-flow

or constant-pressure boundaries).

Each layer of the layered reservoir considered is self-homogeneous and isotropic.

The single producing well is located at the centre of the reservoir and opened to all strata.

5. The radius of the well is vanishing small while the layers extend without limit in all horizontal

directions from the well.

There is cross-flow between layers across the bedding plane separating adjacent layers.

7. The reservoir contains a slightly compressible fluid with constant compressibility and viscosity
assumed in each layer. (Oil in this case).

8.  Gravity and thermal effects are negligible.

9. Single phase flow is assumed.

10. Darcy’s law is assumed.

11. There is a constant rate of fluid flow from all layers into the well from the instant time, t=0.

12. For each layer, the discharge per unit length is inversely proportional to its permeability.

> »

o

2.2 Governing equations

The configuration of the layered reservoir is shown below.
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Fig. 2. Configuration of a Stratified Reservoir
The pressure diffusivity equation for the i-th layer is given by
o’p, o’p, o’p, op,
(kx)i P +(ky)i 2 +(kz)i_2: (¢:uct)i_
X oy Oz ot 3)
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The boundary conditions at the top (first layer) and bottom (n-th layer) are:

;/l.pi(r,t)+§i%(r,t) =0;atz, =handz, =0,

“
Where 4 and ¢ are constant to all layers, (X, y, z) is the three-dimensional position vector.
The initial condition is
pi(r,O) =p, at t=0 )
The boundary condition in the x - y plane is
pl.(r,t) =p,asxand y —> ©
(6)
The continuity conditions at the layer interfaces are:
pz’(r’t) =pi+l(r’t) atz =z, 7
and
k_. Op, k op, op,
(=), Lo (rt) = (D), B Prar 2 =
u oz y7, oz oz (8)
2.3 Dimensionless parameters and equations
In this study, the expression for all parameters in field units are defined as follows
2\(k,),(k.), L, 0.0002637(k ),
(Pp)i=——————[p,—(p,),(®]and t, = —(2)
141.2qu, (Puc,), L, 9)
Other dimensionless parameters are defined as follows
h, X y z z
(hp)i=—=,Xp=——,¥p =——2p) =——»Z,p = .
Lw Lw Lw Lw Lw (10)
Substitution of these defined parameters in Equation. 10 into Equation 3 gives
2 2 2
6 pg; + (ﬂ'y)i a p[2)1 +(ﬂ’z),‘ 6 pgz — LapDi ,
0x oy, 0z, K, Ot, (1)
Where
k, k k v
(4,), = () (4), =(5)n, = (), andk = L,
kx kx ¢1uct 77}‘ (12)

The Green’s function method which will be used in this study to solve the diffusivity equation in Eq. 11 can
be easily applied if the diffusivity equation is first simplified in the Laplace space.
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2.4 Governing equations in the Laplace domain

Taking Laplace transformation throughout the Eq.11

3’ Py 2’ Do Py S —
Py (4, SR (), -2 ), =0,
0x,, oy, 0z, K,

13)
2.5 Introduction to green's function method

The general form of a partial differential equation obtained from Lu [3] is given by

Lu(r) = ¢(r) defined in the domain Q’ a9

with boundary conditions on the boundary r, where L is a linear differential operator.

Now let us integrate the product vDu by parts over the domain of interest repeatedly. We have

”Q viudQ = [.ﬂr [...]dl"+”QuL*de, (15)

where [...] denotes an expression to be integrated along F, L s the adjoint operator of L, and the
functions u and v are arbitrary as long as they are differentiable for the operator L.

«
In some cases, where the operator L is said to be self-adjoint, L =L For example, Green's theorem
(second formula) gives

” wWudQ = {va—u—ua—v}drﬁ—” uVivdQ,
Q r on on Q (16)
so the Laplace operator V* is self-adjoint
pou_, o
The integral of the form  0n On is important in the Green's function method. If the function v can be

determined to cancel unprescribed boundary conditions and such that the double integral terms are
simplified, the resultant equation becomes solvable for u.

2.6 Green's functions for layered reservoirs

Applying the Green's function formulation above, Eq. 13 can be rewritten as

(V.2 =G (s,r,7) = =8(r— 1),
K, (17)

(for the source layer (Layer L ) and

(V=G (s,rr) = 0,
Ki (18)
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for the i-th layer (where 1#1 ).

2
The Laplace operator \z is defined from Eq.13 and it is given as

V= 6—224- (4,), 6—224- 14,), 8—22
0x ovp 0z, (19)
Also, the boundary and interface conditions become
5,(s,r,r')=0 as x and y — ©, (20)
5,(s,r,r‘)=5i+1(s,r,r‘) at z=1z,, Q1)
and
ke, 9G, sorry =Koy, 0G (s,r,r')at z=z,
Y7 oz y7, Oz (22)
Equations 20, 21 and 22 apply for all layers, including the source layer.
The Green's function solution for the source layer is expressed as the sum of two solutions below
1) The solution to the partial differential equation with a point source (Eq. 17) and
2) The solution to the homogeneous equation (Eq. 18) for each layer.
Hence the general solution for each layer is expressed as
G, (s,r,r') = G (s, 7,7 )+ G (s,r,7r), (23)

Also, the Green's function solutions for no-source layers are solutions of homogeneous partial differential
equation (Eq.18) by themselves, so we can have

ai(S,V,VI):Eih(S,r,rl), (4)
2.7 Solution of the homogeneous problem

Eq. 20 suggests the application of the double infinite Fourier cosine transform with

?, (s,a,B,2) = j: j: G, (s,x,y,z)cos(a x)cos(SB y)dxdy.

(25)
Applying the Fourier cosine transform to Equation. 18 for x and y yields
0’ =
(_Z_Viz)Gi(S,O!,ﬂ,Z) = 05
0z (26)

Where
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V,-Z (;) {a +(l),3 +—}

' 27
The solution of Eq. 26 can be written as
5, (s,a,B,z)= A, exp(v,z)+ B.exp(-v, z), (28)
where Ai and Bi will be determined from the boundary and interface conditions.
2.8 Point source solution
The point source response can be written as
o2
G ( iy = k \r—r |
55 }’,t;}’,t' = cXp _—'S 5
4\/ t—t)/k] 4(e-1)
(29)
where the normalized distance is defined as
_ N2 _ -2
= 2 :(x_x~)z+(y/1y) +(Z;LZ) .
(4,), (£.), (30)
The double Fourier transform of the point source response, G. , 18
= . n .
Gs(s,a,B,z;z)=——exp(-v,|z—z |).
4v, 31)

2.9 Fundamental point source solution

The point source solution for the source layer in a layered medium is obtained by substituting Eq. 28 and Eq.
31 into Eq. 23 as

? (s,a,B,2;2) = — ™ [exp( v, |z—z|)+A exp(v,z)+ B, exp(— vz)}
s (32)

The solution for the i-th layer (l =1 ) is given by Eq. 28.

The coefficients Ai, Bi, As, and Bs can be written out explicitly for a few layers. The method of reflection
and transmission method is used for determining the coefficients for the n-layered system.

2.10 Reflection and transmission method
This method has been presented by Kuchuck and Habashy [4]. This method is commonly used to solve the

wave equation in layered media. Further derivation of the homogeneous solutions was done in order to
include the interaction between different layers in our solutions.
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Fig. 3. Local Transmission and Reflection

In Fig. 3, at an interface boundary, the amplitude of the pressure field changes when it diffuses into another
layer (transmission) and reflects back from the boundary (reflection). In Fig. 3, the incident wave

-V R . exp(v,z
(fundamental solution) exp( V’Z) in the i-th layer is reflected as =~ ! p(vi2)

7;,1'71 exp(—v,,z)

and transmitted (diffused)

as in a local coordinate system.

2.11 The green's function for the source layer

The solution for the source layer given by Eq. 32 is written as

E (z;z,) = %[exp(—vs 2‘) + A exp(v, 2) + B, exp(—vsg)],
V?

(33)
FTETE (offset of the point source) and G.(z:2,) is a shorthand notation for G.(s,a.f.2.2,) .
ForO0<z<zs(Z< 0 ), a downgoing global reflection coefficient at the boundary is defined as
B
R,), = ‘—exp(2v, z,).
1+ A, (34)

Similarly for

an upgoing global reflection coefficient at the boundary also defined as

A
(Ry), =—exp(2v, z,),
1+ B, (35)

Solving Egs. 34 and 35 for As and Bs yields

1 + (RD )s exp(_zvszs)

*TTZ(Ry).(Ry ), exp(—2v i) R0 XPE2VED,

(36)

= R XPEE D)y exp-avz,).
1-(R,),(R,), exp(=2v h,) (37)

10
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(Rp)

s and (RU ); are global reflection coefficients to be determined later.
2.12 Determination of coefficients in other layers

The solution for the i-th layer (0 <zi < hi) from Eq. 28 can be written as

a (z) = 4, exp(v,z,) + B, exp(—v,z,).

(38)
From Eq 38, the upgoing global reflection coefficient for the i-th layer can define as
A exp(v, z, A
(RU )i = M I _r exp(zl/ihi ).
B exp(-v,z,)|" " B, 9
Solving Eq. 39 for Ai and substituting the result in Eq. 38 gives
Ei z)=B. {exp(-v.z.)+(R))). exp|—-Vv.(2h. — z,) |,
( ) z{ p( i z) ( U)z p[ z( i z)]} (40)
From the interface condition Eq. 20 with Green’s function applied, we can have
Gi(hi) = Gt—l(O), (41)
thus we obtain a recurrence relation for Bi as
B, _ 1+ (Ry), explev ).
B, L+ (Ry),,exp(=2v,  h,_) (42)
. . . . (i<i)
Using Eq. 42,we obtained the coefficient Bi for the layers above the source layer 57 as
Gi(2) = B {exp(-v,z)) + (R), exp[-v,(2h, - z) ]}, @)

2.13 Calculation of global reflection coefficients

It is easier to evaluate the homogeneous solution for the source layer from Eq. 33), and Eq. 43, when the
upgoing and downgoing global reflection coefficients are determined. Using the solution of Eq. 40 and for i-
1th layer, the relationships at the interface for the i-th layer is,

R, Bexp(=v.h)+T,_ B, (R)),,exp(=2v,_h_) = B,(Ry), exp(-v, h,).

ii=1

(44

Infinitely thick layer (in the z-direction) can be either at the top or bottom layer, or both. Solving Eq. 44 and
for its i-1th layer, the global reflection coefficient with top layer being thick becomes

Vi= 7oV

(RU)I = >
Vit VoiVo (45)

and the global reflection coefficient with the bottom layer being thick becomes

11
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(RD),, — Vn _7n+1,nvn+1 ,

Vn + yn+1,nvn+1 (46)
0 and n + 1 denote the top and bottom infinite layer properties.
2.14 Segmentation technique for deviated wells in a multi-layered reservoir

The configuration of the stratified reservoir penetrated by a Deviated well is shown below.

N
; AT s
Laver i+1 L ,/;.’//

T
2

21 B

Shw g

/-/’ e =
- - -
i e )
Layer i T A ,
) ; T =)

L
Layer i— I

Fig. 4. Configuration of a Deviated Well

The reservoir is bounded by no-flow or constant-pressure boundaries. The centre of the well is the origin of

the global coordinate system. The inclination angle of the well (deviated from the horizontal direction) is 9‘”
. In this study, the infinite-conductivity boundary condition on the wellbore is used, so the wellbore was
discretized into several segments using the segmentation method. Each segment was treated as having
uniform flux. To satisfy the infinite-conductivity inner boundary, the pressure drop along the wellbore is
uniform and the discretization equations for the pressure drop of each segment was derived in the Laplace
space. The pressure drop at the midpoint of each segment is assumed the same, so infinite-conductivity
constraint along the wellbore yields

Ap,(t) = Ap(1), (47)

where i = 1,...,m, and m is the number of the segments in the well. We denote Ap; (1) as the pressure drop at
the midpoint of Segment i and 27 () as the total pressure drop of the well.

Applying material balance, the sum of the flux along each segment is equal to well total flow rate

2 g (1) =0,
Pt (48)
where l; is the length of Segment i, 4i @ is the flux along Segment i, and Q is the total flow rate.
Applying the Laplace transform to Eqgs. 47 and 48 yields
Ap,(s)=Ap(s)and Y 1.q,(s)=0/s,
i=1 (49)

12
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The total pressure drop along the wellbore is a linear combination of the convolution product of the flux and
the perturbation (in this case, the Green's function), and thus we have

Ap(H) =3 G (0% g, (),

(50)
where Gy is defined as the perturbation on the midpoint of Segment i induced by Segment j.
In the Laplace space, the convolution relation between input and output can be deconvolved as
Ap,(s)=2 Gy(s)q,(s).
= (51)

Combining Egs. 49 and 51, we have a linear equation for pi(s) and 7/ (s) as

[Gm —Jnj q, _[On j
L’ 0 ) A; 0/s) 52)

Rearranging and solving Eq. 52 yields

Ap=(L"G'J)'.0/s, (53)

- -1

Therefore, given all the Green's functions, we can obtain the pressure drop 7 (5) for an arbitrary Laplace
variable. After obtaining a set of pressure drop data in the Laplace space, we can process the inverse Laplace
transform to obtain the pressure drop solution. The Stehfest H. algorithm [5] is a very good choice for such a
problem. The Green's functions are described next.

2.15 Green's function for segments

We need to calculate the Green's function induced by a segment (a line source), instead of a single point
source and deal with the segments separately.

From Eq. 23, we can have the Green's function ¢ (s.7.7 ) ag
E(S,r,r')z5ss(s,r,r')+Esh(s,r,r'), (55)
for the point source and the affected point being in the same layer, otherwise, we have

E(S,r,r'):a,h(s,r,r'). (56)

G

Y is the perturbation on the midpoint of Segment j induced by Segment i, so we have
Gy = 5(s,r,r].)dl=< G(s,r,r;) >,
=1, (57)

where 7 is the midpoint of Segment j.

13
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For the homogeneous solutions, we have

-4 J.:J.;dad,b"s(s,a,ﬁ),

T’ (58)
where
S(s,a, ) = fdl.?;l(s,a,ﬂ,z;zj)cos(a(x—Xj)),
b (59)
and
x=x,+l.cos@, and z =z, +[.sinf,. (60)
Eq. 59 can be integrated analytically and expressed in a form as
S(s,a, )= Cterm . (Aterm + Bterm), 1)
where A-term, B-term and C-term are functions of & and B (other variables are constants)
2.16 Green's function for segments in the same layer
If two segments, Segment i and Segment j are in the same layer, Eq. 57 becomes
Gi = {(Gu(s,1,1,)), +(Gu(5,1,1,)), )
After some mathematical derivation, we have
Crerm = 31 (RUL(RD)IS exp(-2v.h) )
Aterm = Jterm, [ exp(=v, (h, =z )+ (R,), exp(-v, (h, +z)) |.(R ), exp(-v, h)), (64)
Bterm = Jterm _ .[exp(—vsz].) + (R ), exp(=v, (2h, — zj))} .(R},),, (65)
where 71T+ g an integral defined as
Jterm, = exp(i(zvsz[. : a.l)) [facos(b.l+c)+bsin(b.l+ c)]|1,;2/2
a’+b (66)
In Eq. 66, variables a, b and ¢ are defined as
a = v sinfw,b = acosfw,c = a(x,-x,;). (67)

2.17 Green's function for segments in different layers

If Segment i and Segment j are in different layers, then Eq. 57 becomes

14
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Gi,' =< Gjh(S,r,}’j)>i.

The solutions are different for i <j andi>j.

At first, for j <1i, from Eqs. 36 and 37, we have

x_ exp(-v,z,)+ (Ry), exp[-v,(2h, ~z)) ] [f 2
4v 1_(RU).V(RD).V exp(-2v. h,) =N B,

j

Cterm =

Aterm = Jterm, and Bterm = Jterm_.(RD )s.

where N; denotes the layer in which Segment i is located, and B /B

Secondly, for j > i, from Eqs. 37 and 42, we have

N

T exp(v/.z/.)+(RD)/.exp[—vl.z,} H
4y I-(Ry),(Ry), exp(=2v h) oy,

s

k

A
Cterm =
41 Akfl

Aterm = Jterm+.(RU )S exp(—2v h, ) and Bterm = Jterm_.

2.18 Solutions for single-layered reservoirs

k is given by Eq. 42.

(68)

(69)

(70)

(71)

(72)

The problem is simple if the reservoir is a single-layered, the Green's solutions in the case can be obtained
easily in the real space. The detail has been presented by Gommard [1], it will be presented here briefly for

completeness, excluding the results and discussions.

The point source solution of a single-layered (isotropic) can be given as the product of an infinite line source
solution (taken in the vertical solution) and a plane source solution in a slab reservoir (the plane is

horizontal). Suppose the point source is located at the point P(x.,Y.2) and the affected point is located at

point M(x, y, z). The point source is given as

S(r,r',t) =SP(z,z,t).I(p, ).

In Eq. 73, the line source solution I(p. 1) s given as

2

exp(‘rgz t)
I(p,t) = pp. [h
h

Where
pl=(x=-x)+(y-y),
and the plane source solution is given as

SP(z.2.1) = {SPl(z,z',t for smallt;}y

SP,(z,z,t forlarget
Where

(73)

(74)

(75)

(76)

15
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. 1 < (z—-z +2nh)? (z+z +2nh)’
SP(z,2,1) = ——— -2 E P T
(2,2 ,1) e ”Zx[exp( oo )+ exp( ey -
+00 2 '
SP,(z,z,t) = %{1+2 Z exp(— (n7rh)277,t cos n/;z cos WZZ )]
e (78)

The infinite series shown in Eqs 77 and 78 can converge very quickly, as they are obtained in the Laplace
space. Given the Green’s functions, Segmentation method can solve the problem.

2.19 Initial estimation of reservoir parameters (skin factor)

The definition of the skin factor is more complicated for Deviated wells in multilayered reservoirs, due to
the damage to wellbore varying in different layers. In this work, the estimation of skin considered the early
time behaviour and late time behaviour of the layered system.

A new method to obtain the initial estimate of layered reservoir parameters was suggested. The method
requires the entire history of wellbore pressure and layer production rate. Firstly, we determine the total
productivity and the average skin factor of the reservoir from the semilog straight line. The second step is to
plot the production history of each layer. Production data for this step are acquired by either Conventional
Superposition method, or Multi-Spinner without Superposition or Single —spinner without superposition
method

At the late time, production rate from each layer eventually converges to” 7, the productivity ratio.

LT
o =5 (79)

Next, we can extrapolate the layer production data of the early and the intermediate period of the cross-flow
system to simulate the production history of the cross-flow system. At early time, the limiting value of the
layer production rate is determined by the skin conditions. For example, when the skin values of each layer
are all non-zero, the early time limiting layer production is:

S (80)

S . . S
Then °/ can be expressed in terms of "!:

ET
_ 4 K,
S; = ET 5y

90" K (81)

Average skin value is defined as:

n ET
G- zq r o Ky s
- kD ET 1
K

k=1 9o K (82)
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S
Thus “! can be expressed as:

N

i LT quETKk
qu ET
k=1 qip K (83)

S =

ET LT
By knowing djp- and9im , we can calculate all the skin values by:

ET
4,p K; ;
ET _ *
s = qd;p K
J T ET
Z it 9ip Ky
9ip ET
k=1 dip K, (84)

Thus 7 and *7 for every layer are determined.
2.20 Well pressure response

We may have a considerable wellbore volume below the tool even when a shut-in device is used or the
downhole flow rate is measured in Deviated Wells. Thus the wellbore pressure is given by

ip dp . (t !
P (ty) = _[0 |:qu (r)-Cp, p;,#()}p sp(tp—7)dr,
¢ (85)
and its Laplace transform is
— — Do (s
wa (S) = S'q mD (S) pSD—z(_)’
1+Cp 8" pgp(s) (86)
where Do (5) is the measured normalized flow rate (q’” / q’) and
Psp(tp)=py(ty)+S (87)
S is the skin factor of the wellbore and it is sum of the layered skin defined in the section above.
Eq. 87 yields
P(ty) = py(ty)+S5(2,), (88)
a(tD ) is the Dirac delta function and Pp is the constant-rate dimensionless sandface pressure.
The dimensionless storage coefficient o is given by
_5.615C
DL~ T, N 7 3°
4r(ge), L, (89)
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where the storage coefficient C is defined using the wellbore volume below the measuring point. If Do
measured at the wellhead is constant, Eq. 85 the well-known wellbore pressure solution with storage and

skin is written from van Everdingen, A.F. and Hurst [6], as

Pup (tD) = IOD |:1 - CDL

and its Laplace transform is

;wD (s)=

where Cor is defined using the total wellbore volume.

;SD(E)
1+ CDLsszD(s)

}p'SD (tp, —7)dr,

(90)

oD

Eq. 85 or its Laplace transform are used for the interpretation of downhole pressure and flow rate

measurements. Eq. 90 and its Laplace transform are used if the flow rate is not available.

3 Results and Discussion

A Matlab program was written to compute the solutions of equation (85) and (86). Equations for other
reservoir parameters solved above and their Laplace transform that was needed for the interpretation of
downhole pressure and flow rate measurements were also coded on Matlab. The behaviours of several

multilayered systems were evaluated using the solutions coded. For all examples, the wellbore length 2Lwis

1000ft and radius " is 0.35 ft. The formation and fluid properties for these examples are given in Table 1.

Table 1. Reservoir parameters for deviated wells

No Layer h(ft) k;(md) k., (md)
1 1 100 100 1
2 1(r) 100 100 1
2 100 200 10
1 50 100 1
3(a) 2(r) 50 200 10
3 50 100 1
1 40 100 1
3(b) 2(1) 70 200 10
3 40 100 1
1 40 160 20
2 20 100 16
4 3 10 60 12
4(r) 20 100 10
5 30 40 4
6 10 20 2

3.1 Impact of subdivision of segments

In Section above, we presented the segmentation technique, which depends on the subdivision of segments.
This work studied the impact of different subdivisions on the performance and obtained an optimal choice of
segments. The wellbore in each layer was divided into 2n segments of variable lengths. The length

distribution was based on a ratio of X 4., defined as
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Il = lZn and Zi+l = lZn—i = Xratio for , 1 < l <n —1 (92)

= (93)

where i denotes the length of each segment and L, is the length of the wellbore in that layer.

Roemershauser and Hawkins Jr [7], showed that the surface flow is higher at the ends of the well than in the
middle, due to the larger flow area around the ends. Thus, it is reasonable to choose a distribution factor X

ratio > 1 (typically, X 40 = 2). This study considers a deviated well (gw =>° ) with a 50-ft standoff located
in a single-layered reservoir with no-flow boundaries at the top and the bottom, and the formation properties
as defined in Table 1 (No. 1). We investigated the pressure derivatives using different segmentation schemes
and compared the behaviour of a fine subdivision (32 segments) with a coarse subdivision (8 segments, X
ratio — lorX ratio — 2)

As shown in Fig. 5, the pressure derivative of the 8-segment scheme is a little different from the result of 32-
segment if both are using uniform schemes. However, using X-ratio = 2, the pressure behaviour of 8-
segment scheme is almost the same as that of the fine scheme.

1

e ]

L

=

=7 L

& 8 segments (uniform)

= 32 segments (uniform)
-------- 8 segments (X atio=2.0)

101 P il & g i v e epl o Rl W ¥ g
103 1072 10-1 1 10 102
to

Fig. 5. Impact of Subdivision of Segments

3.2 Effect of inclination

The production of deviated wells is very sensitive to the well angle if the angle is very small, i.e. (0° < 6w <
12). In this study, the coordinate system was chosen in the principal directions of the permeability tensor so
that K has three nonzero diagonal elements and zero off-diagonal elements

k, 0 0
K=[0 k, 0
0 0 k. (94)

For deviated wells, a local coordinate system rotated by the angle 9. around the y-axis was set up.
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k, = (K.ev‘)T.ev‘ =k,

g 95)
k, = (K.ez,)T.eZ‘ =k, cos’ 0, +k, sin’ @, (96)
Where
r T
6}1,2[0,1,0] and e:,:[—sinHW,O,cosHW] ) 97)
cos’ 6, = 1+cos20, _, _ 0,>+0(0,*) sin’0, = 1-cos20, _ 0,>+0(0,")
2 and 2 (98)

At first, we consider a two-layered reservoir as in Table 1, with a well offset of 10 ft and Layer 1 is the
reference layer. We investigated different inclination angles, as shown in Fig. 6. For horizontal well, the
early-time pressure derivative is very high due to the low permeability of the top layer. For 9,=3 and
0, =5 , part of the well enters the higher-permeability bottom layer, so the pressure derivatives decrease
substantially. The transition period shows that deviated wells see boundaries earlier than horizontal wells.
The late time behaviours are similar for all cases.

dpy _ Lok, (K),

Int, (kh)

99)

Heorizontal Well
e Slanted Well (8,=3°)
-------- Slanted Well (8,,=5°)

dpp/dinty

T

101 o it M| . L R N—
103 102 107! 1 10 102
to

Fig. 6. Effect of Inclination in Two-Layered Reservoirs
3.3 Cross-flow between layers

When reservoirs are strongly heterogeneous in the z-direction, the cross-flow between layers becomes
crucial to the performance. For example, we investigated the pressure response of a deviated well in a two-
layered reservoir with no-flow boundaries at the top and the bottom (the formation properties given by Table
1 (No. 2), either with or without cross-flow between layers.

Fig. 7 shows that the early time pressure drop in the commingled reservoir is much higher than that of cross-

flow reservoir; because the wellbore sees boundary (interfaces between layers) earlier. The transition periods
are also different. Hence, Cross-flow differs from commingled reservoirs.
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With Crossflow
(L s YWithout Crossflow

dpD/dlntD

1071 . e o el s e e el e w oy
10-3 1072 10! 1 40 102

Fig. 7. Effect of Cross-flow in Multilayered Reservoirs
3.4 Effect of layer thickness

It is important to determine the thickness of all layers in multilayered reservoirs very precisely; otherwise,
we may jump into a wrong conclusion. Considering a three-layered reservoir, with the formation properties
shown in Table 1 (No. 3), shows that the thickness of the layers affects the pressure behavior significantly,
even though the formation properties of the layers and the total thickness are unchanged. Fig. 8 shows the

A <10/,

difference between two situations,(though

10

——————— hi=hz=h3=50ft
............... hy=h>=40ft,h3=70ft

dpp/dinty

1071 3w e gos] .
1073 102

tiaal L L I B | L
107 1 10 102
to

Fig. 8. Effect of Thickness of Layers

3.5 Initial estimation of reservoir parameters (skin factor)

As discussed above, a new method for determining the initial values for the nonlinear parameter estimation
was suggested. In this section, results and analysis are shown for the method. A four-layered reservoir that
has a positive skin factor, with parameters in Table 2 will be considered.

The first step is to determine the total productivity and the average skin of the system using the conventional
semilog method,

(kh), =2000md = ft 4 554 (100)
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The second step is to plot the history of the layer production rate obtained by the data acquisition methods
described in the model formulation.

Table 2. Reservoir Parameters for Example of Parameter Estimation Using the new Method

Layer k(md) k,(md) s h(ft) D

1 900 900 2 10 0.3
2 300 300 1 10 0.3
3 700 700 5 10 0.3
4 100 100 2 10 0.3

qy = 100 (bbl/day), 1 = 50 (cp), c, = 0.000006 (1/psi), v, = 0.301 (ft)

The next step is to use the data at an early time and at an intermediate time to approximate the production
history for the cross-flow system with same reservoir parameters, from the early time to the late time. At the

very late time, the layer production rate of the system is equivalent to the productivity ratio, 7, as said in
the model formulation. Thus, we can use the longtime limiting values of the production rate from each layer

*

as the initial estimate of the layer productivities. Permeability, 7 and early time limiting layer production
rates, are shown in Table 3.

Table 3. Estimation Procedure for Example of Parameter Estimation Using the new Method

Layer q;""" (bbl/day) K" k*(md) q;*"* (bbl/day) s;"
1 50.0 0.50 1000 46 2332
2 14.0 0.14 280 32 0.940
3 32.0 0.32 640 15 4.580
4 4.0 0.04 80 7 1.227

* means the estimation

Using Eq. 84, an expression for the skin of any layer in terms of skin of layer 1.

ET*
§ "= q\p K; 5"
j T ET * 1

9pp K (101)
For the example, the skin factor of other layers are:

s, =0.4025s" s, =1.9627s s, =0.5257s,

, and (102)
Using the definition of the average skin of the total system:
(q,”g =a)'"s) +4 a5 (100%2.54 = 48,65, +20.85," +24.95," +5.75,") (103)
Solving for *1 and substituting the result into Eq. 102 yields:
$11=2.332, 52 =0.940, 3 =4.580 and 54 =1.227 (104)

The initial values, k' and*® , obtained by this new method were named as “Initial Estimates A”. Another
set of initial estimates were made to see how sensitive the regression algorithm is to the poor estimation

“Initial Estimates B” (see Table 4). Here permeability is same but */ = ° = 254

Table 4. The Results of Parameter Estimation for Example (Original Parameter Values)
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Original Parameter Values

ky 900.0 md S1 2.0

k, 300.0 md Sy 1.0

k3 700.0 md S3 5.0

Ky 100.0 md Sy 2.0

Initial Estimates A

ky 1000.0 md S1 2.358

k, 280.0 md Sy 0.949

ks 640.0 md S 4.629

ks 80.0 md Sy 1.240

With Weighting on Production Rates (After 8" Iteration)

ky 900.8 (0.073) S1 2.005 (0.193)
k, 300.1 (0.094) Sy 1.002 (0.276)
ks 701.1 (0.136) S3 5.013 (0.227)
Ky 100.0 (0.144) Sy 2.002 (0.263)
Without Weighting on Production Rates (After 8" Iteration)

ky 1001.9 (0.504) S1 2.523 (0.193)
k, 238.8 (0.417) Sy 0.859 (0.276)
ks 637.4 (0.654) S3 4.167 (0.227)
ks 77.9 (0.813) Sy 1.407 (0.263)
Initial Estimates B

k, 1000.0 md S1 2.54

k, 280.0 md Sy 2.54

ks 640.0 md S 2.54

Ky 80.0 md S, 2.54

With Weighting on Production Rates (After 8" Iteration)

k, 900.6 (0.342) S1 2.003 (0.888)
k, 300.3 (0.406) S, 1.002 (1.189)
ks 698.7 (0.521) S 4.986 (0.867)
ky 100.0 (0.683) Sy 1.999 (1.327)

Without Weighting on Production Rates (No convergence)
* : Confidence Interval in %

4 Conclusions

In this study, a new analytical solution to describe the pressure-transient behaviours of deviated wells in
multilayered reservoirs was developed and a new method for the initial estimation of the unknown reservoir
parameters (skin) was suggested and tested for the multilayered cross-flow system. An algorithm to compute
the solutions in such complicated situations was also developed. The validation and efficiency of this
algorithm were investigated in deviated wells crossing multilayered reservoir with cross-flow. From the
application examples, the following are my conclusions:

1. The algorithm is practical in obtaining precise and reliable solutions analytically. The solution
obtained is valid for a wide range of configurations of reservoirs.

2. In anisotropic layered reservoirs, Deviated wells can produce more effectively than horizontal and
vertical wells. Therefore, the inclinations of wells cannot be ignored in such situations

3. In the layered system, the cross-flow between layers cannot be ignored, otherwise, we may obtain
incorrect results. The direction of the cross-flow is governed first by the permeabilities and next by
the skin factors. The cross-flow starts from the less permeable layer to the more permeable layer
and from the layer with greater skin to the layer with smaller skin. Hence, the effects of cross-flow
play a very important role in layered reservoirs.
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A new method for the initial estimation for the unknown reservoir parameters (skin factor) requires
the pressure and the layer production data for the entire time range. This method works best in a
multilayered system with no formation cross-flow, although the example was for the cross-flow
system. It works better if the vertical permeabilities of the layers are smaller.

5 Future Work

Deviated well was considered in this research, interference test between several horizontal wells
located at different positions could also be considered.

Although the method for the initial estimation of the unknown reservoir parameters (skin factor) used
as part of the algorithm technique in this study works better in vertically-low permeability layers, a
more efficient method for the initial estimation of skin factor in vertically-high permeability layers
will be necessary.
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