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ABSTRACT 
 

Potatoes are a cornerstone of global agriculture and a fundamental component of diets worldwide, 
with plant viruses accounting for nearly half of the emerging crop epidemics. Among these, Potato 
Virus Y (PVY) poses a formidable challenge to potato farming, leading to significant economic 
repercussions and threats to food security. Understanding the influence of climate on PVY is pivotal 
in tackling this viral menace. Climatic conditions, including temperature, precipitation, and humidity, 
play a key role in the behavior of aphids, the primary vectors of PVY, thereby impacting the 
disease's prevalence in potato fields. With climate change modifying these key weather variables, 
there's a looming risk of enhanced PVY spread and a shift in its geographical presence. 
Recognizing and adapting to these climate-induced changes is vital for formulating effective 
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strategies and sustainable practices to counter PVY's effects, safeguarding potato crops from this 
major viral threat. This analysis delves into the complex dynamics between climate change and 
PVY, focusing on how changes in weather patterns influence the virus's behavior and impact, with 
the aim of enhancing our preparedness and response to this agricultural challenge. 

 

 
Keywords: PVY; potato; climate; tomato; aphid; temperature; CO2; light intensity; wind; rainfall. 

 
1. INTRODUCTION 
 
The potato (Solanum tuberosum L.), belonging to 
the Solanaceae family, is a vital crop cultivated 
across both tropical and subtropical regions 
worldwide [1]. Ranking as the fourth most 
important food crop globally after wheat, rice, 
and maize [2], it is recognized not only as a key 
agricultural product but also as an industrial crop. 
Its tubers, primarily used for food and feed, 
consist of 79% water, 18% starch, 2% protein, 
and 1% vitamins, along with essential minerals, 
trace elements, and fats [1]. Potatoes represent 
a crucial cash crop, particularly in developing 
countries, where they play a significant role in 
combatting food insecurity and reducing poverty 
among smallholder farmers [3]. The top potato 
producers include nations like China, India, 
Russia, Ukraine, the USA, Germany, 
Bangladesh, Poland, France, and Belarus [4]. In 
Bangladesh, potatoes are a primary food crop, 
second only to rice and wheat [5], and are key to 
bolstering food security and offering an 
alternative to staple foods [6]. The cultivation 
area extends over 1101914.24 acres [7], 
underscoring the crop's significant potential in 
sustainable farming systems aimed at securing 
food for a global population projected to reach 
8.5 billion by 2030 [8]. However, potato yields are 
threatened by various factors, including diseases 
caused by fungi, bacteria, viruses, and 
nematodes, with viruses posing a particularly 
severe risk to sustainable production. The global 
economy incurs losses of approximately US$60 
billion annually due to crop diseases caused by 
viruses [9]. Among the numerous viral pathogens 
affecting potatoes worldwide [10], Potato virus Y 
(PVY) is identified as the most economically 
damaging [11]. This virus, which also affects 
other Solanaceae family plants like peppers, 
tomatoes, and tobacco [12], is ranked as the fifth 
most significant plant virus globally in terms of 
scientific and economic impact [13]. PVY not only 
reduces potato yields but also degrades tuber 
quality, causing losses ranging from 10% to 90% 
[14]. Certain strains of PVY, particularly 
recombinant and necrotic ones, can render 
tubers unsaleable [15], leading to shortages in 

certified seeds and financial losses for seed 
growers. The viability of PVY in tubers means 
that high virus levels in a producer's field can 
increase the inoculum level for the next year's 
seed potato crop, potentially leading to the 
rejection or downgrading of that year's lots [16]. 
The extent of these losses varies based on 
factors such as potato variety, year, weather, and 
geographic location. Environmental conditions 
play a pivotal role in disease progression, with 
each virus-plant interaction uniquely influenced 
by abiotic or environmental factors [17].               
Factors like temperature, precipitation, relative 
humidity, wind speed, and cloud cover 
significantly affect PVY severity. Additionally, 
aphid populations, which are key vectors for PVY 
transmission, correlate positively with 
environmental conditions, with early summer 
typically more conducive to their proliferation 
than winter [18]. This study aims to explore              
and elucidate the effects of climatic factors               
on Potato virus Y, seeking to better understand 
the dynamics and vulnerabilities of this 
interaction under varying environmental 
conditions. 

 
2. HISTORY, TAXONOMY AND 

CLASSIFICATION 
 
The Potyvirus genus, with potato virus Y as its 
type species, stands as the most substantial 
group within the Potyviridae family, comprising 
up to 30% of all plant virus species. This family 
also encompasses five additional genera: 
Rymovirus, Macluravirus, Ipomovirus, 
Bymovirus, and Tritimovirus. Many viruses now 
recognized under the Potyviridae umbrella were 
initially identified early in the twentieth century, 
with more discoveries in the 1930s, and a 
significant increase in identified species from the 
1960s onward. Viruses belonging to the 
Potyviridae family are known for their significant 
impact on plant health, leading to extensive 
research and literature on the subject. From the 
mid-1980s, the sequencing of potyviruses' 
complete genomes opened the door to genetic 
research, facilitated by the development of full-
length, directly infectious cDNA clones or 
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infectious transcripts, a technique also                
applied to bymoviruses. The current criteria for 
classifying viruses into the Potyviridae family 
focus on characteristics such as the long, 
flexuous nature of the virus particles, the 
structure of their genome (positive-sense single-
stranded RNA with a 5′ terminal protein                   
and a 3′ poly(A) tail), their gene expression 
mechanism (through a polyprotein that produces 
multiple gene products via proteolysis), and 
specific cytopathological effects, notably the 
creation of pinwheel- or scroll-like cylindrical 
cytoplasmic inclusions in the cells of infected 
plants. 

 
3. SIGNIFICANCE OF POTATO VIRUS Y 
 
Plant viruses pose a significant threat to 
agricultural productivity worldwide, acting as 
agents of disease in a variety of crops. The 
extent of the damage caused by these viruses 
depends on several factors, including the level of 
the virus present, characteristics of the host plant 
(like its genotype and stage of growth), the 
presence and activity of vectors, and 
environmental conditions [19]. Potyviruses, for 
example, are known to cause reductions in tuber 
yield of up to 80% [10]. Potato virus Y (PVY), 
given its widespread prevalence and economic 
ramifications, is considered one of the top 10 
plant viruses impacting global agriculture [11]. 
The susceptibility to PVY varies among potato 
cultivars; some may be vulnerable and exhibit 
symptoms, some may be tolerant and show no 
symptoms while suffering minor yield reductions, 
and others may be resistant to the virus [20]. The 
Potato Tuber Necrosis Ringspot Disease 
(PTNRD), triggered by specific strains of PVY, 
wreaked havoc on potato yields during the 1980s 
and 1990s in the Middle East, notably in 
Lebanon, and in Central European countries like 
Slovenia, Hungary, and Germany. This disease, 
affecting a broad spectrum of potato cultivars, 
resulted in substantial yield losses. The 
devastation was marked by 18,000 hectares—or 
60% of the potato crop—being affected, and 
more than half of the tubers showing necrosis. 
The emergence of PVY strains capable of 
causing tuber necrosis significantly contributed to 
the severity of the disease, exacerbated by the 
widespread cultivation of susceptible potato 
varieties such as Igor, Lola, Monalisa, Rosalie, 

and Hela in the impacted regions [21]. PVY is 
notorious for causing considerable damage to 
potato yields, with losses ranging from 10% to a 
staggering 100%. The virus also adversely 
affects tomato yields, leading to reductions of 
39% to 75% [22]. It has been estimated that each 
1% increase in PVY incidence in seed crops can 
lead to a yield decrease of approximately 180 kg 
per hectare, translating to a gross income loss of 
about $18 per hectare [23]. Virus infection                
from seed tubers can result in a yield decrease 
ranging from 10% to 80% under severe 
conditions [24]. In Brazil's potato industry,            
PVY is a critical concern, capable of causing 
losses up to 80% [10]. In Spain, a 30% presence 
of PVY in seed tubers is projected to result in a 
10%–15% yield reduction [20]. However, a 
Finnish study by [25], found that yield losses 
from a crop with 10–20% PVY-infected seed 
tubers were minimal. The significant economic 
losses and implications for food security 
underscore the importance of effectively 
managing and understanding PVY to ensure the 
sustainability of agricultural practices and crop 
safety. 
 

4. FIRST REPORTS OF GEOGRAPHICAL 
DISTRIBUTION OF POTATO VIRUS Y 

 
The occurrence, impact, and spread of virus 
species across different regions are significantly 
shaped by factors such as vector presence, 
climatic conditions, and management practices of 
host crops or plants [11].  
 
Potato Virus Y (PVY) is widespread, with its 
presence recorded in numerous areas globally, 
making it a major concern for a variety of host 
plants, particularly potatoes, due to their 
economic importance. The emergence and 
detection of diverse PVY strains over the years 
highlight the ongoing risk that PVY represents to 
solanaceous crops worldwide. Although genome 
sequencing has become a pivotal method for 
analyzing the evolutionary relationships of new 
isolates and determining their genetic grouping, 
this technique alone does not suffice for 
assigning a PVY isolate to a specific strain 
group. Strain classification relies on identifying 
unique sets of symptoms or reactions that occur 
when a range of potato varieties, each carrying 
specific resistance genes, are infected [48]. 
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Table 1. First reports of geographical distribution of PVY 
 

Country Crop Reference 

Portugal Solanum tuberosum  [26] 
France Nicotiana mutabilis  [27] 
Switzerland Solanum tuberosum  [28] 
China K. indica  [29] 
Tajikistan Solanum tuberosum  [30] 
Tanzania Solanum tuberosum  [31] 
Japan Solanum tuberosum  [32] 
Mexico Solanum tuberosum  [33] 
Syria Solanum tuberosum  [34] 
Jordan Solanum tuberosum  [34] 
Pakistan Solanum tuberosum  [35] 
Ecuador Solanum lycopersicum  [36] 
Kenya Solanum lycopersicum  [37] 
Saudi Arabia Solanum tuberosum  [38] 
South Africa Physalis peruviana L.  [39] 
Zimbabwe Capsicum annuum L.  [40] 
Egypt Solanum tuberosum  [41] 
Argentina Calibrachoa  [42] 
South Korea Solanum tuberosum  [43] 
Israel Solanum tuberosum  [44] 
India Solanum nigrum  [45] 
United States Solanum tuberosum  [46] 
Croatia Solanum lycopersicum  [47] 

 

5. GENERAL CHARACTERISTICS OF 
POTATO VIRUS Y 

 
First identified by Smith in 1931, Potato Virus Y 
(PVY) is now ranked as the fifth most 
economically and scientifically significant plant 
virus [49,13]. As part of the Potyviridae family 
and the Potyvirus genus, it belongs to the largest 
group of plant viruses, which includes 111 
recognized and 86 tentative species affecting 
more than 30 plant families [50] Potyviruses have 
a genome consisting of a single RNA strand, 
which is translated into a large polypeptide. This 
polypeptide is then cleaved by viral proteases 
through three distinct mechanisms to produce 
several functional proteins, including the coat 
protein (CP), which plays a crucial role in forming 
viral particles. These viruses are known to induce 
the formation of both cytoplasmic and nuclear 
inclusions that contain viral protein aggregates 
within the host cells [51]. 
 

PVY itself is a monopartite virus with a genome 
made up of a single-strand of positive-sense 
RNA (+ssRNA), measuring roughly 9700 
nucleotides long, not including the poly(A) tail 
[22]. The virus particles are about 730 
nanometers in length [52] and 11 nanometers 
wide [53], with the coat protein making up about 
95% of the virion's mass [54]. PVY infections are 

marked by the presence of non-crystalline 
amorphous inclusions in the cytoplasm, with 
distinctive "pinwheel" and "bundle-like" structures 
[51], and are known to cause mosaic PVY has 
evolved into multiple strains, categorized into at 
least 13 distinct subgroups based on biological 
characteristics or phylogenetic analysis [48,55]. 
Historically, PVY has been divided into three 
main strains: PVYO, PVYN, and PVYC, with 
PVYZ and PVYE sometimes included as 
additional strains. PVYO is the common strain 
found worldwide [24], and serotypes are currently 
distinguished only between PVYO and PVYN 
strains [16]. Notably, at least nine recombinant 
genomes have emerged from PVYN and PVYO 
strains [56], with PVYN:O, PVYN-Wi, and 
PVYNTN being the most prevalent recombinant 
strains in potato cultivation [57]. Among these, 
PVYO has been observed to have the highest 
virus titer in infected plants, followed by PVYNTN 
and PVYN:O [15], making it the most common 
strain across various potato varieties [58]. The 
biological differences between PVY strains are 
evident in the phenotypic responses of potato 
cultivars containing specific hypersensitive 
resistance genes and the induction of necrotic 
symptoms in tobacco. Strains PVYC, PVYO, and 
PVYZ elicit hypersensitivity responses through 
genes Nc, Ny, or Nz, respectively. Meanwhile, 
strains like PVYN and PVYE can bypass all three 
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hypersensitivity genes, with PVYN uniquely 
causing veinal necrosis in tobacco. PVYE is 
distinguished by its unique phenotypic effects 
[59,60]. 
 

6. SYMPTOMOLOGY OF PVY 
 
Potato Virus Y (PVY) is known for its rapid 
spread and significant impact on potato plants, 
inducing marked morphological and physiological 
alterations. Among these changes are symptoms 
such as vein necrosis, leaf curling, and the 
mosaic effect, all of which are associated with 
changes in the structure and function of 
chloroplasts within the plant cells [61,62,63]. 
Certain potato cultivars, like Shepody and Russet 
Norkotah, may serve as carriers for PVY, 
facilitating its transmission by aphids, as these 
cultivars often show no or very mild symptoms 
despite high levels of viral infection [64,65,66].  
 
Tuberculosis-like symptoms, including discolored 
bands on the skin and necrotic tissue that 
extends into the tuber flesh, are indicative of PVY 
infection [67]. The expression of PVYO 
symptoms in potatoes varies widely across 
different cultivars, ranging from mild to severe 
mosaics, leaf and stem necrosis, premature leaf 
drop, and in some cases, early plant death 

[24,66]. Only a select number of isolates are 
known to cause potato tuber necrotic ringspot 
disease. PVYO is also responsible for systemic 
mottling in tobacco [68]. The tobacco veinal 
necrosis strain PVYN typically causes a range of 
mosaic symptoms in various potato cultivars, 
from nearly symptomless to mild [66]. The 
severity of potato tuber necrosis disease is 
dependent on the specific cultivar infected, with 
most PVYNTN isolates and some PVYN:O 
isolates known to be causative agents [69,70,66]. 
In general, PVYN causes relatively moderate leaf 
mottling in most potato cultivars and severe 
systemic veinal necrosis in tobacco. 
 
Hybrid genotypes, such as PVYN:O and 
PVYNTN, can develop from mixed infections of 
common and necrotic strains, leading to the 
recombination of genetic material [71]. The 
symptoms exhibited by the PVYC and PVYO 
strains in tobacco are similar. PVYC, also known 
as the stipple streak strain, has a distribution that 
includes Australia, India, and parts of the United 
Kingdom and continental Europe [24]. In potato 
cultivars carrying the resistance gene Nc, PVYC 
infection leads to the appearance of lines in the 
leaf stipules. Many potato cultivars exhibit a 
hypersensitive reaction to strains within the 
PVYC group [72]. 

 

 
 

Fig. 1. PVY Infected Potato Plant (A) and Healthy Potato Plant (B), [22] 
 

7. TRANSMISSION OF PVY 
 
Plant viruses, which are obligate parasites, depend on transmission to new hosts for their survival. 
There are two primary pathways through which plants can become infected by viruses. The first 
pathway, known as vertical or secondary transmission, involves the spread of the virus from infected 
seed material, such as a potato tuber, to the emerging plant and subsequently to the daughter tubers. 
The second mode of transmission, referred to as horizontal transmission, occurs when a plant 
becomes infected either mechanically or through a vector, typically an insect, which facilitates the 
spread of the virus to other plants [11]. Potato Virus Y (PVY) can be mechanically transmitted through 
the use of contaminated tools, direct contact, or rubbing with infected plants. It is also transmitted non-
persistently by insect vectors, with the virus being capable of transmission within just a few seconds 
after being acquired by the vector [73]. Over 65 species of aphids, including both those that colonize 
potatoes and those that do not, are recognized as vectors capable of transmitting PVY [74], with 
disease severity reaching up to 73.33% in some cases. All studied potato varieties showed presence 
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of PVY [75]. In peppers, transmission rates of PVY were observed to be between 0.5–3.2 particles per 
insect per transmission event, a minuscule amount compared to what is found in the sap insects’ 
probe [76,77]. Seasonal patterns of aphid activity also influence PVY transmission. Studies have 
documented periods of low aphid activity, particularly from July to September, with increased flights 
noted in June, August, and specific winter months, affecting the likelihood of PVY spread [78,79,80]. 
The effectiveness of aphid transmission varies by species, with Myzus persicae and Rhopalosiphum 
padi identified as the most efficient vectors for transmitting PVYNTN isolates, followed by PVYO and 
PVYN:O isolates [81]. Interestingly, the impact of virus strains on potato tuber mass varies between 
plants infected mechanically and those infected via aphids, with PVYN:O-infected plants showing 
higher tuber masses compared to those infected with PVYO or PVYNTN [15]. 
 

 
 

Fig. 2. Transmission Processes of Potato Virus Y, [22] 
 
Landscape characteristics and the presence of 
natural enemies of vector communities can 
indirectly influence viral prevalence, with more 
complex landscapes showing reduced PVY 
prevalence due to a decrease in species spillover 
[82,83]. In the plant host, vertical transmission 
begins with one infected cell, leading to systemic 
infection throughout the plant as the virus follows 
the distribution of photo-assimilates, thereby 
infecting new tubers and growing leaves [84]. 
Research in Scotland demonstrated that crops 
grown from seed potatoes from symptomatic 
plants were four times more likely to present PVY 
than those from asymptomatic plants [85]. PVY is 
not known to be transmitted through potato 
pollen or true seed [86], indicating that effective 
control measures must target all potential 
sources of inoculum, including infected plants, 
weeds, and volunteer plants [87]. The spread of 
PVY within a crop is influenced by the aphids' 
ability to transmit the virus and the host plant's 
susceptibility. Older plants often exhibit greater 
resistance to infection, possibly due to physical 
barriers or stronger antiviral responses, 
compared to younger, more vulnerable plants 
[88,89]. 

8. PLANT PHYSIOLOGICAL CHANGES 
DUE TO PVY 

 
Virus-infected plants exhibit a wide array of 
symptoms, which may be linked to changes in 
the activity or levels of plant hormones [90]. Key 
factors leading to reduced growth rates in virus-
infected plants include diminished activity of 
certain photosynthetic enzymes, increased 
accumulation of sugars or starch, and 
compromised photosynthesis due to lower 
chlorophyll (Chl) content and reduced maximum 
Chl fluorescence [91,92,93,94]. Research 
observed that [95] PVY infection significantly 
lowered the photosynthetic rate (PN) in both 
transgenic and non-transgenic rooted plants, 
though it did not affect grafted plants. Factors 
contributing to the reduced photosynthetic rate 
included stomatal closure, decreased activity of 
ribulose-1,5-bisphosphate 
carboxylase/oxygenase, diminished pigment 
content in the chlorophyll and xanthophyll cycle, 
and reduced photosystem II (PSII) activity. 
Exposure to high light intensity further 
exacerbated the negative impact on PS II, 
particularly in rooted plants infected with PVY. 
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Additionally, the presence of PVY in tobacco 
plants led to an increase in viral protein levels in 
non-transgenic plants, whereas transgenic plants 
showed a decrease. Transgenic plants with 
elevated endogenous cytokinin (CK) levels 
exhibited lower viral protein accumulation and 
fewer PVY symptoms compared to control 
plants. In the context of PVY infection, transgenic 
plants accumulated more xanthophyll, whereas 
healthy plants experienced a decrease in 
xanthophyll levels under strong light conditions 
[95]. These observations suggest that the 
methionine cycle's role in transmethylation is a 
crucial determinant of a plant's susceptibility or 
resistance to infection [96]. PVYNTN infection 
was found to have a minimal impact on 
intercellular CO2 concentration but significantly 
reduced net photosynthetic rate and stomatal 
conductance. The primary way PVYNTN hinders 
photosynthesis is by interfering with the 
enzymatic activities of the Calvin cycle, leading 
to down-regulation of electron transport [97]. 
Infected plants also displayed lower chlorophyll 
levels, alongside changes in chloroplast size and 
structure [63]. Studies have shown varying 
responses to PVYNTN infection among different 
potato cultivars, particularly in the activities of 
soluble, ionically, and covalently bound 
peroxidases [98]. Furthermore, interactions 
between susceptible potato plants and PVYNTN 
resulted in alterations in cytokinin levels in the 
inoculated leaves [99]. 
 

9. EFFECT OF CLIMATIC FACTORS ON 
PVY 

 
Environmental factors, including temperature, 
CO2 concentration, light intensity, relative 
humidity, wind speed, and rainfall, profoundly 
influence the severity of Potato Virus Y (PVY) 
and the aphid population size. These climate 
variables are pivotal in hastening the replication 
of the virus, elevating the likelihood of infection, 
and facilitating the spread of the virus. 
 

9.1 Effect of Temperature on PVY 
 
The impact of temperature on Potato Virus Y 
(PVY) dynamics is multifaceted, influenced by 
direct and indirect effects of climate change, 
including shifts in environmental conditions and 
vector behavior. Climate models predict a global 
average temperature increase of up to 4.6°C by 
2100, with more rapid warming in higher latitudes 

[100]. These changes are anticipated to 
significantly affect plant virus epidemics, 
including PVY, by altering host-virus interactions 
and vector populations [101]. Research by [102] 
highlights temperature as a crucial environmental 
factor affecting RNA virus-host interactions 
differently. For instance, lower temperatures 
enhanced hypersensitive resistance against PVY 
in potatoes [103], while at higher temperatures 
(30°C), PVY was found to suppress antiviral 
silencing defenses in Nicotiana benthamiana. 
Systemic PVY infections in potatoes were noted 
between 16°C to 32°C, with infection times 
decreasing as temperatures rose [104]. 
Interestingly, while PVYO infection in Nicotiana 
benthamiana increased with temperature, it 
peaked and then declined, with coat protein 
accumulations being lower at 10°C or 15°C but 
increasing over time [105]. Symptom expression 
of PVY in potatoes was more evident at 
temperatures ranging from 22/17°C to 26/21°C, 
whereas lower temperatures showed reduced 
symptoms. This suggests that low temperatures 
may hinder PVY multiplication and symptom 
manifestation, a phenomenon observed late in 
the season with PVY N infections [106]. The Ry 
chc resistance gene in potatoes showed 
temperature-dependent reactions; while at 22°C, 
only minor necrotic spots appeared, at 28°C, 
clearer necrotic spots emerged, indicating that 
high temperatures could diminish the resistance 
provided by the Ry chc gene. However, systemic 
infection and virus titres were still lower in 
resistant cultivars at 28°C compared to 
susceptible ones [107]. High temperatures 
facilitated systemic PVY infections even in plants 
exhibiting hypersensitive responses at lower 
temperatures. Key enzymes in the methionine 
cycle were downregulated by PVY at higher 
temperatures, suggesting temperature-sensitive 
plant-virus interactions [108]. Elevated 
temperatures also affected salicylic acid (SA) 
marker expression, with the sensitive                  
cultivar Chicago showing increased susceptibility 
to PVY, while the resistant cultivar Gala               
remained less affected [109,4]. Qamar                      
(2016) noted the greatest PVY disease severity 
at temperatures between 24-28°C maximum and 
9-12°C minimum, with a strong correlation 
between disease progression and temperatures 
ranging from 15-31°C maximum to 5-13°C 
minimum. During storage at 22°C, PVY 
concentrations in dormant tubers decreased 
[110]. 
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Fig. 3. Effect of Climatic Factors on Potato Virus Y, [22] 
 
Temperature increases may also influence PVY 
spread by affecting its primary vector, the green 
peach aphid. While heat waves around 30°C can 
negatively impact aphid populations, the optimal 
temperature for green peach aphid reproduction 
is 26.7°C, suggesting that warmer conditions 
could enhance vector migration and host plant 
approach, potentially increasing PVY 
transmission [111]. 
 

9.2 Effect of CO2 on PV 
 
Plant viruses, including Potato Virus Y (PVY), 
interact with their hosts under the influence of 
environmental conditions such as temperature 
and CO2 levels, which affect plant physiology. 
These environmental factors can alter the carbon 
to nitrogen ratios, growth rates, morphological 
development, and the regulation of molecular 
pathways responsible for plant responses to both 
biotic and abiotic stresses [112,113,114,115,116]. 
Studies on PVY have shown that higher CO2 
levels can lead to decreased viral coat protein 
levels in leaves, suggesting a suppression of 
virus spread. The build-up of phenylpropanoids, 
like CGA and coumarins, under elevated CO2 
conditions may help confine the virus earlier 
[113]. Research by [117] revealed that elevated 
CO2 conditions could mitigate the negative 
impacts of PVY infection in tobacco plants, by 
increasing aboveground biomass without 
significantly affecting total non-structural 
carbohydrates (TNCs) or nitrogen content. While 
PVY infection reduced biomass, TNCs, and 
nitrogen content, elevated CO2 improved soluble 
protein content and offset the reduction in 
chlorophyll caused by PVY. There was also an 
observed interaction between elevated CO2 and 

PVY infection on free amino acid and nicotine 
content, indicating that elevated CO2 can reduce 
the costs of virus resistance in infected plants 
and delay the spread of PVY. Further studies by 
[17] found that the systemic levels of PVY in 
Nicotiana benthamiana were lower under 
elevated temperatures and CO2 levels [30°C and 
970 parts per million (ppm)], compared to 
standard conditions (25°C, approximately 405 
ppm CO2). Elevated CO2 also affects various 
aspects related to aphid infestation, including 
growth rates, fecundity, feeding efficiency, and 
susceptibility of host plants to aphids, which can 
influence the dynamics of PVY transmission 
[118,119]. Research [97] reported that PVYNTN 
infection dramatically decreased the net 
photosynthetic rate and stomatal conductance 
without affecting intercellular CO2 concentration. 
[120] noted that while atmospheric CO2 
concentrations may not directly affect aphid's 
ability to transmit PVY in the short term, elevated 
CO2 could indirectly influence transmission 
dynamics by affecting plant defenses or aphid 
behavior, potentially leading to more efficient viral 
spread. [121] demonstrated that plastic bag 
treatments were less effective in controlling virus 
concentration in tubers compared to treatments 
with 02 plus CO2 for 7 and 14 days, which 
significantly increased viral concentration, 
highlighting the complex interactions between 
environmental factors, plant physiology, and viral 
infection dynamics. 
 

9.3 Effect of Relative Humidity on PVY 
 
Studies have demonstrated a notable link 
between relative humidity (RH) and the severity 
of Potato Virus Y (PVY) infection in potato crops. 
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Higher levels of relative humidity have been 
consistently associated with an increase in PVY 
disease severity. Specifically, a RH range of 50–
60% has been identified as conducive for the 
proliferation of PVY and Potato Leafroll Virus 
(PLRV) infections [122]. Furthermore, relative 
humidity levels of 78-84% have been shown to 
significantly correlate with the escalation of PVY 
disease severity, as evidenced by high 
correlation coefficients (r values of 0.98) [123]. 
Contrarily, observed the highest incidence of 
PVY under drier conditions following inoculation, 
compared to more optimal growth conditions. 
Optimum conditions for disease prevalence were 
noted at 80–86% RH, alongside minimum 
temperatures of 11–13°C and maximum 
temperatures of 25–28°C, with pan evaporation 
rates of 2-2.9 mm [124]. In further research, [58] 
determined that a relative humidity of 82-83% is 
particularly conducive to increased disease 
severity. It was also found that combining high 
temperatures (25–30°C) with high RH (80–90%) 
significantly boosts the transmission of PVY by 
30–35%. Conversely, at 25 or 30°C, PVY 
transmission rates were about 50% lower when 
RH was maintained at 50% during both pre- and 
post-inoculation phases [125]. Additionally, the 
population of whiteflies, which serve as vectors 
for PVY, was observed to rise with increasing RH 
up to a certain point, after which it began to 
decline [126]. While these findings suggest that 
relative humidity may indirectly influence PVY 
prevalence through its effect on vector 
populations, further investigations are necessary 
to clarify the direct connection between RH and 
PVY incidence [127]. 

 
9.4 Effect of Light Intensity on PVY 

 
Exposure to continuous fluorescent light at 4000 
lux was found to have no significant impact on 
the transmission rate of Potato Virus Y (PVY) 
[125]. When comparing different light intensities, 
it was observed that lower light levels (270-330 
uE/m2/sec) significantly increased the severity of 
mosaic disease caused by PVY in potato 
cultivars such as Shepody and Red LaSoda, in 
contrast to higher light intensities (100-200 
uE/m2/sec) [64]. Additionally, the cultivation of 
removed explants in a growth environment with a 
168-hour photoperiod cycle, under the 
illumination of fluorescent tubes at a light 
intensity of 2.5 umolm-2 S-1, was undertaken. 
Following applications of electric therapy, a high 
percentage of virus-free plantlets were 
successfully generated from meristem tips 

measuring 100 µm in length, with 93% success 
in Binella and 87% in Burren varieties [128]. 
 

9.5 Effect of Rainfall and Wind Velocity on 
PVY 

 
Rainfall has an indirect effect on Potato Virus Y 
(PVY) dynamics, while the direct influence of 
wind velocity on PVY spread is minimal since the 
virus is predominantly transmitted via infected 
seed potatoes and aphid vectors. Rainfall can 
serve as a mechanism for depositing aphids, 
which are transported via low-level jet streams, 
onto potato crops [16]. A study spanning nine 
years found that 29 out of 30 instances of low-
level jet occurrences, which were associated with 
rain events in May and June, could potentially 
influence aphid dispersal [129]. Despite regular 
precipitation patterns each spring in the studied 
areas, establishing a direct link between spring 
rainfall and the incidence of PVY in the same 
season proved challenging. This difficulty arises 
from various confounding factors such as the 
practice of roguing (removing diseased plants) 
and the variability in the timing of leaf sample 
collection. Moreover, aphid populations, which 
are crucial for PVY transmission, can be 
significantly reduced or even eradicated by 
severe weather conditions, including strong 
winds and heavy rainstorms, thus affecting the 
spread of PVY [130,131]. 

 
10. MANAGEMENT OF PVY 
 
Managing Potato Virus Y (PVY) in potato crops 
presents an ongoing challenge due to its non-
persistent mode of transmission and the practice 
of cultivating seed potato tubers across multiple 
generations, which elevates the risk of both 
primary and secondary infections by PVY [132]. 
In recent years, PVY has caused significant 
damage to potato crops, with environmental 
conditions playing a critical role in influencing the 
virus's impact. Consequently, there is a pressing 
need to adopt environmentally sustainable 
strategies and utilize resistant varieties to control 
the spread of PVY effectively. 
 

10.1 Cultural method 
 
Utilizing virus-free seed potatoes or those with a 
minimal occurrence of PVY can significantly 
reduce the sources of inoculum within a field, 
thereby decreasing the risk of PVY transmission 
[133,134]. Research in Switzerland 
demonstrated that elevating the planting altitude 
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from 400 m to 800 m resulted in a 57% reduction 
in potato infection rates, largely due to cooler 
temperatures at higher elevations [135]. 
Implementing earlier planting and timely haulm 
destruction can also mitigate the risk of PVY 
spread [132]. Early termination of the crop's 
foliage reduces the period during which the 
plants are exposed to aphid vectors, thus 
lowering the likelihood of infection [133,135,136]. 
 
For effective PVY management, it is essential to 
eliminate all potential sources of the virus. This 
includes removing weeds, diseased seed tubers, 
and volunteer plants those sprouting from tubers 
or tuber pieces left in the soil after harvesting the 
previous crop [87]. While roguing removing 
visibly infected plants can contribute to 
controlling PVY spread, its success rate varies, 
with reductions in PVY ranging from 0% to 20% 
[137]. For border crops to be effective in 
preventing PVY spread, they need to be resistant 
to the virus. Border plants can also physically 
block aphid movement, serving as a barrier to 
their flight [138]. Straw mulching has been shown 
to be an effective method for controlling PVY 
spread [139,140,141,142]. While increasing 
nitrogen levels in the soil may impact overall 
plant growth, it does not significantly reduce the 
yield loss associated with PVY infections [143]. 
 

10.2 Host-plant Resistance 
 
In the context of integrated pest management, 
plants have developed various defense 

mechanisms to ward off attacks from 
phytopathogens, which are instrumental in 
breeding resistant cultivars [144]. Utilizing the 
coat protein genes of PVX and PVY, [145] 
engineered the Russet Burbank, a leading 
commercial potato cultivar, to be resistant. These 
genetically modified plants, harboring the CP 
genes for both viruses, showed resistance to 
PVX and PVY infections through mechanical 
means of inoculation. Additionally, when exposed 
to PVY through viruliferous green peach aphids, 
one transgenic line exhibited resistance. 
Interestingly, a significant fraction (22.5%) of 
non-transgenic plants displayed resistance, 
hinting at the existence of other resistance (R) 
genes, possibly related to hypersensitivity, which 
might influence the effectiveness of resistance 
tests. The detection of the Ryadg gene proved to 
be highly effective (99.7%) in identifying PVY-
resistant genotypes among both parent plants 
and their offspring, highlighting its utility as a 
genetic marker in potato breeding efforts aimed 
at developing PVY-resistant varieties [144]. 
Furthermore, three tetraploid somatic hybrid lines 
created by fusing protoplasts from a dihaploid 
Solanum tuberosum cultivar BF15 and the wild 
species Solanum berthaultii were evaluated for 
their resistance to several soil-borne pathogens, 
including Fusarium solani, Pythium 
aphanidermatum, and Rhizoctonia solani. These 
hybrids, named STBc and STBd, also showed 
increased resistance to the common strain of 
potato virus Y (PVYo) under greenhouse 
conditions [146]. 

 

 
 

Fig. 4. Management of Potato Virus Y, [22] 
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10.3 Chemical Control 
 

Applying oil sprays to potato plants has been 
proposed as a method to prevent the spread of 
Potato Virus Y (PVY). This approach has been 
explored in various studies [135, 
147,148,149,150,151,152,153]. Comparative 
analysis has shown that while vegetable oil can 
offer some level of protection against PVY, 
mineral oil is generally more effective in 
preventing virus transmission [134,153,154]. 
 

10.4 Vector Control 
 

Pyrethroid-based pesticides have been found to 
effectively reduce Potato Virus Y (PVY) 
transmission under controlled conditions, 
providing a rapid "knockdown" effect on aphids 
[155,156,157]. Pesticides can hinder the 
transmission of viruses in two primary ways: by 
deterring aphids through the use of substances 
like deltamethrin [158], altering their feeding 
behaviors with chemicals such as thiamethoxam, 
imidacloprid, pymetrozine, and fluticamid 
[159,160,161], and reducing aphid mobility with 
aldicarb [162]. However, the overall impact of 
insecticides on virus epidemiology is limited, as 
aphids typically transmit PVY prior to being 
affected by the insecticides [161]. Research has 
also shown that synthetic pheromones, 
specifically (E)-β-farnesene (EβF), can prevent 
the green peach aphid, Myzus persicae (Sulzer), 
from both acquiring and transmitting PVY [163]. 
Further investigations revealed that PVY 
transmission is more likely when aphids 
encounter EβF, as demonstrated in studies with 
wingless aphids, Myzus persicae and 
Macrosiphum euphorbiae, on tobacco plantlets 
[164]. The application of acibenzolar-S-methyl 
(Bion®), an elicitor that functions analogously to 
salicylic acid (SA), on tomato leaves followed by 
PVY inoculation, has been explored [165]. A field 
trial assessing Bion® for preventing PVY spread 
in potato crops indicated a modest reduction in 
virus transmission by about 14% [151]. 
Employing mechanical barriers, such as barrier 
crops and polyethylene sheeting, presents an 
immediate solution for managing PVY and its 
vectors, offering a supplementary strategy for 
virus control [22]). 
 

10.5 Other Methods 
 

Cryotherapy techniques, including encapsulation-
dehydration, encapsulation-vitrification, and 
droplet methods, have been successfully applied 
to eradicate Potato Virus Y (PVY), achieving 
virus-free plantlet rates between 91 to 95%. In 

terms of biological control, applications involving 
Klebsiella oxytoca and biochar have 
demonstrated a significant reduction in both the 
severity and concentration of PVY. Additionally, 
experimental treatments involving tobacco and 
potato plants in greenhouse conditions resulted 
in notable enhancements in plant growth [166]. 
Moreover, the use of nanomaterials presents a 
promising avenue for managing PVY. 
Specifically, foliar applications of nanoclay have 
shown potential in effectively and sustainably 
controlling plant viral infections, including PVY 
[167]. 
 

11. CHALLENGES AND FUTURE 
PROSPECTS 

 
The shifting patterns of pest and vector 
distribution, exacerbated by climate change, 
present significant obstacles to Potato Virus Y 
(PVY) management. However, this challenge 
also opens opportunities for devising sustainable 
and robust strategies for combating PVY. Future 
research in this area will be crucial for 
maintaining sustainable, resilient, and 
economically viable potato cultivation across all 
potato-growing regions worldwide. A key 
component of future strategies involves the 
adoption and enhancement of integrated pest 
management practices. There is a pressing need 
to focus on developing and implementing 
biological control methods to reduce reliance on 
chemical pesticides and mitigate the risk of 
developing pesticide-resistant insect populations 
[168]. Moreover, the demand for innovative 
technologies that facilitate rapid propagation of 
healthy plants in controlled environments is 
escalating, aiming to produce high-quality seeds 
at affordable costs [10]. Although breeding pest-
resistant potato varieties is recognized as a cost-
effective approach for disease management, it 
requires time. Nonetheless, it remains a 
fundamental defense against viruses and other 
plant diseases [169]. Advances in diploid potato 
breeding and the application of more precise 
molecular markers hold the potential to 
revolutionize these efforts in the future [170]. 
Genetic engineering for resistance to various 
PVY strains offers a promising avenue for long-
term control of PVY, especially as new strains 
emerge that may circumvent resistance 
conferred by traditional R genes [171]. 
Additionally, adopting climate-smart agricultural 
practices, including crop rotation, diversification, 
and agroforestry, will play a vital role in fostering 
resilient agroecosystems that are better 
equipped to withstand PVY outbreaks. 
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12. CONCLUSION 
 
Plant viruses pose a significant threat to global 
food security by causing widespread diseases 
that result in considerable direct and indirect 
reductions in crop yields. Among these, Potato 
Virus Y (PVY) stands as a major challenge in 
achieving high yields and quality in potato and 
other solanaceous crops. The ever-increasing 
global population intensifies the pressure on 
researchers, agronomists, and farmers to 
sustainably balance food and crop production, all 
while maintaining the productivity and quality of 
crops. Climate variables, including temperature, 
CO2 levels, humidity, and rainfall, critically 
influence the epidemiology of PVY, affecting its 
transmission, replication, and spread. To 
effectively manage and reduce the impact of 
PVY, it is essential to have a deep understanding 
of how these climatic factors interact with the 
virus. Therefore, climate-adaptive management 
strategies should be incorporated into an 
integrated pest management framework, taking 
into account the local environmental conditions 
and the specific susceptibilities of potato varieties 
to PVY, to tailor effective control and mitigation 
measures. 
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