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ABSTRACT

This research explores the comparability of various numerical techniques and scientific computing methods
applied to financial engineering. Financial engineering relies heavily on advanced mathematical models and
computational analysis to value complex financial instruments, manage risk, and optimize investment strategies.
This study critically examines the efficiency, accuracy, and computational feasibility of prominent finite difference
methods and Monte Carlo simulations. Additionally, it assesses the integration of these methods with modern
scientific computing frameworks, to enhance performance and scalability. The investigation includes a series
of benchmark tests on common financial problems such as option pricing, portfolio optimization, and risk
management. Our findings reveal that while traditional numerical methods like finite differences offer robustness
and precision, they often lack scalability compared to Monte Carlo simulations which, despite their computational
intensity, benefit significantly from parallelization enhancement. As such, this study gives best practices in
selecting and combining numerical techniques and computing frameworks, aiming to equip financial engineers
with effective tools for tackling modern financial challenges.
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1 INTRODUCTION
Financial services are one of the fastest-growing
sectors in the business world. The rapid transformation
resulted in the creation of modern financial instruments
that are very complex and require new mathematical
models for their implementation and pricing. The
field of corporate finance was initially controlled by
management students, and currently it is increasingly
dominated by mathematicians and computing scholars.
In the 1970s, Merton Robert, Scholes Murray, and
Black Fisher developed the Black Scholes model, a
major breakthrough in pricing of complex financial
instruments. In 1997, the model formulator was given
the Nobel Prize for Economics by Scholes Myron and
Moore Robert, and recognized for the importance of
their work worldwide. The Black-Scholes formulation
emphasizes the crucial role of mathematics in financial
services, opening the way for the development and
development of mathematics, also known as financial
engineering.

Owners of call options have the responsibility to sell
(buy) basic assets pricing exercise, but do not have
the obligation. The European options can be executed
at the expiration only, while American pricing option
may be executed at any time until expiry. The solution
for the European option in closed-form is derived from
the papers [1,2]. In the case of the United States,
early exercise possibility creates complications in the
analysis calculation. The authors [3,4] have shown
that the assessment of American options involves
a problem of free boundaries, and the boundaries
change with maturity and are called optimal training
boundaries. For this reason, financial researchers
have studied methods to determine this limit quickly
and accurately [5,6]. These methods are generally
classified into two categories: analytic approximations
developed by [7-9] and numerical methods proposed by
[10,11]. Wu and Kwok [12] have found an accurate and
explicit solution to the Black-Scholes formulation for
evaluating American placement option via the infinite
Taylor series. Their work is an important step in the
evaluation of the options offered by the United States,
but the implementation of their numerical solutions is
difficult due to potential computational errors.

Michael et al. [13] expanded Wu and Kwok’s work [12]
to pricing American options in general dissemination

processes. Most of the computing schemes employed
in the calculating of American option are based on
the Finite Difference method of Brennan and Schwartz
[14] and the binomial method of Cox et al. Grant
and Glassman’s Monte Carlo simulation method [15],
Tilley’s smallest square method [16,17], Brandimarte’s
integral equation method [18], and Boyle’s Laplace
transformation method. [19], are time-recursive. These
methods discretize the life of an option and calculate
the optimal exercise limit backwards over time. These
methods require fast calculations and minimum price
errors due to repeated calculations at each step of the
time. Furthermore, the front-fixing methods developed
by Wu and Kwok [12] and Han and Wu [20] use
nonlinear transformations to fix boundaries and solve
resulting nonlinear problems. Wilmott et al. Secant
method. The nonlinear problem is treated [21], and
Geske and Johnson’s moving boundary approach [22]
converts the linear differential equation of the partial
differential equation of the free boundary (PDE) to a
sequence of the linear fixed boundary PDE problem.
Until recently, Han and Wu [23] introduced a new
predictor correction system that will price the options
placed by Americans under the Black Castle model.
Wilmott et al. [21] proposes an extension of Han and
Wu’s [23] theory to value American option positions
based on a stochastic volatility model [24-26].

2 NUMERICAL TECHNIQUES FOR
FINANCIAL ENGINEERING

In this study, survey of numerical method based on
finite difference method and Monte Carlo Simulation
(MCS) to overcome the difficulty in the valuation
American option. Especially, the technique minimizes
the necessary applicable approaches of locating
the optimum boundary exercise before introducing
discretization of finite difference. This technique is
flexible, efficient, and accurate for all pay-off cases,
and implementation is easy when other techniques
are comparatively considered. The early outcomes
depict that the scheme have high intrinsic accuracy
to discretization of finite difference; as such, the
techniques are stronger tool for determining American
option. The techniques are finite volume schemes,
spectral methods, Monte Carlo simulation, finite
difference schemes, and many others.
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In finance, a partial differential equation or partial
integro-differential equation (PIDE) can be applied for
pricing option. To approximate the outputs, different
classes of computing techniques are applicable: finite
volume schemes, spectral schemes, finite element
schemes, finite difference schemes.

2.1 Finite Difference Approximation

Φx|i,j '
φ(i+ 1, j)− φ(i− 1, j)

2∆x
,

Φt|i,j '
φ(i, j + 1)− φ(i, j − 1)

2∆t
,

Φxx|i,j '
Φ(i− 1, j) + φ(i+ 1, j)− 2φ(i, j)

(∆x)2
,

Φtt|i,j '
Φ(i, j − 1) + φ(i, j + 1)− 2φ(i, j)

(∆x)2
.

There are different types of finite difference methods;
such as, finite Crank-Nicolson difference technique,
finite implicit difference technique, and finite explicit
difference technique.

The Crank-Nicolson approach is categorized a θ-
scheme particular case, which is taken as an implicit
(θ = 0) and explicit(θ = 1) of average θ-weighted for

finite difference techniques. When θ = 1
2
, the Crank-

Nicolson θ-method is gotten.

When considering boundary conditions and payoff
function for the evaluation of a price option price with
finite difference approach, the Black-Scholes equation
is transformed into system of equations that is solved
by adopting matrix approach. Therefore, the explicit
scheme is changed to:

V1+n = Cn +AVn,

and the implicit scheme is changed to:

AV1+n = Cn + Vn,

while the Crank-Nicolson technique is changed to:

AV1+n = Cn +BVn.

The explicit scheme is directly solved using a matrix
A, meanwhile the Crank-Nicolson and implicit schemes
are indirectly solved with matrix inversion A.

2.2 Implicit Method
Next, considering implicit scheme for solving PDE. employing implicit technique, a backward difference model is
applied to approximate Vt, the equivalent model gives:

0 = rS
V (S + δS, t)− V (S − δS, t)

2δS
+
V (S, t)− V (S, t− δt)

δt

+
1

2
σ2S2 V (S − δS, t) + V (S + δS, t)− 2V (S, t)

(δS)2
− rV (S, t) (1)

P (S, t) can be approximated by V (Sn, Tm) ≡ V mn . As such we have have:

V m−1
n = anV

m
n−1 + bnV

m
n + cnV

m
n+1, for m = 1,...,M, and n = 1,...,N-1 (2)

where

an =
1

2
rnδt− 1

2
σ2n2δt

bn = 1 + σ2n2δt+ rδt

cn = −1

2
rnδt− 1

2
σ2n2δt
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An initial condition is obtained (since backward difference model is used, the final condition gives initial condition),
and the boundary conditions are equivalent to explicit scheme.

2.3 Monte Carlo Computation
Computation is an approach for generating random numbers inline with the assumed probabilities associating with
an uncertainty source, such as interest rates, purpose approximations, price stocks, product sales, commodity
prices or exchange rates. Outputs related to random drawings are determined to evaluate the possible outcomes
and the related risk. The major steps for Monte Carlo computation techniques are as follows.

• The needed time horizon of the neutral risk constraint for asset underlying path is computed.

• The payoff discount is corresponding to the interest free-risk rate path.

• Sample simulation path for the high number procedures are repeated.

• The cash flow discount average over the options value sample is calculated.

A Monte Carlo computation algorithm is adopted for the stock price random sampling results is given according [6]
to

dS = µSdt+ σSdW (t) (3)

where stock price is S and Wiener process is dWt. Assume δS is the stock price increase for small next time
interval δt therefore

δS

S
= µδt+ σZ

√
δt (4)

where neutral-risk expected return is µ, stock price volatility is σ, and Z ∼ N(0, 1) are confirmed to

S(t+ δt)− S(t) = µS(t)δt+ ZσS(t)
√
δt (5)

then with the initial value S and in time t + δt, the value S is calculated, and from t + δt value, in time t + 2δt,
the value of S is computed, and so on. With random sample of N in normal distribution, the trial complete path
is simulated for S. It is preferable to compute lnS than S, by transforming the price asset process through Ito’s
lemma

d(lnS) =

(
µ− σ2

2

)
dt+ σdW (t)

such that

lnS(t+ δt)− lnS(t) =

(
µ− σ2

2

)
δt+ σZ

√
δt

or

S(t+ δt) = S(t) exp

[(
µ− σ2

2

)
δt+ σZ

√
δt

]
(6)

The Monte Carlo computation is relevant for a depending financial payoff derivative on the path and life asset
underlying option for a dependent path option. Considering a maturity stock price for an Asian option process at
time T taken as

SjT = S exp

[(
µ− σ2

2

)
T + σZ

√
T

]
(7)
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where M and j = 1, 2, ...,M and M describes word difference states or trial numbers. The computation of M
gives the possible stock price path at T maturity date. The estimated call value Asian option is

C =
1

M

M∑
j=1

max[SjT − St, 0]e−rT (8)

This is a price derivative unbiased estimate. For high trial numbers M , the limit central theorem gives an estimated
interval confidence based on the payoff discount sample variance. Given payoff discount mean as µ̄ and standard
deviation as ω, therefore, the estimated standard error is ω√

M
. A 0.95% interval price derivative confidence f is

taken as

µ̄− 1.96ω√
M

< f < µ̄+
1.96ω√
M

(9)

with normally distributed f assumption

3 SCIENTIFIC COMPUTING FOR ASIAN OPTIONS

Asian or Average options are options whose payoff depends on the average price of the asset underlying for life
part option. If trading day option is given as N , option maturing date is T , and S(tj) the end price security’s day
is j, where tN = T and j = 1, 2, ..., N,. The asset price average underlying is computed via two schemes, namely
the average geometric and arithmetic.

• Average Arithmetic: Let the average arithmetic value be SA(t) for asset underlying evaluation over the life
option. The average arithmetic is determined by

SA(t) =
S(t1) + S(t2) + ...+ S(tN )

N

=
1

N

N∑
i=1

S(ti) (10)

• Average Geometric: Let the average geometric value be SG(t) for asset underlying calculation over the
life option. Therefore, the average geometric is defined as [7]

SG(t) =

[
N∏
i=1

S(ti)

]1/N

= [S(t1)S(t2) · · ·S(tN )]1/N (11)

The Asian standard option types gotten from the average geometric or arithmetic of asset underlying are:

(i) Price Average Option

• A payoff call price average is max(S̄(t)−K, 0).

• A payoff put price average is max(K − S̄(t), 0).

(ii) Price Strike Average Option

• A payoff call strike average is max(ST − S̄(t), 0).

• An payoff put strike average is max(S̄(t)− ST , 0).
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where average arithmetic or average geometric in (10) or (11) is S̄(t).

The investor needs determine the Asian option types that will the adopted. The price call strike standard average
for Asian payoff option is

fc(S, T ) = max

[
S(T )− 1

T

∫ T

0

S(τ)dτ, 0

]
, (12)

where its price asset value relies on the history, not on its final value. The put Asian is described as

fp(S, T ) = max

[
1

T

∫ T

0

S(τ)dτ − S(T ), 0

]
(13)

The frequency is major basic concerns for observing the price over the average period. For Monte Carlo price of
equation (12), a N positive integer is time subdivide in the range [0, T] into N equal ∆t = T/N and subranges,
this compute the asset price

S[(k + 1)∆t] = exp

[
∆t(r − σ2

2
) + σ

√
Zk∆t

]
S(k∆t) (14)

where k = 0, 1, ..., N − 1 and Zk ∼ N(0, 1). Set S(k∆t) = Sk: As such, (16) indicates

In

[
S1+k

Sk

]
= Xk =

[
(r − σ2

2
)∆t+ σZk

√
∆t

]
µ∆t+ σZk

√
∆t (15)

where Xk ∼ N(∆tµ, σ2∆t) and GBM neutral-risk drift term is µ = (r − σ2/2). Then

ln

[
S1+k

Sk

]
= Xk

therefore it gives

S1+k = Ske
Xk

= Sk−1e
Xk−1eXk

= S0e
X0+...+Xk (16)

Equation (16) denotes the explicit equation, while Sk defines recurrence relation as given (14). The integral
average time approximated using trapezium scheme

∫ T

0

S(τ)dτ ≈ 1

N

[
1

2
S(0) +

1

2
S(T ) +

N−1∑
k=1

S(k∆t)

]
(17)

and S̄t is the approximated discrete. The call Asian option discretely guided as the path value estimate ith gives

ci = max[ST − S̄t, 0]e−Tr. (18)

A repetition is done for for j = 1, 2, ...,M and the estimated option final value is

C =
1

M

M∑
j=1

cj (19)
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4 SCIENTIFIC COMPUTING FOR AMERICAN OPTION

A call American option do not give obligation but right to its holder the right, to buy any time a particular asset for
a given price from the beginning date to a given future expiration date. At any time, the strength for the option
exercise to be extended is of to the owner rights; thus, the American option has larger values potential.

Given S lies between max(E − S, 0) > P (S, t), the the demand of the arbitragers pushes the value option in a
short time. Hence, early exercise is allowed under the imposed constraint

max(S − E, 0) ≤ V (S, t)

The European and American options have diverse values.

4.1 The Option Price of the American Put
Once S̄f (p) is found, D1, D2 and D4 can be determined easily and expressed in the form of Laplace term p as

D1= γ
p(p+γ)

· q2
(q2−q1)

· 1
(pS̄f )q1

= − γ
p(p+γ)

· b−
√
p+a2

2
√
p+a2

·
[
1− p+γ

γ(b−
√
p+a2)

]
.

(20)

D2= γ
p(p+γ)

· q1
(q1−q2)

· 1
(pS̄f )q2

= γ
p(p+γ)

· b+
√
p+a2

2
√
p+a2

·
[
1− p+γ

γ(b−
√
p+a2)

] q2
q1

.
(21)

D4=D1 +D2 − γ
(γ+p)p

,

= γ
(γ+p)p

·
{
− b−
√
a2+p

2
√
a2+p

·
[
1− p+γ

γ(b−
√
p+a2)

]
+

√
a2+p+b

2
√
p+a2

·
[
1− p+γ

γ(b−
√
p+a2)

] q2
q1

− 1

}
.

(22)

As such, U(S, τ) is expressed as

U(S, τ) =
1

2πi

∫ µ+∞i

µ−∞i

γepτ

p(p+ γ)
F1(p)dp, (23)

for Sf (τ) ≤ S ≤ 1 and,

U(S, τ) =
1

2πi

∫ µ+∞i

µ−∞i

γepτ

p(p+ γ)
F2(p)dp, (24)

for S > 1

In Eq. (23) and Eq. (24), F1(p) and F2(p) are obtained and can be written as

F1(p)= 1
2

(
1− b√

a2+p

)
· Sq1 ·

[
1− p+γ

γ(b−
√
a2+p)

]
- 1
2

(
b√
p+a2

− 1

)
·
[
1− p+γ

γ(
√
p+a2)+b

] q2
q1

· Sq2 − 1.

(25)

F2(p) =

{
1
2

(
1− b√

a2+p

)
·
[
1− p+γ

γ(b−
√
a2+p)

]
− 1

2

(
b√
a2+p

− 1

)
·
[
1− p+γ

γ(b+
√
a2+p)

] q2
q1

− 1

}
· Sq2 ,

(26)
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4.2 Numerical Finite Difference Based Front Tracking Method for American
Option

If v = v(x, t) is defined in a reference fixed frame for time t and co-ordinate x. The space derivatives is only
involved in the differential operator L1.

Instead of Eulerian (fixed) frame, a Lagrangian point of view of x is considered for a motion axis x(t). If a mapping
invertible is defined for the fixed axes a and the motion axes x at time t.

x = x̂(a, t) (27)

We have

v(x, t) = v̂(a, t) = v(x̂(a, t), t) (28)

where Eulerian are x̂ and v̂. Applying the function of function rule to (28) gives

∂v̂

∂t
=
∂v

∂x̂
· ∂x̂
∂t

+
∂v

∂t
(29)

Meanwhile, vτ = vxx + g. Thus, gives

∂v̂

∂t
= g(x, τ) +

∂v

∂x
· ∂x̂
∂t

+
∂2v

∂x2
(30)

It is the time-dependent model, the call price American option solution is obtained.

Discretizing the model using finite difference schemes. Let N number divides the S space subintervals.

Si = iδS, i = 0, ..., N (31)

δS =
B(τ)− x−

N
(32)

L denotes the number dividing the time interval such that

τj = jδτ, j = 0, ..., L

δτ =
1

2
σ2T/L

∂V

∂τ
≈ V j+1

i − V ji
δτ

(33)

The second spatial derivative, ∂
2V
∂S2 is approximated by

∂2V

∂S2
≈
V ji−1 − 2V ji + V ji+1

(δS)2
(34)

Approximating the ’velocity nodal’, Ṡ as

∂S

∂τ
≈ Sj+1

i − Sji
δτ

(35)

We first discretised the PDE (30)

V j+1
i − V ji
δτ

= θ1

(
V j+1
i+1 − 2V ji + V j+1

i−1

δS2

)
+ θ2

(
V ji+1 − 2V ji + V ji−1

δS2

)
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+

[(
V ji − V

j
i−1

δS

Sj+1
i − Sji
δτ

)]
+ θ3G

j+1
i + θ4G

j
i (36)

For 1 ≤ n ≤ N − 1 and 1 ≤ j ≤ J − 1. The term θi governs the implicit procedure.
For consistency,

θ1 + θ2 = θ3 + θ4 (37)

Increasing time expanded the domain B(τ). The appropriating the grid to determine the free boundary position
then equally divide domain into linear equal grid space nodes. Given the free boundary position as xj+1

N , xf (t),
the grid nodes at time-step j + 1 are denoted by xj+1

i = x− + i
N

(xj+1
N − x−) where i = 1, 2, ..., N .

Differentiating gives

ẋi =
i

N
(ẋN ) (38)

The nodal point velocity is determined, θ-weighted discretized finite difference.

When θ= 0 gives explicit discretization, for θ = 1
2

denotes Crank-Nicolson technique, and implicit method wehn θ
= 1. Thus, θ = 1

2
dissertation is done.

V j+1
i − V ji = αi[θ1(V j+1

i+1 − 2V j+1
i + V j+1

i−1 ) + θ2(V ji+1 − 2V ji + V ji−1)]

+βi[θ3G
j+1
i + θ4G

j
i ] + γi[(V

j
i − V

j
i−1)(Xj

N+1 −X
j
N )]

Where
αi =

δτ

(δS)2
> 0, γi =

i

NδS
βi = 2k > 0

Rearranging (39) resulted into

ciV
j+1
i−1 + aiV

j+1
i + biV

j+1
i+1 + fi(V

j
i − V

j
i−1)Xj

N+1

= ćiV
j
i−1 + áiV

j
i + b́iV

j
i+1 + f́i(V

j
i − V

j
i−1)Xj

N + eiG
j+1
i + éiG

j
i

where

ci = −αiθ1 ći = θ2αi

ai = 1 + 2αiθ1 ái = 1− 2αiθ2

bi = −αiθ1 b́i = αiθ2 (39)

ei = 2θ1βi éi = 2θ2βi

fi = γiθ1 f́i = γiθ2

The problem reduces to system of equations

TV j+1 + ~βX1+j
N = ~d+BV j (40)

To evaluate free boundary location at time-step, more information is required. The condition ∂C(B(τ),τ)
∂x

= 0 result
in vN−1 = vN , to have

~βxN + T~vj+1 = B~vj + ~d (41)

~vhT = 0

Where T,B, d and β components are considered
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T =



2 + 2r −r 0 . . . 0
−r 2r + 2 −r

0 −r
. . .

. . . 0
...

. . .
. . . −r

0 . . . 0 −r 2r + 2

 (42)

T =



2− 2r r 0 · · · 0
r 2− 2r r

0 r
. . .

. . . 0
...

. . .
. . . r

0 · · · 0 r 2− 2r

 (43)

di =
1

2

(
g(ih, j∆τ + x−) + (g(ih,∆τ(1 + j) + x−)

)
−

(
vji − v

j
i−1

xi − xi−1

)(
i

N

)
xjN

βi = − i

N

(
vji − v

j
i−1

xi − xi−1

)
(44)

hT = 0 0 · · · · · · − 1 1 (45)

The notation is simplified the quantity Bvj absorbed into the vector d. In explicitly matrix gives



2− 2r −r 0 · · · 0 −β1

−r 2− 2r −r · · · −β2

0 −r
. . .

. . . 0
...

...
. . .

. . . −r
...

0 · · · 0 −r 2− 2r −βN−1

0 0 · · · 1 −1 0





vj1
vj2
...
...

vjN−1

vj+1
N

0


=



d́1

d́2

...

...
d́N−1

0
0


(46)

Symbolically given as (
T ~β
~hT 0

)(
~v

xj+1
N

)
=

(
~́
d
0

)
(47)

Re-arranging equation (43) to solve determine xN

~βxN + T~v = ~d

~hT~v = 0

⇒ ~v = T−1
(
~́
d−N − ~βx

)
⇒ ~hT

(
T−1 ~́d− T−1~βxN

)
= 0

⇒ xN =
T−1 ˜´ hTd

T−1β̃hT

A free boundary location method xf (τ) is developed for time step successive procedure. On calculating xj+1
N , the

moving nodes velocity is determined for the equation

ẋi =
i

N
˙xN (48)
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On substitution gives

T~v =
~́
d− ~βxj+1

N (49)

The equation solution is achieved by a tridiagonal form, for

~v = T−1(
~́
d− ~βxj+1

N ) (50)

5 COMPARISON OF SCIENTIFIC COMPUTATIONS

Scientific simulating is the numerical analysis heart, this remain the major contention of this work. The study
emphasis is on the modern and classical elements of computer scientists and computational mathematics, and
based comparability analysis, the study is chosen for the scientific computing and numerical schemes for engineering
finance. For algorithms comparison, an approximated standard numerical study us done with related call option
examples.

5.1 Example 1:

The Table 1 illustrate the different results obtained from using finite difference and the Monte Carlo methods to call
vanilla price computing with r = 0.1, T = 1, N = 10 and σ = 0.2 in relation to the obtained analytical outputsof
Black-Scholes equations. The finite difference methods is built on time-steps of 50, and the Monte Carlo computing
employes 20, 000 cases.

Table 1. Numerical of MCM and FDM comparison with the black-scholes analytical

S0 Analytic Explicit Implicit Monte
Value 8 0.279 0.279 0.286 0.280

10 1.327 1.324 1.327 1.344
12 3.026 3.025 3.031 3.042

Error 8 0.279 0 0.007 0.001
10 1.327 0.001 00 0.007
12 3.026 0.001 0.005 0.016

Time (secs.) 0.0431 0.0573 1.4886

These results in Table 1 shows that the binomial technique is accurate and effective. However, the explicit finite
difference scheme is highly accurate with fast computing time; thus, make it a strong scheme. Here, despite its
method of explicit merits over the method of implicit, the explicit scheme step sizes must be chosen carefully to
prevent instability.

Example 2:

Examine the two schemes performance on the true put European Black-Scholes price with

r = 0.05,K = 50, σ = 0.25, T = 3.

The Table 2 illustrates option price variation with the asset price underlying, S. The outcomes depict that the
schemes are mutually consistent, effective, and satisfies Black-Scholes outputs. Meanwhile, such numerical
schemes may not be needed in the existence of explicit formula.
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Table 2. A put European black-scholes price comparison

S Black-Scholes Monte-Carlo Implicit Euler
10 33.0363 33.0345 33.0369
20 23.2276 23.2291 23.2300
30 14.7739 14.7748 14.7749
40 8.7338 8.7374 8.7348
50 4.9564 4.9559 4.9563
60 2.7621 2.7602 2.7612
70 1.5328 1.5324 1.5325
80 0.8538 0.8543 0.8537
90 0.4797 0.4790 0.4794

Example 3:
Considering different numerical techniques effectiveness on the true put European Black-Scholes price with

r = 0.05,K = 50, σ = 0.25, T = 3

The outcomes obtained are given in the Table 3.

Table 3. A put European black-scholes price comparison

S Black-Scholes Finte Diff. Method Monte Carlo Method
45 6.6021 6.6019 6.6014
50 4.9564 4.9563 4.9559
55 3.7046 3.7042 3.7076
60 2.7621 2.7613 2.7602
65 2.0574 2.0572 2.0581
70 1.5328 1.5326 1.5324
75 1.1430 1.1427 1.1407
80 0.8538 0.8537 0.8543
85 0.6392 0.6391 0.6405
90 0.4797 0.4795 0.4790

Table 3 narrates the option price variation with
the asset price underlying, S. The outputs
display the mutually consistent, efficient of the three
computational techniques, and aligns with the Black-
Scholes outcomes. Thus, finite difference method
converges faster, accurate than the Monte Carlo
technique.

6 CONCLUSION

Diverse computation schemes are used for derivatives
valuing in the absence of close-form solution is
available. These involve using finite difference
technique and Monte Carlo computing. The Monte
Carlo computation performs on derivative life forward

from start to end. It uses derivative European-style
with a complexity deal with payoff. The major findings
includes:

• Finite difference method proved to be particularly
effective in solving partial differential equations
that are fundamental in pricing derivative
securities.

• Monte Carlo methods excel in handling high-
dimensional integrals and are highly flexible,
making them suitable for a wide range of financial
applications, including risk management, option
pricing, and portfolio optimization.

• Finite difference methods are particularly
accurate for PDE-based problems, while Monte
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Carlo simulations provide robust solutions for
complex, multi-dimensional scenarios.

• Monte Carlo simulations show superior
scalability for high-dimensional problems,
whereas finite difference methods struggle with
increased dimensions.

No single numerical method stands out as universally
superior. Instead, the optimal choice depends on
the specific financial application and computational
constraints. Future research should focus on
developing hybrid methods that combine the strengths
of different techniques, as well as exploring
advancements in computational power and algorithms
to further enhance the efficiency and applicability of
these numerical methods in financial engineering.
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