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ABSTRACT 
 

Ascorbic acid (AsA), generally known as vitamin C, is essential for horticulture crops to grow, 
develop, and maintain themselves after harvest. It is essential for plant health, fruit quality, and 
human nutrition because of its role in enzymatic processes, hormone production, and antioxidant 
activity. Important plant hormones, including auxins and gibberellins, which control the growth and 
development of fruit, are involved in its production. The maintenance of optimal AsA levels in 
horticultural crops can help ensure their nutritional value and quality for consumers. This is done by 
utilizing suitable postharvest practices and by understanding the variables like temperature, light 
exposure, and oxygen that influence AsA content. To fully comprehend the function of ascorbic 
acid in horticulture crops throughout plant growth, fruit development and ripening, and postharvest 
physiology, more study is required. This information may be used to increase the ascorbic acid 
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content of crops and improve their nutritional value. Key intermediates in the AsA biosynthesis 
pathway have been shown in a simplified schematic diagram. The control of plant AsA production 
and subsequent responses to horticulture crops throughout plant growth, fruit development and 
ripening, and postharvest physiology may now be better understood through future study. 
 

 
Keywords: Ascorbic acid; biosynthesis; development; fruit; hormone; postharvest. 
 

1. INTRODUCTION  
 

The essential ingredient ascorbic acid (AsA), 
often known as vitamin C, plays a key role 
throughout the whole life cycle of horticultural 
crops [1]. AsA is essential for the development of 
plants, the ripening of fruits, and the physiology 
following harvest [2]. This crucial ingredient 
contributes to several physiological functions, 
antioxidant defense systems, and the general 
excellence of horticultural output [3]. AsA has 
various important roles in plant development, and 
takes part in photosynthesis, assisting in the 
production of chlorophyll and sugars [4,5]. It also 
functions as a cofactor for enzymes involved in 
biosynthetic pathways, including those that 
produce hormones, secondary metabolites, and 
parts of cell walls [6]. Ascorbic acid also helps 
plants tolerate stress, enabling them to resist 
challenging climatic circumstances, including 
high temperatures, drought, and disease attacks 
[7,8]. 
 

AsA is a vital element in determining fruit quality 
when it comes to the development and ripening 
of fruits [9]. It affects many activities, including 
fruit growth, color development, scent 
generation, and flavor [10]. Fruits acquire their 
brilliant hues due to ascorbic acid's role as a 
coenzyme for enzymes involved in pigment 
production. Additionally, AsA plays a role in the 
control of the hormone ethylene production, 
which ripens fruit [11]. The taste profile of 
horticultural crops is improved by ascorbic acid's 
role in the buildup of sugars, organic acids, and 
volatile chemicals [12]. 
 

Another stage of physiology where AsA is 
important is postharvest physiology. Horticultural 
crops go through physiological changes after 
harvest that may affect their shelf life and general 
quality [13]. Fruits and vegetables are shielded 
from oxidative stress by ascorbic acid, which also 
delays the aging process [9,14]. It aids in 
maintaining harvested produce's firmness, color, 
and nutritional value. In addition, AsA increases 
the activity of antioxidant enzymes, reducing 
oxidative damage-related postharvest losses 
[15,16]. Exogenously given AsA is best used to 

protect proteins and lipids from stress-induced 
oxidative damage [17-19]. AsA can boost a 
plant's resistance to abiotic stresses by speeding 
up transpiration, photosynthetic pigments, 
oxidative defense capacity, and photosynthesis 
rate. Exogenous applications of AsA (50 and 100 
mg L-1) enhanced the chlorophyll "a" 
concentrations of wheat seedlings during salt 
stress [20]. Similar to this, okra plants under 
drought stress exhibited reduced lipid 
peroxidation and ion leakage, as well as 
enhanced proline content and plant growth [21]. 

 
Uncertainty surrounds the precise mechanism 
and regulation of AsA production in horticultural 
crops, despite its critical role in the growth and 
development of plants. The AsA biosynthesis 
pathway's important enzymes and genes must 
be identified, as well as the elements that control 
how much ascorbic acid is produced in various 
plant tissues and various environmental settings. 
Numerous elements, including light intensity, 
temperature, water stress, and nutrient 
availability, can affect the amounts of AsA in 
horticultural crops. Furthermore, it is not well 
known how exactly these variables impact AsA 
content. Fruits can have varying amounts of AsA 
during different phases of their growth and 
ripening, and this can impact fruit quality and 
nutritional value. There is, however, little 
understanding of the variables that affect the AsA 
concentration during these phases as well as the 
mechanisms behind the transit and storage of 
AsA in various fruit tissues. Therefore, this 
current review focuses on the biosynthetic 
pathway of AsA in horticultural crops, the 
identification and role of key enzymes and genes 
in AsA biosynthesis in horticultural crops, and the 
regulatory factors and signaling pathways that 
control its production during different stages of 
plant growth, among others. 

 
2. BIOSYNTHETIC PATHWAY OF 

ASCORBIC ACID IN HORTICULTURAL 
CROPS 

 
The AsA biosynthetic pathway in horticultural 
crops, such as fruits and vegetables, is 
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comparable to that in other plants and creatures. 
Through a series of enzymatic processes, these 
plants may produce ascorbic acid [22]. The 
conversion of different intermediates from the 
metabolism of glucose is a part of the pathway. 
The process by which glucose is transformed 
into D-glucose is the initial step in the production 
of ascorbic acid in horticultural crops. The 
enzyme glucose oxidase, sometimes referred to 
as D-glucose: oxygen 1-oxidoreductase, is 
responsible for catalyzing this reaction. D-
galacton-1,4-lactone is created when glucose is 
oxidized by glucose oxidase [23,24]. 
 
The galactose oxidase enzyme then transforms 
D-galacton-1,4-lactone into L-galactose 
(Siddique, 2014). Conversion of D-galactose-1,4-
lactone to L-galactose is catalyzed by this 
enzyme, also known as L-gulono-1,4-lactone 
oxidase [25,26]. L-galactose must then be 
changed into L-galactono-1,4-lactone in the next 
stage [27]. Galactose oxidase is also responsible 
for catalyzing this process, and an essential step 
in the production of ascorbic acid is L-galactono-
1,4-lactone [27]. It is possible to further transform 
L-galacton-1,4-lactone into ascorbic acid (L-
ascorbic acid) by a spontaneous reaction that 
does not call for any particular enzymes. It 
should be noted that environmental elements like 
temperature and pH might affect how easily L-
gulono-1,4-lactone is converted to AsA [3]. 
 
The enzymatic processes that take place in the 
biosynthetic pathway are influenced by a number 
of variables, such as gene expression, substrate 

availability, and environmental circumstances 
[12]. Ascorbic acid production and accumulation 
in horticultural crops can be influenced by 
elements including light, temperature, nutrient 
availability, and stress. The AsA concentration of 
these crops can also be impacted by cultivation 
techniques, such as effective fertilization and 
irrigation [28]. 
 
It is significant to remember that the ability of 
various horticultural crops to produce ascorbic 
acid may vary. Oranges, lemons, strawberries, 
kiwis, and bell peppers are a few examples of 
crops with high AsA concentrations; other crops 
may have relatively lower amounts. Breeders 
and horticulturists frequently concentrate on 
creating cultivars with increased ascorbic acid 
content using methods from selective breeding or 
genetic engineering. 
 
The enzymatic machinery required to generate 
ascorbic acid through a sequence of biochemical 
processes is present in horticultural crops, which 
means that this is true. In the biosynthetic 
process, glucose is converted to D-glucose, 
which is then converted to L-galactose and finally 
to L-gulono-1,4-lactone. Finally, L-gulono-1,4-
lactone transforms into L-ascorbic acid on its 
own [29]. The AsA concentration of horticultural 
crops can be influenced by environmental 
conditions and growth techniques. 
 
For ease of use, significant precursor chemicals 
and crucial routes have been clarified using a 
schematic diagram (Fig. 1). 

 

 
 

Fig. 1. Diagram showing various pathways and important precursor molecules involved in the 
biosynthesis of AsA in plants.  The interconnectivity of these pathways reflects the intricacy 

involved in the production of ascorbic acid. Precursors are converted by enzymes into 
intermediate molecules, which are then converted into ascorbic acid. The way these pathways 

interact demonstrates how versatile and flexible plant metabolism is when it comes to 
generating ascorbic acid 
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3. IDENTIFICATION AND ROLE OF KEY 
ENZYMES AND GENES IN ASA 
BIOSYNTHESIS IN HORTICULTURAL 
CROPS 

 
The biosynthesis of AsA in horticultural crops 
involves several key enzymes and genes [30]. 
Some of the major enzymes and genes 
associated with ascorbic acid biosynthesis in 
plants are discussed below: 
 
Glucose oxidase (GOX) enzyme: This enzyme 
catalyzes the conversion of glucose to D-
glucose, which is the initial step in the 
biosynthesis pathway of AsA. The gene encoding 
this enzyme is referred to as GOX [31]. 
 
Gluconolactone oxidase (GLO) enzyme: GLO 
is responsible for converting D-glucono-1,5-
lactone to D-glucuronolactone and subsequently 
L-gulono-1,4-lactone, which is a key intermediate 
in AsA biosynthesis. The gene encoding this 
enzyme is known as GLO [31]. 
 
L-galactose-1-phosphate phosphatase (GPP) 
enzyme: GPP plays a role in the synthesis of L-
galactose-1-phosphate, an intermediate in the 
AsA biosynthesis pathway. The gene encoding 
this enzyme is called GPP [12]. 
 
GDP-mannose pyrophosphorylase (GMP) 
enzyme: GMP is involved in the production of 
GDP-mannose, which serves as a precursor for 
the biosynthesis of L-galactose, another 
intermediate in AsA synthesis. The gene 
encoding this enzyme is referred to as GMP [32]. 
 
L-galactose dehydrogenase (GalDH) enzyme: 
GalDH converts L-galactose to L-galactono-1,4-
lactone, which is an important intermediate in the 
final steps of AsA biosynthesis. The gene 
responsible for encoding GalDH is GalDH [33]. 
 
L-galactono-1,4-lactone dehydrogenase 
(GalLDH) enzyme: GalLDH plays a crucial role 
in the conversion of L-galactono-1,4-lactone to 
AsA (L-ascorbic acid). The gene encoding this 
enzyme is referred to as GalLDH [34]. 
 
These enzymes' transcriptional activity is 
controlled by a variety of transcription factors and 
signaling pathways. For instance, it is known that 
the ascorbate peroxidase (APX) enzyme and 
several other elements, including light, 
temperature, stress, and hormone signaling, 
control the ascorbic acid pathway [35]. In order to 
increase the ascorbic acid content of horticultural 

crops through breeding programs or genetic 
engineering approaches, breeders and 
researchers frequently concentrate on 
discovering and altering these important 
enzymes and genes. Understanding the control 
and operation of these enzymes and genes can 
help scientists create crop types with higher AsA 
levels, which would increase the nutritional 
quality and health advantages of those crops. 
 

4. REGULATORY FACTORS AND 
SIGNALING PATHWAYS THAT 
CONTROL ASA PRODUCTION DURING 
DIFFERENT STAGES OF PLANT 
GROWTH 

 
The complex synthesis of AsA involves many 
enzymatic steps and is tightly controlled by a 
variety of factors, including metabolic feedback 
mechanisms, environmental cues, and hormone 
signaling. The control of AsA synthesis in plants 
remains poorly understood, despite notable 
advances in recent times [36]. 
 
A key regulatory element in the AsA synthesis 
process is the enzyme GDP-D-mannose 
pyrophosphorylase (GMP), which converts GDP-
D-mannose into L-galactose-1-P, the first 
committed step in ascorbic acid biosynthesis 
[37,38]. The activity of GMP is influenced by 
some factors, including light, temperature, and 
hormones including cytokinins and abscisic acid 
(ABA) [39]. 
 
Light is an essential environmental cue that 
regulates ascorbic acid synthesis. Studies show 
that light exposure promotes GMP activity, which 
in turn boosts AsA production in plants [40,41]. 
Although the precise mechanism by which light 
regulates GMP activity is unknown, it is believed 
to involve photoreceptors like phytochromes and 
cryptochromes. 
 
Ascorbic acid production has been shown to 
increase at low temperatures by boosting GMP 
activity and AsA biosynthesis gene expression 
[42]. Although the precise process by which 
temperature regulates ascorbic acid synthesis is 
unclear, it is thought to include alterations in 
membrane fluidity and lipid composition. 
 

Hormonal signaling pathways control the 
ascorbic acid cycle [43]. For instance, it has been 
proven that ABA boosts GMP activity in several 
plant species and induces the expression of 
genes involved in ascorbic acid synthesis [44]. 
Cytokinins have also been shown to regulate the 
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production of AsA in plants, albeit the exact 
nature of this regulation is unknown. 
 
In addition to these additional characteristics, the 
synthesis of ascorbic acid may also be regulated 
by metabolic feedback processes. For example, 
ascorbic acid may inhibit the activity of GMP and 
other enzymes required for its synthesis, 
reducing the quantity that may be created [45]. 
Similar to this, changes in the levels of other 
metabolites may also affect the production of 
ascorbic acid. The expression of certain genes 
controls the genetic regulation of AsA production. 
Specific genes are responsible for encoding 
important biosynthetic enzymes including GDP-
L-galactose phosphorylase (GGP), L-galactose-
1-phosphate phosphatase (GPP), and L-
galactono-1,4-lactone dehydrogenase (GLDH) 
[32,33,46].  
 

5. THE ROLE OF AsA IN PLANT 
GROWTH AND DEVELOPMENT  

 
Most of the time, horticultural crops such as 
oranges, grapefruits, pineapple, papaya, 
tomatoes, etc., do not really "need" AsA, 
sometimes referred to as vitamin C, for growth 
and development. That being said, vitamin C is 
involved in several physiological functions in 
plants, such as antioxidant defense and oxidative 
stress resistance [47]. Plants produce it as part 
of their metabolic activities. The following are 
some critical facets of ascorbic acid's function in 
plants: 
 

5.1 Photosynthesis 
 
AsA is necessary for efficient photosynthesis, 
which is how plants convert light energy into 
chemical energy. AsA serves as an electron 
donor, preventing oxidative damage to the 
photosynthetic machinery. To maintain optimal 
photosynthetic activity, AsA also takes part in the 
regeneration of other antioxidants, such as 
glutathione [48]. 
 

5.2 Antioxidant Defense 
 
Strong antioxidant AsA helps plants defend 
against oxidative stress caused by reactive 
oxygen species (ROS). High light intensity, 
dehydration, and pathogen infections are just a 
few of the stressful situations in which ROS can 
build up [49]. Ascorbic acid neutralizes ROS, 
limiting cellular deterioration and preserving plant 
health. 
 

5.3 Enzymatic Reactions 
 
A number of enzymes require AsA as a cofactor, 
including catalase (CAT), peroxidase (POD), and 
superoxide dismutase (SOD) [50]. AsA plays a 
role in the manufacture of vital substances such 
as lignin, collagen, and hormones. As an enzyme 
cofactor, AsA speeds up crucial biochemical 
processes necessary for plant growth and 
development. 
 

5.4 Growth Regulation 
 
The effects of AsA on cell division,                    
extension, and differentiation affect plant 
development in general. It participates in the 
creation and alteration of cell walls, promoting 
cell growth and tissue formation. Ascorbic                
acid also plays a role in hormone signaling 
pathways, including auxin and gibberellin 
metabolism, which regulate plant growth 
processes [30]. 
 

5.5 Stress Tolerance 
 
According to Godoy et al. [51], AsA                     
improves plant resistance to a variety of abiotic 
stressors, including high temperatures, drought, 
salt, and heavy metal toxicity. By controlling 
antioxidant defense mechanisms, preserving 
cellular homeostasis, and influencing the 
expression of genes that respond to stress, it 
lessens the harmful consequences of stress  
[52]. 
 

5.6 Flowering and Reproduction 
 
In horticultural crops, AsA affects flower growth 
and flowering time [53]. Gibberellins and 
ethylene, two phytohormones important in 
controlling flowering, are affected in their 
production and metabolism. Additionally, AsA 
affects pollen tube development and germination, 
which in turn affects fruit set and effective 
fertilization. 
 
AsA is a vital chemical for the expansion and 
maturation of horticultural crops. Its diverse 
significance in plant physiology is highlighted by 
its involvement in photosynthesis, antioxidant 
defense, enzymatic reactions, growth control, 
stress tolerance, and reproduction. 
Understanding and maximizing ascorbic acid 
availability in horticulture crops can enhance 
plant health, production, and crop quality in 
general. 
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6. IMPACT OF AsA ON FRUIT 
DEVELOPMENT AND RIPENING  

 

AsA plays a significant role in fruit development 
and ripening in horticultural crops. It affects 
several physiological and biochemical processes 
that are involved in fruit quality and ripening 
traits. Below are the effects of AsA on the growth 
and ripening of fruit: 
 

6.1 Antioxidant Activity 
 

Fruits are shielded by AsA, a powerful 
antioxidant, from the oxidative harm produced by 
reactive oxygen species (ROS) [54]. Due to the 
formation of ROS, oxidative stress increases 
throughout fruit growth and ripening. AsA aids in 
scavenging these ROS, lowering oxidative 
stress, and preserving fruit quality and shelf life 
[54]. 
 

6.2 Cell Wall Metabolism 
 

AsA has an impact on how cell wall constituents 
are metabolized during fruit development and 
ripening [55]. It encourages the production of 
cellulose, hemicellulose, and other cell wall 
building blocks like pectin. Fruit firmness, texture, 
and post-harvest quality are influenced by this 
since they impact cell wall structure and texture. 
 

6.3 Pigment Synthesis 
 

AsA is involved in the production of pigments that 
give the fruit its color, such as anthocyanins, and 
carotenoids. The enzymes involved in the 
pathways for pigment production serve as a 
cofactor. The accumulation of these pigments, 
which results in the production of vivid and 
appealing fruit hues, depends on adequate AsA 
levels [56]. 
 

6.4 Flavor Development 
 

The volatile molecules are responsible for fruit 
taste and fragrance and they are influenced by 
AsA during production. AsA contributes to the 
metabolism of the organic acids and sugars that 
are transformed into taste compounds when the 
fruit ripens. The balance of organic acids and 
sugars is influenced by AsA concentration, which 
also impacts the taste and sensory qualities of 
ripe fruits [57]. 
 

6.5 Hormonal Regulation 
 

For instance, ethylene, a crucial regulator of fruit 
ripening, interacts with AsA in plants. AsA can 

alter the signaling and biosynthesis of ethylene, 
which affects the time and course of fruit 
ripening. AsA aids in preserving the harmony 
between fruit quality characteristics and 
ethylene-mediated ripening [23]. 
 

6.6 Stress Response 
 
AsA helps plants respond to diverse 
environmental challenges by acting as a stress-
responsive molecule [7,58]. Horticultural crops 
may experience biotic and abiotic challenges 
during fruit development and ripening, including 
infections, temperature changes, and light 
exposure. To reduce the detrimental effects of 
these stressors, maintain fruit quality, and 
improve stress tolerance, AsA is used [59].  
 
It is significant to remember that AsA might have 
diverse effects on fruit growth and ripening in 
various horticultural crops and even within 
cultivars. AsA accumulation and its effects on 
fruit quality features can be influenced by factors 
including genetics, environmental circumstances, 
and cultural behaviors. To maximize fruit 
production and quality, it is crucial to understand 
the particular needs and interactions of AsA in 
various crop species. 
 

7. ASCORBIC ACID AS AN ANTIOXIDANT 
IN POSTHARVEST PHYSIOLOGY OF 
HORTICULTURAL CROPS 

 
In the postharvest physiology of horticultural 
crops, AsA performs as a strong antioxidant. 
Horticultural crops go through several metabolic 
processes after harvest that might result in the 
generation of ROS. AsA reduces oxidative stress 
and guards against cellular damage by acting as 
a scavenger of ROS such as superoxide anion, 
hydrogen peroxide, and hydroxyl radical [60]. 
Lipid peroxidation, which is brought on by ROS, 
can cause membrane lipids to break down and 
lose their integrity. AsA contributes to the 
suppression of lipid peroxidation, protecting cell 
membrane integrity and scavenging free radicals 
to prolong the shelf life and quality of postharvest 
crops [30]. 
 
The postharvest physiology of horticultural crops 
depends on AsA for the regeneration of other 
antioxidants including glutathione and alpha-
tocopherol (vitamin E) [61]. These antioxidants 
may be recycled, enabling them to continue 
guarding against oxidative stress [62]. Enzymatic 
browning, a frequent physiological postharvest 
process that impairs the look and quality of fruits 
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and vegetables, is prevented by ascorbic acid. 
To do this, it interferes with the polyphenol 
oxidase (PPO) enzyme's ability to catalyze the 
browning step [63]. 
 
AsA also aids in maintaining the nutritional value 
of postharvest horticulture crops by stopping the 
deterioration of oxidation-prone vitamins 
including folate and carotenoids. Ascorbic acid 
contributes to maintaining the nutritional content 
of harvested crops by safeguarding these vital 
components [36]. In horticultural crops, AsA 
improves the entire antioxidant defense system. 
It increases the activity of antioxidant enzymes 
like catalase and superoxide dismutase, which 
are essential for neutralizing ROS and preserving 
cellular homeostasis [21]. 
 
Ascorbic acid is a useful tool in the postharvest 
handling and storage of horticultural crops due to 
its antioxidant qualities. Its capacity to neutralize 
ROS, suppress lipid peroxidation, avoid 
enzymatic browning, and maintain nutritional 
quality helps to maintain crop quality overall and 
prolong the shelf life of harvested products [64-
67]. 
 

8. PRESENT AND FUTURE PROSPECTS 
 
Presently, AsA holds significant importance in 
horticultural crops throughout various stages of 
plant growth, fruit development/ripening, and 
postharvest physiology. Its role in these 
processes has both current and future prospects. 
AsA plays a crucial role in plant growth and 
development. It participates in numerous 
metabolic processes, including photosynthesis, 
hormone regulation, and enzymatic reactions. 
Adequate AsA levels are essential for optimal 
plant growth, chlorophyll synthesis, and overall 
plant health. Maintaining optimal AsA levels is 
vital for maximizing crop productivity. Future 
research may focus on understanding the 
genetic regulation of AsA biosynthesis and its 
impact on plant growth. This knowledge could 
lead to the development of crop varieties with 
enhanced AsA production, resulting in improved 
growth and yield potential. 
 
AsA also influences fruit development and 
ripening processes in horticultural crops. It 
contributes to cell wall metabolism, pigmentation, 
flavor development, and antioxidative defense 
mechanisms. AsA content affects fruit quality 
attributes, such as texture, color, flavor, and 
nutritional value. Researchers may explore 
strategies to modulate ascorbic acid metabolism 

during fruit development and ripening to enhance 
desirable quality traits. This could involve 
targeted genetic modifications or agronomic 
practices to optimize ascorbic acid accumulation, 
leading to fruits with improved appearance, taste, 
and nutritional benefits. 
 
AsA plays a significant role in postharvest 
physiology and storage of horticultural crops. It 
acts as an antioxidant, preventing oxidative 
damage during storage, thereby extending shelf 
life. Ascorbic acid treatment has been employed 
to maintain fruit quality, reduce decay, and 
preserve nutritional value during postharvest 
handling. Future studies may focus on 
developing innovative postharvest technologies 
to optimize ascorbic acid retention and minimize 
losses. This could involve the development of 
efficient storage techniques, novel packaging 
materials, and modified atmosphere conditions 
that maintain ascorbic acid levels, ensuring 
superior postharvest quality and longer shelf life. 
 
The nutritional benefits of consuming fruits and 
vegetables rich in ascorbic acid include 
enhanced immunity, antioxidant protection, 
collagen synthesis, iron absorption, and overall 
well-being. With growing interest in nutrition and 
wellness, prospects for AsA in horticultural crops 
involve highlighting its nutritional benefits through 
education and awareness campaigns. There may 
be increased demand for crops with enhanced 
ascorbic acid content, leading to the 
development of new cultivars or production 
practices to meet consumer preferences. 
 
In summary, the present and future prospects for 
ascorbic acid in horticultural crops encompass 
optimizing plant growth, enhancing fruit quality, 
improving postharvest storage techniques, and 
emphasizing the nutritional benefits of ascorbic 
acid-rich crops. Ongoing research and 
advancements in genetic engineering, breeding 
techniques, and postharvest technologies hold 
promise for harnessing the potential of ascorbic 
acid in horticulture to meet the evolving needs 
and demands of consumers. 
 

9. CONCLUSION  
 
In horticultural crops, AsA is a multifunctional 
chemical that affects postharvest physiology, 
development and ripening of fruit, and plant 
growth. In addition to influencing hormone 
production and transduction, AsA also affects 
fruit maturity. It plays a significant part in 
enhancing the general well-being, caliber, and 
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market worth of horticulture crops due to its 
antioxidant qualities, signaling capabilities, and 
regulatory duties. The pursuit of AsA-related 
research and application presents encouraging 
opportunities for improving horticulture 
techniques and satisfying consumer needs for 
nutrient-dense, high-quality products. 
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