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ABSTRACT 

In this work we use the Hamilton-Jacobi theory to show that locally all the Hamiltonian systems with n degrees of free-
dom are equivalent. That is, there is a canonical transformation connecting two arbitrary Hamiltonian systems with the 
same number of degrees of freedom. This result in particular implies that locally all the Hamiltonian systems are 
equivalent to that of a free particle. We illustrate our result with two particular examples; first we show that the 
one-dimensional free particle is locally equivalent to the one-dimensional harmonic oscillator and second that the 
two-dimensional free particle is locally equivalent to the two-dimensional Kepler problem. 
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1. Introduction 

In the Lagrangian formulation of classical mechanics to 
each mechanical system with n degrees of freedom there 
is associated an abstract space of dimension n, the con-
figuration space, and a scalar function, the Lagrangian, 
which encodes the nature of the dynamics of the me-
chanical system [1-3]. The state of the physical system at 
a given time is represented by a point in the configura-
tion space and its evolution between two given states, 
two points in the configuration space, is given by the 
Hamilton principle, which establishes that to the motion 
of the physical system between two given states there is 
associated a curve on the configuration space such that 
the first variation of the action is zero. That is, among all 
the possible curves in the configuration space connecting 
the two points associated with the two given states, the 
evolution of the physical system singles out that curve 
obtained from the condition that the first variation of the 
action is zero. For mechanical systems with holonomic 
constrains, the Hamilton principle is both a necessary and 
sufficient condition for Lagrange’s equations. Since the 
Lagrangian we are interested in is a function of the gen-
eralized coordinates, the generalized velocities and the 
time, then the Lagrange equations describing the evolu-
tion of a mechanical system with n degrees of freedom is 

a set, in general coupled, of second-order ordinary dif-  
ferential equations for the generalized coordinates. The 
complexity in solving this system of equations is due to 
two different reasons: a bad election in the used coordi-
nates and the nature of the force. To integrate the La-
grange equations we have to our disposition the remark-
able property of invariance of these equations under a 
point transformation. Using this property one looks for, if 
necessary, a set of point transformations such that in the 
final Lagrangian one has as many ignorable coordinates 
as possible, this way the associated generalized momenta 
are conserved and the final equations are easier to inte-
grate than the original ones. It is important to emphasize 
that the original Lagrange equations and those obtained 
under a point transformation describe exactly the same 
mechanical system. That is, in the Lagrangian formula-
tion of classical mechanics two different mechanical 
systems with the same number of degrees of freedom can 
not be connected via a point transformation. 

In the Hamiltonian formulation of classical mechanics 
to each mechanical system with n degrees of freedom 
there is associated another kind of abstract space of di-
mension 2n, the phase space, a symplectic structure on it, 
the Poisson brackets, and a scalar function, the Hamilto-
nian, which encodes the nature of the dynamics of the 
physical system. In this formulation of classical mechan-*Corresponding author. 
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ics the generalized coordinates and momenta have the 
same status, the two sets form a local coordinate system 
of the phase space. This means that from a mathematical 
point of view there is no difference between coordinates 
and momenta. This is what is remarked as one of the 
astonishing properties of the Hamiltonian formulation. 
But, what are the physical consequences, if any, derived 
from this result? This in particular means that there is no 
difference between kinetic and potential energies; that is, 
they are at the same status too, what really matters in this 
formulation is the total energy or more generally the 
Hamiltonian. In particular, this result implies that for any 
Hamiltonian system there must exist a local transforma-
tion that allows to “transfer” the potential energy into the 
kinetic energy and thus be equivalent to a free particle. In 
this formulation the dynamics is given by the modified 
Hamilton principle, which establishes that the motion of 
the physical system characterized by the coordinates and 
momenta at a given time, the initial conditions, singles 
out in the phase space a curve obtained from the condi-
tion that the first variation of the action written in terms 
of coordinates, momenta and their time derivatives is 
zero. In this case, the dynamics of the physical system is 
given by the Hamilton equations, which for a system 
with n degrees of freedom is a system, in general coupled, 
of 2n first-order ordinary differential equations for the 
coordinates and momenta. Since the points of the phase 
space are labeled by the coordinates and momenta, the 
analog of the point transformations in the Hamiltonian 
formulation is a set of transformations that in general mix 
the original coordinates and momenta. There is a special 
class of transformations in the phase space, they are the 
canonical transformations, singled out by requiring the 
invariance of the Poisson brackets. This in turn, implies 
that the Hamilton equations be invariant in form under a 
canonical transformation. The point transformations of 
the configuration space are a very particular subset of 
these more general transformations. The property of in-
variance of the Hamilton equations under a canonical 
transformation has been used to integrate the Hamilton 
equations, here one normally looks for a canonical trans-
formation such that the new Hamilton equations be sim-
pler that the original ones. 

It is important to remark that for a Lagrangian system 
with n degrees of freedom the point transformations lo-
cally map an n-dimensional space, the configuration 
space, into itself. Therefore, as we have mentioned be-
fore, the original Lagrange equations and those obtained 
under a point transformation describe exactly the same 
physical situation. By contrast, the canonical transforma-
tions locally map a 2n-dimensional space, the phase 
space, into itself; but, the physical system under study  
has n degrees of freedom. As we will see in a moment, 
the n extra dimensions added to the configuration space 

have the marvelous virtue of establishing a connection 
between two given totally different mechanical systems 
in the Hamiltonian formulation of classical mechanics. 

The aim of the present work is to show, via the Ham-
ilton-Jacobi theory, that locally all the Hamiltonian sys-
tems with n degrees of freedom are equivalent to one 
another. That is, there is a canonical transformation con-
necting two arbitrary Hamiltonian systems with the same 
number of degrees of freedom. This in particular implies 
that locally all the Hamiltonian systems are equivalent to 
the free particle one. We illustrate our result with two 
particular examples: we show that the one-dimensional 
free particle is equivalent to the one-dimensional har-
monic oscillator and that the two-dimensional free parti-
cle is equivalent to the two-dimensional Kepler problem. 
Several additional examples of this result have been pre-
sented in the literature [4-14]; but until now nobody has 
presented a systematic procedure to compute the canoni-
cal transformation connecting the two given Hamiltonian 
systems as we do here. 

The organization of the present work is as follows: in 
Section 2 we introduce the definition of a canonical 
transformation and we remark that the canonical trans-
formation generated via a complete integral of the Ham-
ilton-Jacobi equation allows to stop the dynamics of an 
arbitrary Hamiltonian system; this observation allow us 
to establish our result in Section 3. In Section 4 we pre-
sent two particular examples and finally in Section 5 we 
present our final discussion. 

2. Canonical Transformations 

Let ( iq , i ) be local coordinates of the phase space asso-
ciated with a mechanical system with n degrees of free-
dom. The transformation 

p

 
 

= , ,

= , ,

i i j j

i i j j

Q Q q p t

P P q p t

,

,
              (1) 

is canonical if and only if [3] 

     , = 0, , = 0, , = ,i j i j i j ijQ Q P P Q P       (2) 

that is, if the Poisson brackets remain invariant under 
such a transformation. A canonical transformation has 
the remarkable property that a Hamiltonian system is 
transformed into a new Hamiltonian system. The relation- 
ship between the variables ( i , i ,q p H , t ) characterizing 
the original Hamiltonian system and the new variables 
( i , i , , ) characterizing the new Hamiltonian 
system, under a canonical transformation, is given by 

Q p K t

 d d d = di i i ip q Q P H K t S   ,         (3) 

where  , ,j jS q p t  is a generating function of the 
canonical transformation. The canonical transformation 
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is explicitly obtained from 

=i
i

S
p

q




,                  (4) 

=i
i

S
Q

P




.                  (5) 

Furthermore, 

 = , ,i i

S
K H q p t

t





.            (6) 

The Hamilton-Jacobi equation is obtained in the fol- 
lowing way: first by using Equation (4) one replaces the 

’s in Equation (6) and then one imposes the condition 
. That is, the HJ equation is given by 

ip
K = 0

, , = 0.           (7) i
i

S S
H q t

q t

  
   


If a Hamiltonian system with Hamiltonian function, 
 , ,i iH q p t
 , ,i iS q P t

, is given then a complete integral,  
, of the Hamilton-Jacobi equation is the ge- 

nerating function of a canonical transformation such that 
the new Hamilton equations are given by 



= = 0,

= =

i
i

i
i

K
Q

P

K
P

Q










 0

,

,



               (8) 

That is, all the coordinates and momenta are constants 
of motion. What does it mean? It means that the  
extra dimensions added to the configuration space, 
allows to stop the dynamics of the physical system under 
study. In other words, the  extra dimensions have the 
virtue of making ignorable all the new coordinates of the 
phase space ( iQ , i ). In some sense, we can interpret this 
important result saying that the Hamilton-Jacobi equation 
provides a very special coordinate system, which is 
“moving with the state of the physical system” and thus 
there is no dynamics. We believe it is an intrinsic 
property of the phase space associated with a physical 
system with  degrees of freedom. To clarify this point, 
we assume we have obtained the solution to the original 
Hamilton equations; that is, we have obtained 

n

n

P

n

 
 

0 0

0 0

= , ,

= , ,

i i j j

i i j j

q q q p t

p p q p t
             (9) 

where  and 0i  are the values of i  and i  at 
time  respectively; that is, they are the initial 
conditions. Then the point ( i , i ) of the phase space at 
time , under the canonical transformation generated by 

, is mapped to a new point with coordinates 
( iQ , i ). This means that all the points of the phase space 
described by Equation (9), with , are mapped to 

the same point ( , i ). This is so because  and 
 for 

0iq
= 0

, ,j jp t

p q

t

p
t

t


P

q p

0

S q

1t 

iQ P = 0iQ
= 0iP  10,t  with 1 . Therefore, we arrive 

to the conclusion that a general canonical transformation 
connecting two different Hamiltonian systems maps a 
solution of the first Hamiltonian system to a solution of 
the second Hamiltonian system. But the canonical 
transformation generated by a complete integral of the 
Hamilton-Jacobi equation maps a solution of the original 
Hamiltonian system to a single point. In other words, the 
canonical transformation, obtained via a complete inte- 
gral of the HJ equation has the property of codifying the 
entire information of the solution of the original Hamil- 
tonian system into a single point. 

t > 0t

3. The Result 

Theorem: Two arbitrary Hamiltonian systems with  
degrees of freedom are locally equivalent. That is, there 
is a canonical transformation connecting the two sets of 
Hamilton equations. 

n

Proof: We start with two given different Hamiltonian 
systems with the same number of degrees of freedom 
whose associated hamiltonian functions are denoted by 

 ,,j jH q p t  and  , ,i iH q p  t

= ,

= ,

i i j

j

q

q p

= ,

= ,

i i j

j

q

q p

 

 

  respectively. The Hami- 
lton-Jacobi theory provides a canonical transformation 
for each system 

 
 

,

,

j

i i j

Q Q p t

P P t

,

,

,

,

           (10) 

and 

 
 

,

,

j

i i j

Q Q p t

P P t

 

 
           (11) 

respectively, such that both Hamiltonian systems are 
equivalent to one with Hamiltonian function identically 
zero. The desired canonical transformation relating the 
original systems is obtained by requiring 

  


=

=

i

i j

Q q

P q



  


 

, , ,

, , .

j j j

j j

p t p t

p t

 , ,

, ,p t

i j

i j

Q q

q

P

P

Q

         (12) 

This result in particular implies that all the Hamiltonian 
systems are locally equivalent to the free particle one. 

Essentially what is happening is that the first canonical 
transformation, that given by Equation (10), takes a 
solution of the first Hamiltonian system and maps it into 
a single point with coordinates ( i , i ). The second 
canonical transformation, that given by Equation (11), 
takes a solution of the second Hamiltonian system and 
maps it, in general, into a new single point with 
coordinates ( i , i ). The condition given by Equation 
(12) is saying that the first canonical transformation 
codifies the entire information of a solution of the first 

Q P
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Hamiltonian system into a single point and that the 
inverse of the second canonical transformation unfold 
that information by using the second Hamiltonian and 
thus a solution to the second Hamiltonian system is 
obtained. Observe that a more general condition is that 
given by 

 
 

= ,

= ,

i i j j

i i j j

Q Q P

P Q P





 

 

,

.
             (13) 

But, in the examples presented in this work, to obtain the 
canonical transformation connecting the two Hamiltonian 
systems, we use the condition (12). 

4. Examples 

We illustrate the result stated above with two particular 
examples, in the first one we show that the one-dimen-
sional free particle is equivalent to the one-dimensional 
harmonic oscillator, in the second one we show that the 
two-dimensional free particle is equivalent to the two- 
dimensional Kepler problem. 

4.1. The Free Particle and the Harmonic  
Oscillator 

The Hamiltonian function for the one-dimensional free 
particle is given by 

 
2

, , = .
2

p
H x p t

m
              (14) 

Therefore, the associated HJ equation is given by 

2
1

= 0.
2

S S

m x t

      
           (15) 

A direct computation shows that a complete integral to 
this equation is given by 

 , = 2 ,S x P mPx Pt          (16) 

where P is a separation constant, which is identified with 
the new momentum and corresponds to the energy, E, of 
the free particle. Thus, the canonical transformation gen-
erated by this generating function is explicitly given by 

 , , = ,
mx

Q x p t t
p
              (17) 

 
2

, , = .
2

p
P x p t

m
              (18) 

On the other hand, the Hamiltonian function describ-
ing the evolution of the one-dimensional harmonic oscil-
lator is given by 

 
2 2 2 2

, , = ,
2

p m x
H x p t

m

%% % %
%

          (19) 

then the associated HJ equation is given by 

2

2 2 21
= 0,

2

S
m x

m x t


          

% %
%

%

S
       (20) 

and a complete integral to this equation is 

 
2 2

, , = 2 d 1 ,
2

m x
S x p t mP x Pt

P


 

%% % %% % %
%

    (21) 

where  is a separation constant, which is identified 
with the new momentum and corresponds to the energy, 

, of the physical system. For this case, the canonical 
transformation generated by this generating function is 
explicitly given by 

P%

E%

 
2 2 2 2

1
, , = arcsin ,

m x
Q x p t t

p m x


 

 
  
  

%% % %
% %

    (22) 

 
2 2 2 2

, , = .
2

p m x
P x p t

m

%% % %
%

          (23) 

For this case, the condition (12) provides the desired 
canonical transformation 

 

 

2 2 2 2

2 2 2 2

2 2 2 2

, , = arcsin ,

, , = .

p m x m x
x x p t

m p m x

p x p t p m x

 
 



   
   
      



% % %
% %

% %

% % % %

  

(24) 

Or equivalently 

 

 

, , = sin ,

, , = cos .

p m x
x x p t

m p

m x
p x p t p

p






 
 


 
 
 

%

%


          (25) 

A direct computation shows that 

  
2 2 2 2 2

, , = = = , , .
2 2

p m x p H x p t H x p t
m m

% %% % %    (26) 

Observe that in the limit   going to zero the canoni-
cal transformation (24) reduces to the identity one. This 
result is consistent with the fact that in this limit the two 
Hamiltonians coincide. Equation (25) are equivalent to 

i = exp i
m x

p m x p
p


     
   

% % .

         (27) 

Observe that this transformation is not one to one. 

4.2. The Free Particle and the Kepler Problem 

The Hamiltonian describing the evolution of a two-dim- 
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ensional free particle, in polar coordinates, is given by 
2

2
2

1
=

2 r

p
H p

m r
 


 

.             (28) 

Therefore, the HJ equation for this problem can be 
written in the following form 

2 2

2

1 1
= 0.

2

S S S

m r tr 

                  
      (29) 

Looking for a separable solution one finds that a com-
plete integral is given by 

 
2 2

1 2
1 2 2 1

2
, , , , = d ,

mr P P
S r t P P r P Pt

r



     (30) 

where 1  and 2  are two constants of separation, 
which are identified with the new momenta. A direct 
computation shows that for this case the canonical trans-
formation is explicitly given by 

P P

1
1

2 2
1

2 2 2

1 2

2

= ,
2

= arcsin ,
2

= ,
2

= .

r

r

rp
Q t

P

p
Q

mr P

r p p
P

mr

P p











 
  
 
 



         (31) 

On the other hand, the Hamiltonian describing the 
evolution of the two-dimensional Kepler problem, by 
using polar coordinates can be written in the following 
form 

2
2

2

1
=

2 r

p
H p

m rr
  

   
 








,



           (32) 

where 1 2  and = Gm m 1 2 1 2=m m m m m . Therefore, 
the HJ equation for the Kepler problem is given by 

2 2

2

1 1
= 0.

2

S S S

m r r tr




                  

  
  

      (33) 

As in the previous cases, a direct computation shows 
that a complete integral of this equation is given by 

 
2 2

1 2
1 2

2 1

2 2
, , , , = d

,

mr P m r P
S r t P P r

r

P Pt






 

 


     


 


    (34) 

where 1  and 2  are two constants of separation. 
Another direct computation shows that the canonical 
transformation is explicitly given by 

P P

 
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1 1 1

1 1
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2 2 2 2 2 2
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2
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




















     

   
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

%

%

%

%
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%

%%%
% % %

% %% %%
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% % %
%
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  (35) 

Observe that for = 0 , the Hamiltonian describing 
the Kepler problem reduces to the free particle case. As 
should be, in this particular case, the above transforma-
tion reduces to that obtained for the free particle case. 

From Equations (31) and (35), and condition (12), we 
finally obtain that the transformation connecting the 
two-dimensional free particle with the two-dimensional 
Kepler problem is given by 

 2 2

2 2 2

2

2 2 2 2 2
1

2
1

= ,
2

= arcsin
2

arcsin ,
2

= ,

= ,

r
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p

r
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








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


 



 

 
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 
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%

%

%

%
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     (36) 

where 

 2

1
1

log 2 2 2 .
2 r

m
g m mrP rp

P

  1mP     %
% %% %%

%
   (37) 

5. Discussion 

We know that the configuration space associated with a 
Lagrangian system with  degrees of freedom is a diff- 
erentiable manifold of dimension ; this means that it is 
locally equivalent to an open subset of  [3]. Therefore, 
a solution to the Lagrange equations, a curve on the 
configuration space, is locally equivalent to a straight 
line. However, this does not mean that via a point 
transformation one can connect two arbitrary Lagrangian 
systems with the same number of degrees of freedom. 
For example, the one-dimensional free particle cannot be 
transformed, via a point transformation, into the one- 
dimensional harmonic oscillator. On the other hand, the 
phase space associated with a Hamiltonian system with 

n
n

nR
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n  degrees of freedom is another differentiable manifold, 
a symplectic manifold, of dimension  and thus it is 
locally equivalent to an open subset of  [3]. The 
canonical transformations, which are defined as those 
transformations of the phase space such that the Poisson 
brackets or symplectic structure remains invariant have 
the property of connecting two Hamiltonian systems with 
the same number of degrees of freedom. This result is 
well established and well known. But one of the main 
contributions of this work was to realize that the very 
special class of canonical transformations generated via a 
complete integral of the HJ equation has the property of 
mapping an entire curve into a single point. This property 
was used to show that all the Hamiltonian systems with 
the same number of degrees of freedom are locally 
equivalent. Even though all the Hamiltonian systems are 
locally equivalent to each other, at the Lagrangian level 
they, in general, give rise to physically nonequivalent 
Lagrangian systems. For example, as we have shown, the 
one-dimensional free particle and the one-dimensional 
harmonic oscillator are locally equivalent in the Hami- 
ltonian formulation in the sense that there is a canonical 
transformation that maps one system into the other. But, 
at the Lagrangian level they cannot be connected via a 
point transformation; that is, they are two Lagrangian 
systems describing two different physical situations. 
Observe that in the Lagrangian formulation the property 
of invariance in form of Lagrange equations and the fact 
that the dimension of the configuration space is equal to 
the number of degrees of freedom of the system, implies 
that the original Lagrangian system and that obtained 
under a point transformation describe exactly the same 
mechanical system. In some sense, in Lagrangian formu- 
lation, mathematical equivalence implies physical equi- 
valence. However, in the Hamiltonian formulation it is 
not true, and it is so, because the dimension of the phase 
space is two times the number of degrees of freedom of 
the physical system. As we have remarked, for each 
Hamiltonian system the  extra dimensions added to 
the configuration space allows to find a coordinate system 
where there is no dynamics. This very important property 
cannot be found in the Lagrangian formulation. 

2n
2nR

n

We finish our work with the following observation: we 
start with a physical system such that its dynamics in the 
Lagrangian formulation is described by the lagrangian 
function, . Furthermore, we assume that its associated 
natural Hamiltonian, 

L
H , can be computed (the natural 

Hamiltonian is that obtained via a Legendre transfor- 
mation). Therefore, at this stage, we have a Hamiltonian 
system with Hamiltonian function, H . Now by perfo- 
rming a canonical transformation on it we obtain a new 
Hamiltonian system with Hamiltonian function, H . If 
the natural Lagrangian function, , associated with the 
new Hamiltonian system is defined, then at the end we 
have two Lagrangian systems, our observation is that the 

new Lagrangian system may not describe the original 
physical system. If the canonical transformation used to 
obtain the new Hamiltonian system corresponds to a 
point transformation then both Lagrangian systems des- 
cribe the same physical situation, but if the used ca- 
nonical transformation does not come from a point trans- 
formation, then the two Lagrangian systems describe two 
different physical situations. We emphasize that there are 
canonical transformations that give rise to Hamiltonian 
systems such that its natural Lagrangian is not defined. 
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