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Abstract: The mathematical chemistry deals with applications of graph theory to study the physicochemical
properties of molecules theoretically. A chemical graph is a simple graph where hydrogen depleted atoms are
vertices and covalent bonds between them represent the edges. A topological index of a graph is a numeric
quantity obtained from the graph mathematically. A cactus graph is a connected graph in which no edges
lie in more than one cycle. In this study, we derive exact expressions of general Zagreb index of some cactus
chains.
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1. Introduction

C hemical graph theory is a branch of mathematical chemistry that has a real world applications to other
science, engineering and specially in chemistry. A graph G = (V(G), E(G)) is an ordered pair of two

sets where V(G) denotes the vertex set and E(G) is the edge set of G. The degree of a vertex v ∈ V(G)

is the number of vertices other than v in G which are adjacent to v and is denoted by dG(v). A topological
index of a graph is the numeric quantity obtained from that graph mathematically and is remains same under
graph isomorphism. In recent time, there are lot of topological indices discovered by various researchers
and these have many applications in chemistry, biochemistry, medical sciences and so forth to understand
physicochemical properties of chemical compounds theoretically. A connected graph such that no edge lies
in more than one cycle is called the cactus graph. The block of a cactus graph is either an edge or a cycle.
If all blocks of a cactus graph are triangular then it is called triangular cactus graph. For a cactus graph, the
cut-vertex is a vertex shared by two or more triangles. If all the triangle of a triangular cactus graph has at
most two cut-vertices and each cut-vertex is shared by exactly two triangles then we say that triangular cactus
graph is a chain triangular cactus. In chain triangular cactus if we replace triangles by cycles of length 4 then
we obtain cacti whose every block is C4, such cacti are called square cacti. For ortho-chain square cactus the cut
vertices are adjacent and a para-chain square cactus their cut vertices are not adjacent. Recently, Sadeghieh et al.
in [1] derived Hosoya polynomial of some cactus chain and studied some degree based topological indices. we
refer the reader [2–5] for further study about cactus graph. In this work, we study the mathematical property of
general Zagreb index or (a, b)-Zagreb index of some general ortho and para cactus chains and hence consider
their special cases such as triangular chain cactus Tn, ortho chain square cactus On and para-chain square
cactus Qn, where n denote the length of the chain and then we derive some explicit expressions of the same
for other degree based topological indices such as Zagreb indices, forgotten index, redefined Zagreb index,
general first Zagreb index, general Randić index, symmetric division index for particular values of a and b of
general Zagreb index.

Gutman and Trinajestić [6] introduced the Zagreb indices, to study the total π-electron energy of carbon
atoms and are defined as

M1(G) = ∑
v∈V(G)

dG(v)
2 = ∑

uv∈E(G)

[dG(u) + dG(v)]
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Table 1. Relations between (a,b)-Zagreb index with some other topological indices.

Topological index Corresponding (a, b)-Zagreb index

First Zagreb index M1(G) M1,0(G)
Second Zagreb index M2(G) 1

2 M1,1(G)
Forgotten topological index F(G) M2,0(G)

Redefined Zagreb index ReZM(G) M2,1(G)
General first Zagreb index Ma(G) Ma−1,0(G)

General Randić index Ra
1
2 Ma,a

Symmetric division deg index SDD(G) M1,−1(G)

and
M2(G) = ∑

uv∈E(G)

dG(u)dG(v).

In the same paper [6], the “forgotten topological index" or F-index was defined as

F(G) = ∑
v∈V(G)

dG(v)
3 = ∑

uv∈E(G)

[dG(u)2 + dG(v)2].

In 2003, Ranjini et al. redefined the Zagreb index in [7], and is defined as

ReZM(G) = ∑
uv∈E(G)

dG(u)dG(v)[dG(u) + dG(v)].

Li and Zheng [8], introduced the general Zagreb index as

Mα(G) = ∑
u∈V(G)

dG(u)α

where, α 6= 0, 1 and α ∈ IR. Clearly, when α = 2 we get first Zagreb index and when α = 3 it gives the F-index.
Gutman and Lepović [9], generalized the Randić index in 2001 as

Ra = ∑
uv∈E(G)

{dG(u).dG(v)}a

where, a 6= 0, a ∈ IR. The symmetric division index of a graph is defined as

SDD(G) = ∑
uv∈E(G)

[
dG(u)
dG(v)

+
dG(v)
dG(u)

].

For further study about this index, we refer [10–12]. In 2011, Azari et al. [13], introduced a generalized version
of vertex degree based topological index, named as generalized Zagreb index or the (a, b)-Zagreb index and is
defined as

Ma,b(G) = ∑
uv∈E(G)

(dG(u)adG(v)b + dG(u)bdG(v)a).

We refer [14–18] for further study about this index.
It is clear that, all the topological indices discussed previously, can be obtained from (a, b)-Zagreb index

for some particular values of a and b. The Table 1, shows the relationship between (a, b)-Zagreb index with
other topological indices.

2. Main Results

In this section, we consider two general cactus chains namely para cacti chain and ortho cacti chain of
cycles. We first consider a para cacti chain of cycles Cm of length n, where every block is a cycle Cm. Let it is
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denoted by Cn
m. In the following theorem we compute an exact expression of general Zagreb index of Cn

m. Note
that, the total number of vertices of Cn

m are (mn− n + 1) and the number of edges of Cn
m are mn.

Theorem 1. Let Cn
m be the para cacti chain of cycles for (m ≥ 3, n ≥ 2). Then

Ma,b(Cn
m) = 4(n− 1)2a+b(2a + 2b) + (mn− 4n + 4).2a+b+1.

Proof. The edge set of Cn
m can be partitioned into following subsets:

E1(Cn
m) = {e = uv : dCn

m(u) = dCn
m(v) = 2},

E2(Cn
m) = {e = uv : dCn

m(u) = 2, dCn
m(v) = 4},

such that
|E1(Cn

m)| = 2(m− 2) + (m− 4)(n− 2), |E2(Cn
m)| = 4(n− 1).

Then from definition of general Zagreb index, we have

Ma,b(Cn
m) = ∑

uv∈E(Cn
m)

(dCn
m(u)

adCn
m(v)

b + dCn
m(u)

bdCn
m(v)

a)

= ∑
uv∈E1(Cn

m)

(2a2b + 2b2a) + ∑
uv∈E2(Cn

m)

(2a4b + 2b4a)

= |E1(Cn
m)|(2a2b + 2b2a) + |E2(Cn

m)|(2a4b + 2b4a)

= 2[(m− 2) + (m− 4)(n− 2)].2.2a+b + 4(n− 1).2a+b(2a + 2b),

from where the result follows.

Following results follows immediately form Theorem 1.

Corollary 2. Let Cn
m be the para cacti chain of cycles for (m ≥ 3, n ≥ 2). Then

1. M1(Cn
m) = M1,0(Cn

m) = 4mn + 8n− 8.
2. M2(Cn

m) =
1
2 M1,1(Cn

m) = 4mn + 16n− 16.
3. F(Cn

m) = M2,0(Cn
m) = 8mn + 48n− 48.

4. ReZM(Cn
m) = M2,1(Cn

m) = 16mn + 128n− 128.
5. a(Cn

m) = Ma−1,0(Cn
m) = (n− 1).2a+1(2a−1 + 1) + 2a(mn− 4n + 4).

6. Ra(Cn
m) =

1
2 Ma,a(Cn

m) = (n− 1).23a+2 + (mn− 4n + 4)22a.
7. SDD(Cn

m) = M1,−1(Cn
m) = 2mn + 2n− 2.

The results about para square cactus chain Qn can be obtained from Theorem 1 by taking m = 4. The
representation of Qn depicted in the Figure 1.

Figure 1. Para-chain square cactus Qn.

Corollary 3. Let Qn be the para-chain square cactus graph for n ≥ 2. Then

Ma,b(Qn) = 2a+b+3 + (n− 1).2a+b+2(2a + 2b).

Proof. If we put m = 4 in Theorem 1, we get our desired result.
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Following results can be immediately obtained from Corollary 3

Corollary 4. Let Qn be the para-chain square cactus graph for n ≥ 2. Then

1. M1(Qn) = M1,0(Qn) = 24n− 8.
2. M2(Qn) =

1
2 M1,1(Qn) = 32n− 16.

3. F(Qn) = M2,0(Qn) = 80n− 48.
4. ReZM(Qn) = M2,1(Qn) = 192n− 128.
5. Ma(Qn) = Ma−1,0(Qn) = 2a+2 + (n− 1)(22a + 2a+1).
6. Ra(Qn) =

1
2 Ma,a(Qn) = 22a+2 + (n− 1).23a+2.

7. SDD(Qn) = M1,−1(Qn) = 10n− 2.

The generalized Zagreb index of the para-chain hexagonal cactus graph Ln n ≥ 3 can be obtained from
Theorem 1 by putting m = 6. The para-chain hexagonal cactus graph is shown in Figure 2.

Figure 2. The example of Para-chain hexagonal cactus graph Ln.

Corollary 5. Let Ln be the para-chain hexagonal cactus graph for n ≥ 3. Then

Ma,b(Ln) = (n + 2)2a+b+2 + (n− 1)2a+b+2(2a + 2b).

Proof. If we put m = 6 in Theorem 1, we get our desired result.

Following results follows form Corollary 5.

Corollary 6. Let Ln be the para-chain hexagonal cactus graph for n ≥ 3. Then

1. M1(Ln) = M1,0(Ln) = 32n− 8.
2. M2(Ln) =

1
2 M1,1(Ln) = 40n− 16.

3. F(Ln) = M2,0(Ln) = 96n− 48.
4. ReZM(Ln) = M2,1(Ln) = 256n− 128.
5. Ma(Ln) = Ma−1,0(Ln) = 2a+1(2n + 1) + (n − 1).22a. item Ra(Ln) = 1

2 Ma,a(Ln) = 22a+1(n + 2) + (n −
1).23a+2.

6. SDD(Ln) = M1,−1(Ln) = 14n− 2.

Next, we consider the ortho-chain cactus of cycles where its cut-vertices are adjacent. Let, this type of
cactus chain is denoted by COn

m where m is the length of each cycle and n is the length of the chain. The
number of vertices and edges of COn

m are mn − n + 1 and mn respectively. In the following theorem, we
calculate the general Zagreb index of COn

m.

Theorem 7. Let COn
m be the ortho cacti chain of cycles for (m ≥ 3, n ≥ 2). Then

Ma,b(COn
m) = 2(n− 2)4a+b + (mn− 3n + 2) · 2a+b+1 + n · 2a+b+1(2a + 2b).

Proof. The edge set of COn
m can be partitioned into following subsets:

E1(COn
m) = {e = uv : dCOn

m(u) = dCOn
m(v) = 4},

E2(COn
m) = {e = uv : dCOn

m(u) = 2, dCOn
m(v) = 4},

E3(COn
m) = {e = uv : dCOn

m(u) = dCOn
m(v) = 2}.
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Now,
|E1(COn

m)| = (n− 1), |E2(COn
m)| = 2n, |E3(COn

m)| = 2(m− 2) + (m− 3)(n− 2).

Therefore, from definition of general Zagreb index, we have

Ma,b(COn
m) = ∑

uv∈E(COn
m)

(dCOn
m(u)

adCOn
m(v)

b + dCOn
m(u)

bdCOn
m(v)

a)

= ∑
uv∈E1(COn

m)

(4a4b + 4b4a) + ∑
uv∈E2(COn

m)

(2a4b + 2b4a) + ∑
uv∈E3(COn

m)

(2a2b + 2b2a)

= |E1(COn
m)|(4a4b + 4b4a) + |E2(COn

m)|(2a4b + 2b4a) + |E3(COn
m)|(2a2b + 2b2a)

= 2(n− 2)4a+b + 2n.2a+b(2a + 2b) + 2[2(m− 2) + (m− 3)(n− 2)]2a+b,

from where the desired result follows.

Following results follows immediately form Theorem 7.

Corollary 8. Let COn
m be the ortho cacti chain of cycles for (m ≥ 3, n ≥ 2). Then

1. M1(COn
m) = M1,0(COn

m) = 4mn + 8n− 8.
2. M2(COn

m) =
1
2 M1,1(COn

m) = 4mn + 20n− 24.
3. F(COn

m) = M2,0(COn
m) = 8mn + 48n− 48.

4. ReZM(COn
m) = M2,1(COn

m) = 16mn + 176n− 224.
5. Ma(COn

m) = Ma−1,0(COn
m) = 2(n− 2)4a−1 + 2a(mn− 3n + 2) + n · 2a(2a−1 + 1).

6. Ra(COn
m) =

1
2 Ma,a(COn

m) = (n− 2)42a + 22a(mn− 3n + 2) + n.23a+1.
7. SDD(COn

m) = M1,−1(COn
m) = 2mn + n.

Now, we consider chain triangular cactus as shown in Figure 3, denoted by Tn, where n is the length of
the chain triangular cactus. Tn is special case of COn

m for m = 3.

Figure 3. Chain triangular cactus Tn.

Corollary 9. Let Tn be the chain triangular cactus for n ≥ 2. Then

Ma,b(Tn) = 2a+b+2 + n · 2a+b+1(2a + 2b) + 2(n− 2)4a+b.

Proof. If we put m = 3 in Theorem 7, we get our desired result.

Following results follows immediately form Corollary 9.

Corollary 10. Let Tn be the chain triangular cactus for n ≥ 2. Then

1. M1(Tn) = M1,0(Tn) = 20n− 8.
2. M2(Tn) =

1
2 M1,1(Tn) = 32n− 24.

3. F(Tn) = M2,0(Tn) = 72n− 48.
4. ReZM(Tn) = M2,1(Tn) = 224(n− 1).
5. Ma(Tn) = Ma−1,0(Tn) = 2a+1 + n · 2a(2a−1 + 1) + 2(n− 2)4a−1.
6. Ra(Tn) =

1
2 Ma,a(Tn) = 22a+1 + n · 23a+1 + (n− 2)42a.

7. SDD(Tn) = M1,−1(Tn) = 7n.

Next, we consider square chain cacti, which is obtained by replacing triangles in Tn by cycle of length 4.
The square chain cacti is denoted by On where n is the length of the chain as shown in Figure 4.
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Figure 4. Ortho-chain square cactus On.

Figure 5. The example of a Q(m, n) graph.

Corollary 11. Let On be the ortho-chain for n ≥ 2. Then

Ma,b(On) = (n + 2) · 2a+b+1 + n · 2a+b+1(2a + 2b) + 2(n− 2)4a+b.

Proof. If we put m = 4 in Theorem 7, we get our desired result.

Following results follows immediately form Corollary 11.

Corollary 12. Let On be the ortho-chain for n ≥ 2. Then

1. M1(On) = M1,0(On) = 24n− 8.
2. M2(On) =

1
2 M1,1(On) = 36n− 24.

3. F(On) = M2,0(On) = 80n− 48.
4. ReZM(On) = M2,1(On) = 240n− 224.
5. Ma(On) = Ma−1,0(On) = (n + 2) · 2a + n · 2a · (2a−1 + 1) + 2(n− 2)4a−1.
6. Ra(On) =

1
2 Ma,a(On) = (n + 2) · 22a + n · 23a+1 + (n− 2)42a.

7. SDD(On) = M1,−1(On) = 9n.

The graph Q(m, n) is derived from Km and m copies of Kn by identifying every vertex of Km with a vertex
of one Kn [5]. The example of Q(m, n) graph is shown in Figure 5. Here, we compute the general Zagreb index
of the graph Q(m, n) and derive some other topological indices from it.

Theorem 13. Let Q(m, n) be the ortho-chain for m, n ≥ 2. Then

Ma,b(Q(m, n)) = m(n− 2) · (n− 1)a+b+1 + m(m + n− 2)b(n− 1)a+1

+m(n− 1)b+1(m + n− 2)a + m(n− 1)(m + n− 2)a+b.
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Proof. The edge set of ortho-chain Q(m, n) can be partitioned into the following subsets:

E1(Q(m, n)) = {e = uv : dQ(m,n)(u) = dQ(m,n)(v) = (n− 1)},

E2(Q(m, n)) = {e = uv : dQ(m,n)(u) = (n− 1), dQ(m,n)(v) = (m + n− 2)},

E3(Q(m, n)) = {e = uv : dQ(m,n)(u) = dQ(m,n)(v) = (m + n− 2)}.

Such that

|E1(Q(m, n))| = m(n− 1)(n− 2)
2

, |E2(Q(m, n))| = m(n− 1), |E3(Q(m, n))| = m(n− 1)
2

.

Therefore, using the definition of general Zagreb index, we have

Ma,b(Q(m, n)) = ∑
uv∈E(Q(m,n))

[dQ(m,n)(u)
adQ(m,n)(v)

b + dQ(m,n)(u)
bdQ(m,n)(v)

a]

= ∑
uv∈E1(Q(m,n))

[(n− 1)a(n− 1)b + (n− 1)b(n− 1)a]

+ ∑
uv∈E2(Q(m,n))

[(n− 1)a(m + n− 2)b + (n− 1)b(m + n− 2)a]

+ ∑
uv∈E3(Q(m,n))

[(m + n− 2)a(m + n− 2)b + (m + n− 2)b(m + n− 2)a]

= |E1(Q(m, n))|[(n− 1)a(n− 1)b + (n− 1)b(n− 1)a]

+|E2(Q(m, n))|[(n− 1)a(n− 1)b + (n− 1)b(n− 1)a]

+|E3(Q(m, n))|[(m + n− 2)a(m + n− 2)b + (m + n− 2)b(m + n− 2)a]

=
m(n− 1)(n− 2)

2
· 2 · (n− 1)a+b + m(n− 1)[(n− 1)a(m + n− 2)b + (n− 1)b(m + n− 2)a]

+
m(n− 1)

2
· 2 · (m + n− 2)a+b.

Following results follows immediately from Theorem 13.

Corollary 14. Let Q(m, n) be the ortho-chain for m, n ≥ 2. Then

1. M1(Q(m, n)) = M1,0(Q(m, n)) = m(n− 1)3 + 2m(n− 1)(m + n− 2).
2. M2(Q(m, n)) = 1

2 M1,1(Q(m, n)) = 1
2 [m(n− 2)(n− 1)3 + 2m(n− 1)2(m + n− 2) + m(n− 1)(m + n− 2)2.

3. F(Q(m, n)) = M2,0(Q(m, n)) = m(n− 2)(n− 1)3 + m(n− 1)3 + 2m(n− 1)(m + n− 2)2.
4. ReZM(Q(m, n)) = M2,1(Q(m, n)) = m(n − 2)(n − 1)4 + m(m + n − 2)(n − 1)3 + m(n − 2)2(m + n −

2)2 + m(n− 1)(m + n− 2)3.
5. Ma(Q(m, n)) = Ma−1,0(Q(m, n)) = m(n− 1)a+1 + 2m(n− 1)(m + n− 2)a−1.
6. Ra(Q(m, n)) = 1

2 Ma,a(Q(m, n)) = 1
2 [m(n− 2)(n− 1)2a+1 + 2m(n− 1)a+1(m + n− 2)a + m(n− 1)(m +

n− 2)2a].
7. SDD(Q(m, n)) = M1,−1(Q(m, n)) = m(n− 2)(n− 1) +m(m+ n− 2)−1(n− 1)2 +m(m+ n− 2) +m(n−

1).

3. Conclusions

In this study, we obtain some closed expressions of the general Zagreb index of some cactus chain and
hence obtain some other important degree based topological indices for some particular values of a and b. For
further study the general Zagreb index of some other graph structures can be computed.
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