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This paper deals with the determination of thermal deflection of a thin circular plate defined as 
 ar <≤0 ; hzh ≤≤− . A circular plate is considered having arbitrary initial temperature and subjected to 

radiation type boundary condition which is fixed at  )( ar = . The non homogeneous type boundary 
conditions are maintained at plane surfaces of the plate. The governing heat conduction equation has 
been solved by using integral transform technique. The results are obtained in series form in terms of 
Bessel’s functions. As a special case, aluminum metallic plate has been considered and the results for 
temperature distribution and thermal deflection have been computed numerically and are illustrated 
graphically.  
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INTRODUCTION 
 
Nowacki (1957) has determined steady-state thermal 
stresses in a circular plate subjected to an axisymmetric 
temperature distribution on the upper face with zero 
temperature on the lower face and the circular edge 
respectively. Roy (1973) discussed the normal deflection 
of a thin clamped circular plate due to ramp type heating 
of a concentric circular region of the upper face. This 
satisfies the time – dependent heat conduction equation. 
Recently Kedar and Deshmukh (2005) have determined 
the thermal deflection of a thin circular plate.  

In this paper, the work of Deshmukh et al. (2005) has 
been extended for two-dimensional non-homogeneous 
boundary value problem of heat conduction and studied 
the thermal deflection of the plate defined 

as ar ≤≤0 ; hzh ≤≤− . This inverse problem deals with the 
determination of temperature distribution, unknown 
temperature gradient and thermal deflection. 

The plate is considered having arbitrary initial 
temperature and subjected to radiation type boundary 

conditions which are fixed at  )0( =r  and )( ar = . The non 
homogeneous type boundary conditions are maintained 
on   plane   surfaces   of   the   disc.  The  governing  heat 
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conduction equation has been solved by using integral 
transform technique. The results are obtained in series 
form in terms of Bessel’s functions. The results for 
thermal deflection have been computed numerically and 
are illustrated graphically. It is believed that this particular 
problem has not been considered by any one. This is 
new and novel contribution to the field. According to 
Lamba and Khobragade (2011), analytical approach is 
establish to construct solution in terms of stresses in a 
thin circular plate subjected to steady and unsteady state 
thermoelasticity due to diametrical compression. In this 
approach stress distribution are expressed by means of 
theoretical technique. The result is obtained as series of 
Bessel functions. 

The results presented here will be useful in engineering 
problems particularly in aerospace engineering for 
stations of a missile body not influenced by nose 
tapering. The missile skill material is assumed to have 
physical properties independent of temperature, so the 

temperature 
 ),,( tzrT

 is a function of radius, thickness 
and time only. 
 
 
STATEMENT OF PROBLEM 
 
Consider a circular plate of thickness 2h occupying space 



 
 
 
 

D  defined by
 ar ≤≤0 ; hzh ≤≤− . The plate is considered 

having arbitrary initial temperature and subjected to 

radiation type boundary condition which is fixed at )( ar = . 
The non homogeneous type boundary conditions are 
maintained at plane surfaces of the plate. 

The differential equation satisfying the deflection 

function ),( trw  is given by: 
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where TM  is the thermal moment of the plate which is 

defined as;  
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D is the flexural rigidity of the disc denoted as; 
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at, E and v  are the coefficients of the linear thermal 

expansion, Young’s modules and Poisson’s ratio of the 
disc material respectively and  
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Since the edge of an annular disc is fixed and clamped,  
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Initially
 ),( zrFT == ω , at  0=t  

 

The temperature  ),,( tzrT  of the plate at time t  satisfies 

the differential equation, 
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with the boundary conditions,  
 

 [ ] ),(),,( 10 tzgtzrT r == ,   0>t              (7) 
 

 [ ] ),(),,( 2 tzgtzrT ar == , hzh ≤≤−      (8) 
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and initial condition is; 
 

 ),(),,( zrFtzrT =
, 

 hzhar ≤≤−≤≤ ,0
,  0=t     (11) 

 

where 
1

k  and 
2

k  are radiation constants on the plane 

surfaces of the plate respectively and  α  is thermal 
diffusivity of the material of the plate. Equations 1 to 11 
constitute the mathematical formulation of the problem 
under consideration.  
 
 
SOLUTION OF THE PROBLEM 
 
Applying Marchi-Fasulo transform (Marchi and Fasulo, 
1964] (Appendix) to Equation 6, one obtains; 
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Further applying finite Hankel transform to Equation 12, 
we get: 
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Equation 13 is a first order differential equation, whose 
solution is given by: 
  
 














+= ∗∗−

∫ ),(),,(

0

1
1

* 122

nmfdteetnmT
t

tkptkp ψ

               (14) 
 
Applying inversion of Hankel transform and Marchi-
Fasulo transform to Equation 14, one obtains; 
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Equation 15 is the desired solution of the given problem. 
 
 
DETERMINATION OF THERMAL DEFLECTION 
 
Using the value of temperature distribution from Equation 
15 into Equation 2, one obtains; 
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We assume the solution of Equation 1, satisfying 
condition 5 as; 
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where 
m

µ  are the positive roots of the transcendental 

equation,  
 
 0)(1 =aJ mµ

.                                                  (18) 
 
It can be easily seen that  
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Hence solution 17 satisfies condition 5.  
 
Now  
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We use the well known result,  
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In Equation 19, we get; 
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Also  
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Using Equations 21 and 22 in Equation 1, one obtains; 
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On solving Equation 23 we get; 
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Substituting Equation 24 into Equation 17, we get  
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The expression (25) is represented graphically, that is 
Figures 1 and 2. 

 
 
SPECIAL CASE AND NUMERICAL RESULTS 

 
Setting 
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where r  is the radius of the disc and δ  is the Dirac – 

delta function. 
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Using Equation 27 in Equation 16, one obtains; 
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The expression (28) is represented graphically, that is 
Figures 3 and 4. 

 
 
CONCLUSION 

 
In this  paper,  the  temperature  distribution  and  thermal 



 
 
 
 

 
 

Figure 1. Thermal deflection ω(r,t) versus r for different values of t. 

 
 
 

 
 

Figure 2. Thermal deflection ω(r,t) versus t for different values of r. 

 
 
 

 
 
Figure 3. Temperature distribution T versus r for different values of 

t. 
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Figure 4. Temperature distribution T versus t for different values of 

r. 
 
 
 
deflection have been investigated and the results are 
depicted graphically. Mathematical calculations have 
been made in MathCAD, and graphs have been plotted 
for temperature distribution and thermal deflection versus 
r, t and z for different values of time and radius. 

The temperature distribution and thermal deflection of a 
thin circular plate made of aluminium have been 
determined by using the conditions given in the problem 
and applying integral transform techniques. 
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APPENDIX 
 

The finite Marchi-Fasulo integral transform of f (z), -h < z < h is defined to be 
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then at each point of (-h, h) at which f(z) is continuous, 
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The Eigen values an are the solutions of the equation 
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α1, α2, β1 and β2 are constants.   
 
Moreover the integral transform has the following property: 
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