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To estimate the population mean using auxiliary variable there are many estimators available in 
literature like-ratio, product, regression, dual-to-ratio estimator and so on. Suppose that all the 
information of the main variable is present in the sample but only a part of data of the auxiliary variable 
is available. Then, in this case none of the aforementioned estimators could be used. This paper 
presents an imputation based factor-type class of estimation strategy for population mean in presence 
of missing values of auxiliary variables. The non-sampled part of the population is used as an 
imputation technique in the proposed class. Some properties of estimators are discussed and 
numerical study is performed with efficiency comparison to the non-imputed estimator. An optimum 
sub-class is recommended. 
 
Key words: Imputation, non-response, post-stratification, simple random sampling without replacement 
(SRSWOR), respondents (R). 

 
 
INTRODUCTION  
 
In sampling theory, the problem of mean estimation of a 
population is considered by many authors like Srivastava 
and Jhajj (1980, 1981), Sahoo (1984, 1986), Singh 
(1986), Singh et al. (1987), Singh and Singh (1991), 
Singh et al. (1994), Sahoo et al. (1995), Sahoo and 
Sahoo (2001), and Singh and Singh (2001). Sometimes 
in survey situations, a small part of sample remains non-
responded (or incomplete) due to many practical 
reasons. Techniques and estimation procedures are 
needed to develop for this purpose. The imputation is a 
well defined methodology by virtue of which this kind of 
problem could be partially solved. Ahmed et al. (2006), 
Rao and Sitter (1995), Rubin (1976) and Singh and Horn 
(2000) have given applications of various imputation 
procedures. Hinde and Chambers (1990) studied the 
non-response imputation with multiple source of non-
response. The problem of non-response in sample 
surveys immensely looked into by Hansen and Hurwitz 
(1946), Grover and Couper (1998),  Jackway  and  Boyce 
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(1987), Khare (1987), Khot (1994), Lessler and Kalsbeek 
(1992). 

 When the “response” and “non-response” part of the 
sample is assumed into two groups, it is closed to call 
upon as post-stratification. Estimation problem in sample 
survey, in the setup of post-stratification, under non-
response situation is studied due to Shukla and Dubey 
(2001, 2004, and 2006). Some other useful contributions 
to this area are by Holt and Smith (1979), Jagers et al. 
(1985), Jagers (1986), Smith (1991), Agrawal and Panda 
(1993), Shukla and Trivedi (1999, 2001, 2006), Wywial 
(2001), Shukla et al. (2002, 2006). When a sample is full 
of response over main variable but some of auxiliary 
values are missing, it is hard to utilize the usual 
estimators. Traditionally, it is essential to estimate those 
missing observations first by some specific estimation 
techniques. One can think of utilizing the non-sampled 
part of the population in order to get estimates of missing 
observations in the sample. These estimates could be 
imputed into actual estimation procedures used for the 
population mean. The content of this research work takes 
into account the similar aspect for non-responding values 
of the sample assuming post-stratified setup and  utilizing 



  

 
 
 
 
the auxiliary source of data. 

 
 
Symbols and setup 

 
Let U = (U1, U2 , ........., UN) be a finite population of N 
units with Y as a main variable and X the auxiliary 
variable. The population has two types of individuals like 
N1 as number of "respondents (R)" and N2 "non-
respondents (NR)", (N = N1+N2). Their population 
proportions are expressed like W1 = N1/N and W2 = N2 /N.  
Quantities W1 and W2 could be guessed by past data or 

by experience of the investigator. Further, let Y  and X  
be the population means of Y and X respectively. Some 
symbols are as follows: 

 
R-group, Respondents group or group of those who 
responses in survey; 
NR-group, Non-respondents group or group of those who 
denied to response during survey; 

1Y , Population mean of R-group of Y; 

2Y , Population mean of NR-group of Y; 

1X , Population mean of R-group of X; 

2X , Population mean of NR-group of X; 

2

1YS , Population mean square of R-group of Y; 

2

2YS , Population mean square of NR-group of Y; 

2

1XS , Population mean square of R-group of X; 

2

2 XS , Population mean square of NR-group of X; 

YC1 , Coefficient of variation of Y in R-group; 

YC2
, Coefficient of variation of Y in NR-group; 

XC1 , Coefficient of variation of X in R-group; 

XC2 , Coefficient of variation of X in NR-group; 

 , Correlation coefficient in population between X and Y; 

N, Sample size from population of size N by SRSWOR; 

1n , Post-stratified sample size coming from R-group; 

2n , Post-stratified sample size from NR-group; 

1y , Sample mean of Y based on n1 observations of R-

group; 

2y , Sample mean of Y based on n2 observations of NR-

group; 

1x , Sample mean of X based on n1 observations of R-

group; 

2x , Sample mean of X based on n2 observations of NR-

group; 

1 . Correlation Coefficient of population of R-group; 

2 , Correlation Coefficient of population of NR-group 
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Further, consider few more symbolic representations: 
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ASSUMPTIONS  
 

Consider following in light of Figure 1 before formulating 
an imputation based estimation procedure: 
 
1) The sample of size n is drawn by SRSWOR and post-
stratified into two groups of size n1 and n2 (n1 + n2 = n) 
according to R and NR group respectively 
2) The information about Y variable in sample is 
completely available. 

3) The sample means of both groups 1y  and 2y  are 

known such that  

      2211

n

ynyn
y


  which is sample mean on  n  units. 

4) The population means 1X  and X are known. 

5) The population size N and sample size n are known. 
Also, N1 and N2 are known by past data, past experience 
or by guess of the investigator (N1 + N2 = N).  

6) The sample mean of auxiliary information 1x  is only 

known for R-Group, but information about 2x of NR-group 

is missing. Therefore 
 

   2211

n

xnxn
x


 could not be obtained due to absence of 

2x . 

7) Other population parameters are assumed known, in 

either exact or in ratio from except the Y , 1Y  and 2Y . 

 
 
PROPOSED CLASS OF ESTIMATION STRATEGY  
 

To estimate population meanY , in setup of Figure 1, a 

problem to face is of missing observations related to 2x , 

therefore, usual ratio, product and regression estimators 
are not applicable. Singh and Shukla (1987) have 
proposed a factor type estimator for estimating population 

mean Y . Shukla et al. (1991), Singh and Shukla (1993) 
and Shukla (2002) have also discussed properties of 
factor-type estimators applicable for estimating 
population mean. But all these cannot be useful due to 
unknown information

2x . In order to solve this, an 

imputation  
4

*

2x  is adopted as: 
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Fig : 1.1 

2.0   ASSUMPTIONS : 
  Consider following in light of figure 

 
 

Figure 1. Setup to estimate population mean Y . 
 
 

 

The logic for this imputation is to utilize the non-sampled 
part of the population of X for obtaining an estimate of 

missing 2x  and generate 
 2x  for x as describe as 

follows: 
 
And 
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The proposed class of imputed factor-type estimator is: 
 

[( y
FT
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Where  k0 and k is a constant and  

 
A = (k – 1) (k – 2 ); B = (k – 1) (k – 4);  C = (k – 2) (k – 3) (k – 4);   f = n / N. 

 
 
 
LARGE SAMPLE APPROXIMATION 
 
Consider the following for large n: 
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where, 
1

e , 
2

e , 
3

e  and 
4

e are very small numbers 0ie  

(i = 1,2,3,4). 
 
Using the basic concept of SRSWOR and the concept of 
post-stratification of the sample n into n1 and n2 (Cochran, 
2005; Hansen et al., 1993; Sukhatme et al., 1984; Singh 
and Choudhary, 1986; Murthy, 1976), we get 
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Assume the independence of R-group and NR-group 
representation in the sample, the following expression 
could be obtained: 
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The expressions (11), (12), (13) and (15) are true under 
the assumption of independent representation of R-group 
and NR-group units in the sample. This is introduced to 
simplify mathematical expressions. 
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Theorem 1 
 

The estimator [( y
FT

)
D
]
k   

could be expressed under large 

sample approximation in the form: 
 

[( y
FT

)
D
]
k   

= 3Y [1 + s1W1e1 + s2W2e2][1 + (3   3)e3  (3  3)3 
2

3e  + (3  3) 
2

3
3

3e ….. 

] 

 
 
 
Proof  
 

Rewrite 
 4

x as in Equation 2: 
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Where, 
 

p = 
nN

N



2 ;  μ = p + (W1- pf 2)r1 – pf (1-f ) r2. 
 

 

Now, the estimator [( y
FT

)
D
]
k   

under approximation and 

using (16) is 
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Where, 
 
ξ 1 = A + fBμ + C;            ξ 2 = fBW1r1;      ξ 3 = A + fB + Cμ;     ξ 4 = CW1r1; 

r1  =  
X

X1  ; r2 =  
X

X 2 ;   s1  =  
Y

Y1 ;   s2 =  
Y

Y2 ;    3 = 
1

2




;  3 = 
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4
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We can further express the above into following: 
 
= 3Y [1 + s1W1e1+ s2W2e2] (1 + 3e3) (1  3e3+ 2

3
2
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3

3
 3

3e  ……. ) 

=3Y [1+s1W1e1+s2W2e2][1+(33)e3(33)3
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2

3
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BIAS AND MEAN SQUARED ERROR 
 
Define E(.) for expectation, B(.) for bias and M(.) for 
mean squared error, then the first order of 
approximations could be established for i, j = 1, 2, 3, ..... 
as  
 

  0E 21 jiee    when    i+j > 2 

  0E 31 jiee    when    i+j > 2      

  0E 32 ji ee    when    i+j > 2                      (17) 
 
 
Theorem 2   
 

The [( y
FT

)
D
]
k  

is a biased estimator of  Y  with the amount 

of bias to the first order of approximation: 
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Using theorem 1 and taking expectations 
 

E[( y
FT

)
D
]
k   

= 3Y E[1 + (3  3)e3  (3 3) 3 
2

3e
 +  s1W1e1{1 + (3 3) e3    (3 3) 

3 
2

3e }  

+ s2W2e2 {1+ (3 3) e3   (3 3) 3
2

3e }]   

= 3Y [1 (3 3)3 E( 2

3e )+ s1W1(3 3) E(e1e3) + s2W2(3 3)E(e2e3)]   

=  











 2

113333

1
 1 XC

N
DY    












 XY CC

N
DWs 11111133

1
   

=    
















 YXX CWsCC

N
DY 11111311333

1
 1   

 
 
Therefore, 
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Theorem 3 
 

The mean squared error of   [( y
FT

)
D
]
k   

is  
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Using large sample approximations of (17) we could 
express 
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SOME SPECIAL CASES 
 
The term A, B and C are functions of  k. In particular, 
there are some special cases: 
 
 
Case 1   
 
When k = 1 
 

A = 0; B = 0; C =  6;  ξ1= -6;   ξ2= 0;    ξ3= - 6μ;  ξ4= -6r1w1;   3 = 0;  3  = 


11Wr
; 3 = 

1 ; 
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Case 2 
 
When k = 2 
 
A = 0; B = 2; C = 0;   ξ1= -2f μ; ξ 2 = -2fW1r1; ξ 3 = -2f;  ξ 4 = 0; 
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Case 3 

 
When k = 3 
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Case 4 
 
When k = 4; 
 
A = 6;  B = 0;  C = 0 ;  ξ1= 6;  ξ2 = 0;  ξ3 = 6;  ξ4 = 0;  3 = 0;   3= 0; 3 
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ESTIMATOR WITHOUT IMPUTATION 

 
Throughout the discussion, the assumption is unknown 

value of 2x . This is imputed by the term  
42

*x , to provide 

the generation of 
 4x  [Equations (1) and (2)]. Suppose 

the 2x  is known, then there is no need of imputation and 

the proposed (2) and (3) reduces into: 
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Where, k is a constant , 0 < k <   and 
 
A = (k – 1) (k – 2);  B = (k – 1) (k – 4);  C = (k – 2) (k – 3) (k – 4); f = n/N. 

 
 
 
Theorem 4 
 

The estimator   
kwFTy is biased for Y with the amount 

of bias 
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Where, 
 

 CfBA/fB' 1 ;  CfBA/C' 2 . 
 

 
 
Proof   
 

The estimator   
kwFTy  could be approximate like: 
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Expanding above using binominal expansion, and 

ignoring  l

j

k

i ee  terms for ( k + l) > 2,  (k, l = 0, 1, 2 ........), 

(i,  j = 1, 2, 3, 4 ); the estimator result into 
 
         212222111121 11   eYWeYWYYy

kwFT  
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Where, 
 

1 =    
42231121

erWerW''  ;   2 =    2

422311212
erWerW'''   

 
 
And 
 

W1 r1 +W2 r2 = 1 holds.  

 
 
 
 
Further, one can derive up to first order of approximation 
according to the following; 
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The bias of estimator without imputation is  
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Theorem 5 
 

The mean squared error of the estimator   
kwFTy  is 
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Where,   
 

T1 = s1;    T2 =   121 r''   ;    S1 = s2;   S2 =   221 r''   ;   
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Remark 1 
 
At k = 1, k = 2, k = 3 and k = 4, there are some special 
cases of non-imputed estimators with the respective bias 
and mean squared error as laid down with the following 

 
 
Case 5   
 
When k = 1 
 

A = 0 ;  B = 0 ; C =  6 ;   '

1  = 0;   '

2  = 1; T1  = s1 ;  T2  = -r1;    S1 = s1;  S2 = 

r2; 

; 

A = 0 ;  B = 0 ; C =  6 ;   '

1  = 0;   '

2  = 1; T1  = s1 ;  T2  = -r1;    S1 = s1;  S2 = 

r2; 

A = 0 ;  B = 0 ; C =  6 ;   '

1  = 0;   '

2  = 1; T1  = s1 ;  T2  = -r1;    S1 = s1;  S2 = 

r2;  
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Case 6   

 
When k = 2 

 
A = 0;   B = 2;  C = 0;   '

1 = 1;   '

2 = 0;  T1 = s1;   T2 = r1;   S1= s2;    S2 = r2.  
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Case 7 
 
When k = 3 
 
A = 2;   B = 2; C = 0;    '

1  = -f /(1-f)-1;  '

2 = 0;   T1= s1; T2= r1 f (1- f ) -1;    

 S1= s2;   S2= r2 f (1- f ) -1;  
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Case 8 
 
When k = 4, then 
 
A = 6 ;  B= 0 ;  C = 0;  '

1  = 0;   '

2  = 0;  T1= s1;    T2 = 0;     S1= s2; S2 = 0;  
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NUMERICAL ILLUSTRATION 
 
Consider two populations I and II given in Appendix A 
and B. Both populations are divided into two parts as R-
group and NR-group having size N1 and N2 respectively 
(N = N1 + N2). The population parameters are displayed in 
Tables 1 to 6. 
 
 
DISCUSSION  
 

Using   the   imputation  for  2x   by  the  mixture  of  three
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Table 1.  Parameters of population - I (from Appendix A). 
 

Parameter Entire population For R-group For NR-group 

Size N = 180 N1 =100 N2= 80 

Mean Y 03.159Y  60.1731 Y  81.1402 Y  

Mean X 22.113X  45.1281 X  19.942 X  

Mean square Y 18.22052 YS  36.25322

1 YS  90.12192

2 YS  

Mean square X 61.19722 XS  86.23002

1 XS  179242

2 .S X   

Coefficient of variation of Y 295.0YC  2899.01 YC  248.02 YC  

Coefficient of variation of X 392.0XC  373.01 XC  323.02 XC  

Correlation coefficient 897.0XY  857.01 XY  956.02 XY  

 
 

 
Table 2.  Parameters of population - ii (from Appendix B). 

 

Parameter Entire population For R-group For NR-group 

Size N = 150 N1 = 90 N2= 60 

Mean Y 77.63Y  33.661 Y  92.592 Y  

Mean X 2.29X  72.301 X  92.262 X  

Mean Square Y 87.2992 YS  33.3492

1 YS  35.2062

2 YS  

Mean Square X 43.1102 XS  67.1122

1 XS  081002

2 .S X   

Coefficient of Variation of Y 272.0YC  282.01 YC  2397.02 YC  

Coefficient of Variation of X 3599.0XC  345.01 XC  3716.02 XC  

Correlation coefficient 8093.0XY  8051.01 XY  8084.02 XY  
 

Let samples of size n = 40 and n = 30 are drawn from population I and II respectively by SRSWOR and post-

stratified into R and NR-groups. The sample values are in Tables 3 and 4. 
 

 
 

Table 3. Sample values for population – i. 

 

Parameter Entire sample R-group NR-group 

Size n = 40 n1 = 28 n2= 12 

Fraction f = 0.22 - - 
 
 
 

Table 4. Sample values for population – ii 
 

Parameter Entire sample R-group NR-group 

Size n = 30 n1 = 20 n2= 10 

Fraction f = 0.2 - - 
 
 
 

population means is performed. The proposed class is in 
Equation (3) with bias in theorem 2 and mean squared 
error in theorem 3. The class contains some special 
imputed estimators for value k = 1, k = 2, k = 3 and k = 4. 
A non-imputed class of estimator is also developed which 
has bias and mean squared error derived in theorem 4 
and 5. This class also has some special cases. The 
computation   over   two   population    is    made    whose 

description is given in appendix. The two random sample 
of size n = 40 and n = 30 are drawn from populations I 
and II respectively and post-stratified into two groups. 
The Tables 5 and 6 are presenting a numerical 
comparison between imputation and non-imputation class 
over the two populations in terms of their bias and m. s. 
e. The imputation technique (1) is effective because there 
is not much increase in the  mean  squared  error  due  to
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Table 5. Bias and M.S.E. comparisons of   
kDFTy . 

 

Estimator 
Population I Population II 

Bias M.S.E. Bias M.S.E. 

[( y
FT

)
D  

]
k=1

 -2.8775 18.6000 -1.1874 9.8618 

[( y
FT

)
D  

]
k=2

 3.3127 232.4162 3.4360 41.4794 

[( y
FT

)
D  

]
k=3

 -4.0370 8.4710 -0.6377 6.3540 

[( y
FT

)
D  

]
k=4

 0 43.6500 0 9.2675 

 

 
 

Table 6. Bias and MSE comparison of   
kwFTy . 

 

Estimator 
Population I Population II 

Bias M.S.E. Bias M.S.E. 

  
1kwFT

y  0.1433 12.9589 0.1095 6.0552 

  
2kwFTy  0.3141 216.3024 0.1599 46.838 

  
3kwFTy  0.096 4.327 0.031 5.2423 

  
4kwFTy  0 43.65 0 9.2662 

 
 
 

imputation. The k = 3 seems to be a good choice. The k = 
2 performs worst for both sots of data. 
 
 
CONCLUSIONS  
 

The technique of mixture of X , 1X , 2X  performs well 

and the imputed factor-type estimator is very close to 
non-imputed in terms of mean squared error when k = 1, 
2, and 3 holds. The choice k = 3 is better over the other 
two. Performance over population II is superior than I. it 
seems that factor type lass is able to replace the non- 
responded observation in a nice manner. 
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Appendix A. Population I (N= 180); R-group: (N1=100). 
 

Y: 110 75 85 165 125 110 85 80 150 165 135 120 140 135 145 
X: 80 40 55 130 85 50 35 40 110 115 95 60 70 85 115 

Y: 200 135 120 165 150 160 165 145 215 150 145 150 150 195 190 

X: 150 85 80 100 25 130 135 105 185 110 95 75 70 165 160 

Y: 175 160 165 175 185 205 140 105 125 230 230 255 275 145 125 

X: 145 110 135 145 155 175 80 75 65 170 170 190 205 105 85 

Y: 110 110 120 230 220 280 275 220 145 155 170 195 170 185 195 

X: 75 80 90 165 160 205 215 190 105 115 135 145 135 110 145 

Y: 180 150 185 165 285 150 235 125 165 135 130 245 255 280 150 
X: 135 110 135 115 125 205 100 195 85 115 75 190 205 210 105 

Y: 205 180 150 205 220 240 260 185 150 155 115 115 220 215 230 

X: 110 105 110 175 180 215 225 110 90 95 85 75 175 185 190 

Y: 210 145 135 250 265 275 205 195 180 115      

X: 170 85 95 190 215 200 165 155 150 175      
 

NR-group: (N2=80) 

Y: 85 75 115 165 140 110 115 13.5 120 125 120 150 145 90 105 

X: 55 40 65 115 90 55 60 65 70 75 80 120 105 45 65 

Y: 110 90 155 130 120 95 100 125 140 155 160 145 90 90 95 

X: 70 60 85 95 80 55 60 75 90 105 125 95 45 55 65 

Y: 115 140 180 170 175 190 160 155 175 195 90 90 80 90 80 

X: 75 105 120 115 125 135 110 115 135 145 45 55 50 60 50 

Y: 105 125 110 120 130 145 160 170 180 `145 130 195 200 160 110 

X: 65 75 70 80 85 105 110 115 130 95 65 135 130 115 55 

Y: 155 190 150 180 200 160 155 170 195 200 150 165 155 180 200 

X: 115 130 110 120 125 145 120 105 100 95 90 105 125 130 145 

Y: 160 155 170 195 200           

X: 120 115 120 135 150           
 
 
 

Appendix B. Population II (N=150); R-group (N1=90). 

 

Y: 90 75 70 85 95 55 65 80 65 50 45 55 60 60 95 

X: 30 35 30 40 45 25 40 50 35 30 15 20 25 30 40 

Y: 100 40 45 55 35 45 35 55 85 95 65 75 70 80 65 

X: 50 10 25 25 10 15 10 25 35 55 35 40 30 45 40 

Y: 90 95 80 85 55 60 75 85 80 65 35 40 95 100 55 

X: 40 50 35 45 35 25 30 40 25 35 10 15 45 45 25 

Y: 45 40 40 35 55 75 80 80 85 55 45 70 80 90 55 

X: 15 15 20 10 30 25 30 40 35 20 25 30 40 45 30 

Y: 65 60 75 75 85 95 90 90 45 40 45 55 60 65 60 

X: 25 40 35 30 40 35 40 35 15 25 15 30 30 25 20 

Y: 75 70 40 55 75 45 55 60 85 55 60 70 75 65 80 

X: 25 20 35 30 45 10 30 25 40 15 25 30 35 30 45 
 

NR-group (N2=60) 

Y: 40 90 95 70 60 65 85 55 45 60 65 60 55 55 45 

X: 10 30 30 30 25 30 40 25 15 20 30 30 35 25 20 

Y: 65 80 55 65 75 55 50 55 60 45 40 75 75 45 70 

X: 35 45 30 30 40 15 15 20 30 15 10 40 45 10 30 

Y: 65 70 55 35 35 50 55 35 55 60 30 35 45 55 65 

X: 30 40 30 10 15 25 30 15 20 30 10 20 15 30 30 

Y: 75 65 70 65 70 45 55 60 85 55 60 70 75 65 80 

X: 30 35 40 25 45 10 30 25 40 15 25 30 35 30 45 

 


