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Abstract

In this Letter we investigate the dependency with scale of the empirical probability distribution functions (PDF) of
Elsasser increments using large sets of WIND data (collected between 1995 and 2017) near 1 au. The empirical
PDF are compared to the ones obtained from high-resolution numerical simulations of steadily driven,
homogeneous reduced MHD turbulence on a 20483 rectangular mesh. A large statistical sample of Alfvénic
increments is obtained by using conditional analysis based on the solar wind average properties. The PDF tails
obtained from observations and numerical simulations are found to have exponential behavior in the inertial range,
with an exponential decrement that satisfies power laws of the form αl∝ l−μ, where l is the scale size, with μ
between 0.17 and 0.25 for observations and 0.43 for simulations. PDF tails were extrapolated assuming their
exponential behavior extends to arbitrarily large increments in order to determine structure function scaling laws at
very high orders. Our results point to potentially universal scaling laws governing the PDF of Elsasser increments
and to an alternative approach to investigate high-order statistics in solar wind observations.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Interplanetary turbulence (830); Solar
wind (1534)

1. Introduction

Decades of spacecraft observations have shown that the solar
wind properties exhibit random fluctuations over a wide range
of lengthscales consistent with a turbulent state (Bruno &
Carbone 2013). For scales larger than any plasma microscale,
such as the ion and electron gyroradius, the power spectra of
velocity and magnetic fluctuations obeys a power law similar to
the Kolmogorov k−5/3 law for fluid turbulence (Kolmogorov
1941a, 1941b; K41 hereafter), which has long been thought to
arise from an incompressible Magnetohydrodynamics (MHD)
turbulent cascade mediated by Alfvénic fluctuations (Cole-
man 1968; Belcher et al. 1969).

Since the pioneering work of Iroshnikov (1963, 1964) and
Kraichnan (1965; IK hereafter), predicting a power spectrum
scaling∝ k−3/2, most MHD turbulence models (Goldreich &
Sridhar 1995; Lithwick et al. 2007; Chandran 2008; Beresnyak
& Lazarian 2008; Boldyrev 2005; Perez & Boldyrev 2009) are
based on Kolmogorov’s assumption that the spatial distribution
of fluctuations is self-similar in the inertial range. Self-
similarity is intuitively associated with the fact that fluctuations
at each scale l∼ 1/k are space filling. However, fluid
turbulence experiments and simulations (Anselmet et al.
1984; Gotoh et al. 2002), and solar wind observations
(Burlaga 1991) show that at smaller scales the distribution of
turbulent fluctuations becomes increasingly sparse. This
departure from self-similarity, which is called intermittency,
plays an important role in plasma heating processes (Sundkvist
et al. 2007; Zhdankin et al. 2016).

The first observations of intermittency in the solar wind by
Burlaga (1991) were followed by numerous works on the subject

using nearly every spacecraft to date, for a recent review see
Bruno (2019). The large majority of these works have focused on
the intermittency of velocity v and magnetic field B. However, the
so-called Elsasser fields pr= z v B 4 (Elsasser 1950) are
more fundamental variables in MHD turbulence given that,
contrary to kinetic and magnetic energy, their energies are subject
to a conservative cascade. In this work we use the largest
statistical sample to date of turbulent increments in the solar wind
from the WIND spacecraft, spanning 23 yr from 1995 to 2017,
and from high-resolution numerical simulations of steadily driven
MHD turbulence to investigate the scale-dependent probability
distribution functions (PDF) of Elsasser increments. Our analysis
is based on conditional statistics to ensure Elsasser increments
belong to Alfvénic fluctuations. The large statistical sample allows
us to empirically estimate the PDF of the turbulence increments
over many standard deviations, capturing a significant portion of
those heavy tails that are signature of intermittency. Exponential
least square fits of these tails are obtained to investigate their
dependency on the scale, which in turn we use to extrapolate
empirical PDF to obtain estimates of structure functions to higher
orders than those allowed by the finite data sample. These results
show the first empirical evidence of potentially universal scaling
laws governing the PDF tails of Elsasser increments in the solar
wind, and enable a new venue to investigate intermittency that
allows for direct comparisons with new and existing theoretical
models.
This paper is organized as follows. In Section 2 we provide a

brief theoretical background of intermittency in MHD and solar
wind turbulence in order to provide minimal context and
notation that will be used in the rest of this paper. In Section 3
we describe the solar wind observations from the WIND
spacecraft and numerical simulations, as well as the methodol-
ogy used in this work to obtain Elsasser increments and their
corresponding PDF. In Section 4 we show and discuss our
results and in Section 5 we present our conclusions.
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2. Theoretical Framework

The statistical properties of MHD turbulence are often
described in terms of the statistical moments of longitudinal
increments (Biskamp & Müller 2000)

d d= l x l z l xz t t, , , , , 1L ( ) ˆ · ( ) ( )

where δz±(l, x, t)≡ z±(x+ l/2, t)− z±(x− l/2, t) represent a
typical turbulent fluctuation at scale l= |l|, l represents a scale
vector in the plane perpendicular to the mean background
magnetic field, and l̂ is the unit vector in the direction of l. In
the homogeneous and stationary state, these moments, known
as structure functions, are expected to satisfy universal power
laws of the form

d= á ñ = z   
x lS l z a l, , 2n L

n
n n( ) ∣ ( )∣ ( )

for lengthscales l in the inertial range. In this expression, we
use á ñ to denote a suitable ensemble average and an are
nonuniversal coefficients that solely depend on n.

Kolmogorov’s self-similarity assumption implies that the
scaling exponents zn are linear in n

z = > h n h, 0, 3n ( )

where h± are constants. Although dimensional arguments can
be used to uniquely determine h= 1/3 in fluids, they alone are
not sufficient to determine h± in MHD. IK and K41 scaling
correspond to h±= 1/4 and h±= 1/3, respectively.

Multifractality arises assuming that the turbulence cascade
accumulates on multiple fractal sets with different fractal
dimensions, resulting in a range of scaling exponents
Îh h h,min max[ ] in which fluctuations satisfy local scale

invariance with the corresponding scaling index h. In this
picture, the scaling of structure functions at each order n results
from the fractal set with index h that has the most dominant
contribution to the average of the nth order power of the
corresponding increment. As a result, the dependency with n of
the scaling exponents ζn becomes nonlinear, because at each n
the largest contribution to the statistical average arises from a
fractal set with a different h value.

Structure functions are defined in terms of hypothetical
ensemble averages, which assume an arbitrarily large number
of identical realizations of the system. In practice, an ergodicity
assumption has to be invoked in the homogeneous and
stationary state in order to empirically estimate these averages
using a finite sample. In reality, an exact calculation of these
structure functions is only possible if the PDF governing the
increments were known, which provides the most comprehen-
sive description of turbulence theory. The PDF u( )P of a
random variable u is defined such that u du( )P is the
probability of finding the random variable u between u and
u+du. The structure functions can then be written in terms of
the scale-dependent PDF  u l,( )P associated with the corresp-
onding Elsasser fields as

ò=

-¥

¥
S l u u l du, , 4n

n( ) ( ) ( )P

where u represents the increments of the fields. Note that in this
work we define structure functions in terms of the increment
magnitude |u|, which in general exhibit a more distinct scaling
behavior and are expected to show the same exponents as the
moments of u (Biskamp & Müller 2000). Performing a

statistical study of increments using the PDF is an alternative
venue to study intermittency in the inertial range (Sorriso-
Valvo et al. 1999; Barndorff-Nielsen et al. 2004), which is one
of the main objectives of this Letter.

3. Data and Methodology

We use data for density ρ, magnetic field B, and velocity v
from the WIND spacecraft. The 23 yr of data from the WIND/
3DP instrument (3D plasma analyzer) with a resolution of
∼24 s were used. Velocity and magnetic field increments were
carefully selected to ensure they belong to periods of
homogeneous and incompressible turbulence in the slow and
fast solar wind. For solar wind observations data were first
resampled to a uniform grid of 24 s using linear interpolation
and any gaps that the data may have were discarded. The local
mean quantities ρavg(t), Bavg(t), and vavg(t) were calculated for
each point using a moving average with a 2 hr window for fast
wind and an 8 hr window for slow wind. In order to match the
best possible conditions for Alfvénic turbulence, the mean
plasma properties were restricted so that the mean bulk speed
remains in the range 500< vavg< 700 km s−1 for fast wind and
280< vavg< 480 km s−1 for slow wind, d B B 0.2avg∣ ∣/ with
mean magnetic field magnitude Bavg< 12 nT and Bavg< 8 nT
for fast and slow wind, respectively, and density fluctuations
that are much smaller than the local average density, δρ/
ρ� 0.15 to ensure incompressibility. Assuming the turbulence
is strong (Goldreich & Sridhar 1995), we estimate the
turbulence anisotropy k∥/k⊥∼ dB Bavg∣ ∣/ ∼ 0.2, and restrict
the sampling to be nearly perpendicular to the background
field, i.e., q sin 0.2VB , where θVB is the angle between vavg
and Bavg. Based on this condition we restrict the sampling
angle to be in the range 50°� θVB� 130°.
We invoke the Taylor frozen-in-flow hypothesis (Taylor

1938) to interpret temporal signals as spatial variations, where
spatial increments at scale l correspond to temporal increments
at timescale τ= l/vsw, where vsw is the mean solar wind speed.
Based on this assumption, Equation (1) can be used to calculate
increments whenever the conditions described above (to ensure
the increment belongs to an Alfvénic interval) are satisfied at
the three times, t− τ/2, t, and t+ τ/2. Using data from 1995 to
2017, around 1.5× 106 realizations for fast wind and 1× 106

realizations for slow wind were obtained.
In order to establish comparisons with observations, we also

use pseudospectral simulations of steadily driven, strong
balanced reduced MHD turbulence (RMHD) on a rectangular
grid with 20483 mesh points, which are described in detail in
Perez et al. (2012). The simulations describe turbulent Alfvénic
fluctuations like those we focus on in observations, with the
exception that simulations have zero cross helicity (balanced
turbulence or z+∼ z−). A total of 30 snapshots of the turbulent
fields zα(x)= z±(x, tα) with α= 1, 2,K,30 in the steady state
are used from the simulations. Spatial field increments
perpendicular to the background of the magnetic field are
sampled at a random set of N points xi, with i= 1, 2,K,N,
generating around 2× 109 realizations, approximately 1000
times more samples than we obtain from observations.
Once increments are calculated for these three systems,

empirical PDF of Elsasser increments are constructed from
estimated histograms of the statistical samples for each
timescale τ in observations and lengthscale l in simulations.
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4. Results and Discussions

Solid lines in Figure 1 show the estimated PDF for the three
systems, normalized using the scale-dependent standard
deviation σl, for three representative scales within the inertial
range: near the outer scale (where energy is injected) in green,
near the middle of the inertial range in red, and near the
dissipation range in blue, while black curves represent a
normalized Gaussian for reference. Dashed lines represent an
exponential extension of these PDFs. The presence of
intermittency becomes evident as the PDF tails become heavier
at smaller scales, signifying a departure from self-similarity.

One of the main challenges in the empirical estimation of
PDF is that any measurement necessarily involves a finite
number of samples, leading to noisy tails, which in turn
becomes a source of error in the estimation of statistical
averages. In order to reduce the noise, we applied a Savitzky &
Golay (1964) filter based on third-order polynomials to each
PDF. From our data samples, the resulting PDF cover an
increment range of up to 7 standard deviations for fast wind, 10
for slow wind, and 15 for simulations, making them to the best
of our knowledge the largest well-defined tails to date (Bruno
et al. 1999; Sorriso-Valvo et al. 1999; Sundkvist et al. 2007;
Salem et al. 2009; Greco et al. 2010; Alexandrova et al. 2013).

Most empirical results obtained in simulations (Chandran
et al. 2015; Mallet et al. 2016) and observations (Bruno 2019)

thus far are only valid for structure functions of low order, i.e.,
for small values of n 4 or 5. At a given order n and scale l,
S ln ( ) represents the area under the curve generated by

= u l u u l, ,n
n( ) ( )I P , which for convenience we call the

distribution of the nth order moment. Empirical estimations of
 u l,n ( )I for solar wind observations show that the distribution

does not drop to zero fast enough, within the range of measured
values, at high order (colored curves in the middle and lower
panels of Figure 1), resulting in an underestimation of the
corresponding moment, and providing just the first three or four
moments with reasonable accuracy. If one assumes that the
observed exponential behavior of the tails in the inertial range
persists for large increment values (or rare events not captured
by the original data), we can use a least-fit square (from 3σ,
3.5σ, and 4.5σ for fast wind, slow wind, and simulations,
respectively) to analytically extrapolate the tails as µ a-e ll ∣ ∣,
where αl is a positive scale-dependent free parameter
describing the tails’ exponential decrement.3

Interestingly, the exponential decrements a
l , shown in

Figure 2, exhibit a power-law behavior in the inertial range
(indicated by the vertical dashed lines) both in observations and
simulations. For fast and slow wind, the scaling exponent for
a+

l are remarkably similar a µ+ -ll
0.25 for z+ increments, while

Figure 1. Top panels: continuous lines represent the estimated PDFs + u l,( )P vs. u/σl for fast wind (left), slow wind (middle), and simulation (right), where d= +u zL .
Note that for spacecraft data the space lag is l = VSWτ via Taylor’s Hypothesis, and σl represents the standard deviation at scale l. Middle and bottom panels:
distribution of nth moment + u l,n ( )I normalized to its maximum value ( +

n,maxI ) for fast wind (left), slow wind (middle), and simulation (right) for two different lags
near the end (middle panel) and beginning (bottom panel) of the inertial range. Dashed lines represent the approximation of the PDF extending the tails assuming an
exponential behavior.

3 In this work we assume the skewness of the PDF is small enough to assume
that the tails are nearly symmetric.
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the scaling for z− increments differs between fast and slow
wind. In the former case, it is found that a-

l is nearly scale-
independent, suggesting that z− increments are less intermit-
tent. For slow wind, the a-

l power law is slightly flatter than
that of a+

l , suggesting that both z+ and z− exhibit intermittent
behavior. The power laws that we obtained for the exponential
decrement a

l in solar wind measurements are remarkably close
to those previously reported in hydrodynamic turbulence from
wind tunnel experiments, αl∝ l−0.17, by Praskovsky &
Oncley (1994).

In order to obtain better estimates of S ln ( ) at high order,
under the assumption that the exponential tails extend beyond
the measurable range, we use PDF with extrapolated tails,
shown by the dashed lines in Figure 1, to numerically evaluate
the integral in Equation (4). Figure 3 shows t+Sn ( ) for n= 3 and
n= 10 for slow wind calculated using the PDF directly
constructed from observations (black stars) and PDF with
extrapolated exponential tails (blue stars). The overlap between
black and blue stars in the top panel shows, as expected, that
using either PDF to estimate S3 leads to the same result. The
bottom panel shows that S10 is underestimated at each scale
when the empirical PDF is used vs the extrapolated one.
Remarkably, its inertial-range scaling remains nearly identical
for both PDFs, suggesting that at each scale S10 estimated from
the empirical PDF represents the same fraction of its estimate
with the extrapolated one. A similar result was observed in
neutral fluid experiments by Anselmet et al. (1984) up to
order n= 18.

We identify the inertial range as the region where its power-
law fit (black line) intersects the corresponding fits in the
dissipation (green line) and outer scale (red line) ranges. Using
this method we identify the inertial range from 200 to 2000 s
for slow wind, from 200 to 700 s for fast wind, and 64δx to
256δx where δx represents the grid size in simulations. In order
to determine the scaling exponents more accurately we use the
so-called Extended Self Similarity (ESS; Benzi et al. 1993). For
reasons that are still not well understood, plotting Sn as a
function of S3 instead of l leads to extended power-law scaling,
even outside the inertial range. The reason why Benzi et al.
(1993) selected S3 is because this is proportional to the scale
size in hydrodynamics. Although for MHD, turbulence S3 is
not necessarily proportional to l, it has also been found that
using ESS leads to extended power-law regions. The only
disadvantage is that scaling exponents g

n measured from ESS

are related to zn as g z z=  
n n 3 , which still requires an

accurate estimation of z3 .
Figure 4 shows the scaling exponents of structure functions

up to order n= 12 for δz+ and δz− using ESS for the three
systems, namely, the fast and slow wind as well as simulations.
The scaling exponents z+n are represented by black symbols and
z-n by red symbols, while those exponents resulting from the
empirical PDF are represented by star symbols and those
resulting from the empirical PDF are represented by diamonds.
With the exception of z-n in fast wind (left panel) all scaling
exponents are nonlinear in n, which suggests multifractal
behavior.

Figure 2. Exponential decrements of extended tails αl for d +zl (black) and d -zl (blue) in the fast solar wind (left), slow solar wind (center), and simulation (right). Here
l/Lout represents the increment scale normalized with respect to the outer scale Lout which corresponds to 700 s for fast wind, 2000 s for slow wind, and 256δx for
simulations. Vertical lines represent the limits of the inertial range.

Figure 3. Third (top) and tenth (bottom) order structure functions for δz+ of
slow wind calculated using the empirical PDF (black marks) and the
extrapolated PDF using exponential tails (blue marks) vs. time lags. Green
and red lines show power-law fits for the dissipative and injection regions,
respectively, while the black vertical lines indicate the lower and upper limits
of the inertial range.
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One of the most successful multifractal models in hydro-
dynamic turbulence was presented by She & Leveque (1994),
based on log–Poisson distributions, which was later extended
by Horbury & Balogh (1997) to MHD turbulence for K41
scaling (h= 1/3)

z = + - ⎛
⎝

⎞
⎠

n

9
1

1

3
, 5n

n
HB

3

( )

and by Grauer et al. (1994) and Politano & Pouquet (1995) for
the IK scaling (h= 1/4)

z = + - ⎛
⎝

⎞
⎠

n

8
1

1

2
. 6n

n
GPP

4

( )

These models are of particular interest because they contain no
freely adjustable parameters. More recently, Chandran et al.
(2015) proposed a new model based on Alfvén wave collisions,
assuming that each balanced collision reduces a fluctuation’s
amplitude by a constant factor β; 0.691, leading to a simple
relation for the scaling exponents,

z b= -1 . 7n
nCH ( )

A similar result was obtained by Mallet & Schekochihin’s
(2017) phenomenological model with β= 0.7.

Figure 4 shows comparisons between empirical results and
the following theoretical predictions: the self-similar models
with h±= 1/3 (ssK41) and h±= 1/4 (ssIK) in Equation (3),
Horbury and Balogh (HB), Grauer et al., Politano and Pouquet
(GPP) and Chandran et al. (CH) models in Equations (5), (6)
and (7) respectively. For z+n , we observe that up to n= 12 the
values estimated from the empirical PDF (or the standard
method) are very close to those obtained with extrapolated
PDF. The multifractal behavior of z+n is evident in the strong
departure from self-similarity in all three cases. In contrast, z-n
shows little departure from self-similarity and is very close to
the ssIK model calculated using PDFs with an extrapolated tail.
As opposed to z+n , our results also show that for high orders the
scaling exponents z-n are in fact different when the PDF tails
are extrapolated. The exponent of +S4 for fast wind is very close
to 1, suggesting that 〈δz+〉∝ l, consistent IK scaling. For slow
wind, the first six scaling exponents are remarkably close to the
CH model. In contrast to observations, ζ+ and ζ− are very
similar in simulations because they correspond to a steady state
of balanced turbulence, in which Elsasser variables have
comparable amplitudes.

5. Conclusions

Accurate measurements of structure functions provide
critical information about the development of intermittency
and help to understand the energy transfer in the inertial range.
In this Letter we proposed a methodology to obtain Elsasser
increments that allows us to collect the largest possible
statistics of Alfvénic solar wind for fast and slow wind. The
statistics were large enough that we were able to construct PDF
of increments at each scale spanning up to 7 and 10 standard
deviations for fast and slow wind, respectively, with less noisy
and statistically better-defined tails than previous works (Bruno
et al. 1999; Sorriso-Valvo et al. 1999; Sundkvist et al. 2007;
Salem et al. 2009; Greco et al. 2010; Alexandrova et al. 2013;
Osman et al. 2014).
Proper estimation of high-order structure functions requires

accurate estimations of the PDF tails. However, this is normally
not possible with a finite statistical sample, as they rely on rare
events. Because of our substantially large statistical sample
obtained through conditioning of 23 yr of observations (∼106

samples) and an even larger sample in simulations (∼109), we
were able to identify exponential tail behavior over several
standard deviations in the inertial range, with an exponential
decrement that satisfies well-defined power-law behavior of the
form αl∝ l−μ, with μ between 0.17 and 0.25 for observations
and 0.43 for simulations. This observed scaling of the
exponential decrement, not previously reported in the solar
wind literature, is very similar to those observed in fluid
experiments, suggesting that this is potentially an intrinsic (or
universal) property of the PDF of Elsasser increments. If this
exponential behavior persists well beyond the measurable
range, it could help us obtain a deeper understanding of
intermittency in the solar wind, such as the scaling of high-
order structure functions beyond the limit imposed by empirical
data with a finite sample.
Under the assumption that in the inertial range the behavior

of the tails remains exponential beyond the maximum
measurable increment, as observed in simulations, we extra-
polated the PDFs as long as needed to improve calculations of
structure functions and the corresponding scaling exponents.
The scaling exponent of S3 in the inertial range is observed to
be smaller than unity for both Elsasser increments in the three
experiments, suggesting a deviation from K41 theory and
similar models. The scaling exponents ζ+ confirm the multi-
fractal nature of δz+ increments. Although none of the models
presented in Section 4 fully describes the behavior of
exponents for δz+ in all three systems, we found that for fast

Figure 4. Scaling exponents for d +zL and d -zL increments for fast wind (left), slow wind (middle), and simulation (right) directly calculated with the experimental data
(ζe) and using the PDF modeled with exponential tails (ζm). ESS is applied in all cases.
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wind observations S4 has a value very close to 1, consistent
with IK scaling, while for slow wind, the first moments are
very close to those predicted by CH model, and substantially
deviates from observations for n> 6. For δz−, both fast and
slow wind reveal self-similar behavior with h=1/4 using PDFs
with extrapolated tails, which can potentially shed some light
on the possible sources of these fluctuations.
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