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ABSTRACT 
 

The aim of this research was to characterize the effect of a pre-transplant calcium cyanamide 
fertilization on weed control in the potted bedding ornamental plant Impatiens wallerana and to 
describe the physiological mechanisms involved. The positive effect of a calcium cyanamide 
amendment included both ammonium toxicity on weed seed germination and a decrease of weed 
rates growth such as relative leaf expansion rate (RLAE) and relative growth rate (RGR). Data 
showed RGR-NAR (net assimilation rate), RLAE-RGR, RLAE-NAR and RGR-root dry weight 
relationships, which would explain ammonium toxicity to roots and weed growth responses. These 
effects probably could be explained by a change in hormonal root synthesis. Our results showed 
that a pre-transplant calcium cyanamide amendment combining with a transplant routine optimize 
both I. wallerana growth and weed control.  
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1. INTRODUCTION 
 

Peat moss is the most common organic 
substrate used in growing media for propagation 
and pot plants. The increasing demand of 
growing media for greenhouse horticultural uses 
and the scarcity and increasing cost of traditional 
substrates based on Sphagnum peat moss, have 
raised the interest in new substrates [1,2]. The 
amount of peat used in the mixes was reduced 
from 77% on average in the commercial standard 
mixes to 30% on average in the new mixes and 
go on [3]. Despite of the physical and chemical 
limits, one of the main difficulties arises in pot 
weed control [4] because pre- and post-
transplant herbicides in ornamental plants result 
in phytoxycity [5] or stunting [6,7]. 

 
The most popular organic alternatives were coir 
products [8], which increased from 17 to 40%. 
Other alternatives used were various barks [9], 
rice hulls [10], wood fibers [11], composts [12, 
13] and river waste (‘temperate peat’) [1]. Those 
alternatives were used in mixtures from 5 to 
50%. River waste or ‘temperate peat’ is the result 
of the accumulation of plants residues under an 
anaerobic environment, which is dredged from 
river or lake banks. The sedimentary organic 
matter is derived from the delta plain vegetation 
and is highly dominated by phytoplasts (plant 
debris). The result is a fine-grained, black, oozy 
sediment deposited in the bottom of the coasts 
[14] with a high weed seed bank. 

 
Recently, Sala et al. [15] showed that the use of 
calcium cyanamide to fertilize Impatiens 
wallerana plants in substitution of the traditional 
liquid fertilization system would increase crop 
productivity. Calcium cyanamide would be a 
better alternative than other coated products 
used as controlled-release fertilizer, especially 
under a global temperature increase or low 
environmental greenhouse facilities. 
 
Calcium cyanamide has been one of the 
potential candidates as soil disinfectant since the 
restriction of methyl bromide in soil fumigation 
due to its ecological risk [16,17]. From its 
introduction in the 1950’s, cyanamide was used 
as a pre-emergence herbicide [18,19]. On the 
other hand, cyanamide is multifunctional for 
agricultural purposes because it serves in the soil 
as an insecticide, fungicide, and herbicide for a 
time after application, then decomposes to urea 
in the soil, and finally is absorbed by crops as 

fertilizer. Calcium cyanamide showed as far as 
80% annual weed control [20,21], but the 
physiological mechanism underlying this 
phenomenon is still not clearly understood. 
 
The aim of this research was to characterize the 
effect of a pre-transplant calcium cyanamide 
fertilization on weed control in the potted bedding 
ornamental plant Impatiens wallerana and to 
describe the physiological mechanisms involved. 

 

2. MATERIALS AND METHODS 
 
2.1 Plant Material and Treatments 
 
Three experiments were carried out in the 
Faculty of Agronomy campus, University of 
Buenos Aires, Argentina (34°35’ 59’’S, 58°22’ 
23’’W) during December 2015 and repeated 
during December 2016. Two growth experiments 
were performed in an acclimatized greenhouse 
and a germination experiment was carried out at 
the campus laboratory. 
 
For the first growth experiment (experiment 1), 
Impatiens wallerana ‘Xtreme White’ seeds 
(Goldsmith Inc., NY, USA) were grown in 50-
plastic plug trays (55.70 cm

3
 cell

-1
) in a 

Klasmann411® medium (Klasmann-Deilmann, 
GmbH, Germany) for 35 days. When seedlings 
reached the transplant stage, they were 
transplanted into 1,200 cm

3
 pots filled with a 

Sphagnum maguellanicum-river waste-perlite 
(40-40-20, v/v/v) medium. At the beginning of the 
experiments total porosity (%), air-filled porosity 
(%), container capacity (%) and bulk density (g 
cm

-3
) were 63.50, 17.06, 10.06 and 0.35 

respectively. Weeds were manually removed. 
 
Treatments included different calcium cyanamide 
(CC) concentrations (0, 1.0, 1.5 and 2.0 kg m

-3
; 

equivalent to added 0, 1.2, 1.8 and 2.4 g N pot
-1

) 
(Perlka®, AlzChem, Trostberg, Germany) added 
one week before transplanting and a fertiirrigated 
control. Additional phosphorus and potassium 
was added to calcium cyanamide treatments 
through overhead irrigation water to avoid 
deficiencies in these nutrients. A weekly 
fertiirrigated control of 1.0: 0.05: 1.0: 0.5 (v/v/v/v) 
N: P: K: Ca (nitric acid, phosphorus acid, 
potassium nitrate, and calcium nitrate; 
Agroquímica Larocca S.R.L., Buenos Aires, 
Argentina) through to the overhead irrigation 
water (150 mg L–1 N; equivalent to 2.2 g N pot-1) 
according to Styer and Koranski [22] was 
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included. This fertilizer combination and nitrogen 
concentration, neutralized at pH= 5.8, optimize I. 
wallerana growth. 
 
A second growth experiment (experiment 2)           
was carried out to evaluate the same CC 
treatments tested in experiment 1 on weed 
appearance. Twenty 1,200 cm

3
 pots filled with a 

Sphagnum maguellanicum-river waste-perlite 
(40-40-20, v/v/v) medium and the same calcium 
cyanamide concentrations than in experiment 1 
were used.  
 
Daily mean temperatures (21.01 to 25.85°C) and 
daily photosynthetic active radiation (5.63 to 7.01 
mol photons m

–2
 day

–1
) for the two experiments 

were recorded with a HOBO sensor (H08-004-
02) (Onset Computer Corporation, MA, USA) 
connected to HOBO H8 data logger. The plants 
were arranged at a density of 25 plants m

-2
, 

which avoided mutual shading. 
 
For the germination experiment (experiment 3) 
four replications of 100 weed seeds from the 
river waste medium component were uniformly 
distributed on a single sheet of filter paper 
adequately wetted with 40 ml of distilled water 
(and daily rewetted) in transparent polyethylene 
boxes and incubated in a germination chamber 
at 25°C. 
 

2.2 Assessed Variables 
 

Impatiens wallerana plants were harvested at the 
transplant stage and at 15, 30, 45 and 60 days 
after transplanting (experiments 1 and 2) while at 
the same time weeds were harvested and 
identified (experiment 2). Roots were washed 
and root, stem, leaf and flower fresh weights 
(FW) were recorded. Dry weights (DW) were 
obtained after drying roots, stems and leaves to 
constant weight at 80°C for 96 h. The number of 
leaves was recorded, and each leaf area was 
determined using the ImageJ® (Image 
Processing and Analysis in Java) software. The 
relative growth rate (RGR) was calculated as the 
slope of the regression of the natural logarithm 
(ln) of whole plant DW versus time (in days). The 
rate of leaf area expansion (RLAE) was 
calculated as the slope of the regression of the 
natural logarithm (ln) of total leaf area versus 
time (in days). The mean net assimilation rate 
(NAR) was calculated as follow: 
 

0

0

= 
w

a

k t

w
k t

k W e
NAR

A e
 

where W0: extrapolated value of total DW (g) at 
time zero; kw: RGR (g g

-1
 day

–1
); A0: extrapolated 

value of leaf area (cm
2
) at time zero; ka: RLAE 

(cm cm
-2

 day
–1

); t: time (days) at the midpoint of 
the experimental period and e: base of the ln. 
 
Weed germination rates were calculated 
according to the proposal made by Maguire [23]. 

 

2.3 Experimental Design and Statistical 
Analysis 

 
The experimental designs was a completely 
randomized block for experiments 1 and 2, while 
a completely aleatory design for experiment 3 
was used. Since there were no significant 
differences between the two yearly experiments, 
data were combined (n = 40). Data were 
subjected to three-way analysis of variance 
(ANOVA). STATISTICA 8 (StatSoft) software 
was used for statistical analysis and the 
assumptions of ANOVA were checked. Least 
significant differences (LSD) values were 
calculated as well. Means were separated by 
Tukey’s tests (P ≤ 0.05). Slopes from straight-line 
regressions of RGR and RLAE values were 
tested using the SMATR package [24]. 

 

3. RESULTS 
 
3.1 Impatiens wallerana Biomass 

Accumulation 
 
I. wallerana FW (90 days from transplanting) 
showed significant differences between the 
fertirrigated control plants (FC) and most CC-
fertilized. The CC doses for higher                       
response were 1.5 and 2.0 kg m

-3
 (Fig. 1). The 

total FW increase was achieved through 
increases mainly in shoots and in less proportion 
in leaves. 
 
Both CC-1.5 and CC-2.0 treatments significantly 
increased I. wallerana RGR, RLAE and NAR 
related to the rest of CC plants or fertiirrigated 
control plants (Table 1). 
 

3.2 Weed Appearance, Weed 
Germination and Weed Growth 

 
A CC pre-transplant soil fertilization significantly 
decrease both dicotyledonous (Fig. 2a) and 
monocotyledonous (Fig. 2b) weeds per pot. The 
greater CC concentration the lower total weed 
appearance (Fig. 2c). 
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Fig. 1. Fresh weight at the end of the experiment 1 in different plant organs of Impatiens 
wallerana plants fertilized with four calcium cyanamide fertilizer concentrations (0, 1.0, 1.5 and 

2.0 Kg m
-3

) and a fertiirrigated control (FC) (n = 40). The standard errors over each bar have 
been indicated. Different lower-case letters indicate significant differences (P < .05) between 

CC-fertilized plants 

 

 
Fig. 2. Changes in dicotyledonous (a), monocotyledonous (b) and total (c) weed number in 

pots fertilized with four calcium cyanamide fertilizer concentrations (0, 1.0, 1.5 and 2.0 Kg m
-3

) 
(n = 40). Vertical lines indicate least significant differences (LSD) 
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Table 1. Changes in the relative leaf area expansion (RLAE), the relative growth rate (RGR) and 
the net assimilation rate (NAR) estimated from Impatiens wallerana plants fertilized with four 

calcium cyanamide fertilizer concentrations (0, 1.0, 1.5 and 2.0 Kg m
-3

) and a fertiirrigated 
control (FC) (n = 40) (Experiment 1). Different lower-case letters indicate significant differences 

(P < .05) between CC-fertilized plants 
 

Calcium cyanamide 

(kg m
-3

) 

RLAE 

(cm cm
-2

 day
-1

) 

RGR  

(g g
-1

 day
-1

) 

NAR 

(g cm
-2

 day
-1

) x 10
-5

 

0 0.047b 0.083b 41.03b 

1.0 0.068
a
 0.099

ab
 47.96

a
 

1.5 0.072
a
 0.103

a
 46.15

a
 

2.0 0.086
a
 0.104

a
 47.48

a
 

Fertiirrigated control 0.065
a 

0.095
ab 

46.04
a 

 
In control pots, RLAE, RGR and NAR                      
values were high and different between weed 
species, but the higher the CC dose the lower 
RLAE, RGR and NAR. Higher CC doses (1.5 and 
2.0 Kg m

-3
) were significantly phytotoxic for the 

most weeds present in the growing media (Table 
2). 

 
Weed germination percentages were   
significantly decreased from near 70% in control 
plots to 30% with the low CC doses (0.5 kg m

3
). 

Higher CC doses (1.5 and 2.0 kg m
-3

)                     
decrease seed germination until 20% and 4.5% 
respectively (Fig. 3). When the germination rates 

were performed, the differences for the                   
higher and the lower CC concentration related to 
control plots were between 26% and 1.9% 
respectively. 

 
When plotting the data from all weeds                            
and treatments, we found a direct relationship 
between RLAE versus RGR (Fig. 4a) and                   
RGR versus root dry weight (Fig. 4d)                      
(r

2
=0.781 and 0.703 respectively). On the other 

hand, a logarithmic relationship between                     
both RGR (Fig. 4b) and RLAE                                 
(Fig. 4c) versus NAR (r

2
 = 0.834 and 0.733 

respectively). 

 

 
 

Fig. 3. Effect of four calcium cyanamide fertilizer concentrations (0, 1.0, 1.5 and 2.0 Kg m-3)  
(n = 40) on weed seed germination. Vertical line indicate least significant differences (LSD). 
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 Table 2. Effect of four calcium cyanamide fertilizer concentrations (0, 1.0, 1.5 and 2.0 Kg m
-3

) on the rate of leaf area expansion (RLAE), the relative 
growth rate (RGR) and the net assimilation rate (NAR) of the weeds in the growing media used for the experiments. Different lower-case letters 

indicate significant differences (P < .05) between different plant species from control pots while different capital letters indicate significant 
differences (P < .05) between CC doses. The probability of the slope being zero was P < .001 for RLAE and RGR  

 

 RLAE 

(cm2 cm-2 day-1) 

RGR 

(g g-1 day-1) 

NAR 

(g cm-2 day-1) 

Calcium cyanamide (Kg m
-3

) Calcium cyanamide (Kg m
-3

) Calcium cyanamide (Kg m
-3

) 

0 1.0 1.5 2.0 0 1.0 1.5 2.0 0 1.0 1.5 2.0 

Althaea officinalis 0.287
aA

 0.271
A
 0.153

B
 0.145

B
 0.482

aA
 0.434

B
 0.359

C
 0.321

C
 10.31

aA
 6,10

B
 3.58

C
 1.42

D
 

Amaranthus palmeri 0.086
cA

 0.073
A
 0.027

B
  0.149

dA
 0.085

B
 0.038

C
  0.07486

dA
 0.00521

B
 0.00195

C
  

Amaranthus quitensis 0.100
cA

 0.085
A
   0.287

cA
 0.144

B
   0.03737

eA
 0.00185

B
   

Cardus acanthoides 0.283
aA

 0.260
A
   0.426

aA
 0.340

B
   0.01482

eA
 0.00871

B
   

Conyza bonariensis 0.153
b
    0.444

a
    0.50129

c
    

Cyperus odoratus 0.174bA 0.157A 0.153A 0.067B 0.394bA 0.258B 0.183C 0.102D 0.61666cA 0.16311B 0.02771C 0.00644D 

Eupatorium hecatanthum 0.175
bA

 0.071
B
 0.047

C
  0.266

cA
 0.083

B
 0.078

B
  0.02902

eA
 0.00961

B
 0.00211

C
  

Fumaria capreolata 0.100
c
    0.183

d
    0.0745

1e
    

Ipomoea sp. 0.074
cA

 0.071
A
   0.231

cA
 0.125

B
   0.01475

eA
 0.00336

B
   

Polygonum punctatum 0.070
cA

 0.064
A
 0.054

A
  0.228

cA
 0.140

B
 0.105

C
  0.01031

eA
 0.00462

B
 0.00122

C
  

Sorghum halepense 0.073
cA

 0.058
A
 0.049

A
  0.242

cA
 0.104

B
 0.109

B
  0.01526

eA
 0.00775

B
 0.00472

C
  

Spaeralcea bonariensis 0.074
cA

 0.068
A
   0.141

dA
 0.123

B
   0.00512

fA
 0.00483

A
   

Stellaria media 0.271
a
    0.480

a
    12.73

a
    

Taraxacum officinale 0.081
cA

 0.067
A
 0.061

A
  0.198

dA
 0.097

B
 0.094

B
  0.04344

A
 0.00813

B
 0.00754

B
  

Wedelia glauca 0.278aA 0.169B 0.154B 0.054C 0.472aA 0.371B 0.121C 0.120C 7.97bA 5.35B 0.33487C 0.05381D 
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Fig. 4. Relationship between RLAE vs. RGR (a), RGR vs. NAR (b), RLAE vs. NAR (c) and RGR 
vs. root dry weight (RDW) (d) for dicotyledonous and monocotyledonous weeds in pots 

fertilized with four calcium cyanamide fertilizer concentrations (0; 1.0; 1.5 and 2.0 Kg m
-3

). The 
relations were RLAE = 0.47 RGR + 0.003 (r

2
= 0.781 P < 0.001), RGR = 0.033 ln NAR + 0.40  

(r
2
 = 0.834 P < 0.001), RLAE = 0.016 ln NAR + 0.19 (r

2
 = 0.733 P < 0.001), RGR = 0.96 RDW + 0.10  

(r
2
 = 0.703 P < 0.001) 

 

4. DISCUSSION 
 
Container bedding plant production has been the 
fastest growing sector in the nursery industry and 
the growth is expected to continue. The choice of 
a growing medium is one of the critical decisions 
that must be made when a grower starting a 
bedding pot plant production [2]. Peat moss is 
the most common organic substrate used in 
growing media for propagation and pot plants. 
White peat mainly consists of incompletely 
decomposed Sphagnum plants under low 
temperatures. Due to its mode of formation, peat 
is free of pests and pathogens and under 

circumstances of controlled production; it is free 
of weed seeds as well. The need for alternative 
substrates in response to decreased peat use 
resulting from environmental regulations on the 
mining of peat bogs [25]. On the other hand, the 
increasing demand of growing media for 
greenhouse horticultural uses, the rising news 
uses of substrates, and the scarcity and cost of 
traditional sources, such as white Sphagnum 
peat moss, have focused new peat sources [1] or 
research on new substrate materials [26]. 

 
The effectiveness of hydrogen cyanamide on 
weed control was attributable in part of the action 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6

R
L

A
E

 (
c
m

2
c
m

-2
d
a

y-
1
)

RGR (g g-1 day-1)

a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15

R
G

R
 (

g
 g

-1
d
a
y-1

)

NAR (g cm-2 day-1)

b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15

R
L
A

E
 (

cm
 c

m
-2

d
a
y-

1
)

NAR (g cm-2 day-1)

c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6

R
G

R
 (

g
 g

-1
d
a
y-1

)

Root dry weight (g plant-1)

d)



 
 
 
 

Leytur et al.; IJPSS, 23(5): 1-12, 2018; Article no.IJPSS.42425 
 
 

 
8 
 

of moist soil in hydrolyzing calcium cyanamide to 
hydrogen cyanamide and in partially to the soil 
pH decrease. Then, hydrogen cyanamide 
decomposes to urea, followed by additional 
breakdown to ammoniac forms of nitrogen and 
carbon dioxide. In the reaction, two moles of 
ammonia were formed for each mole of 
cyanamide consumed. Calcium cyanamide it is 
not toxic to fish and bees, and does not leave 
residues in the soil, since it is metabolized to 
nitrogen and calcium oxide [27]. These 
metabolites become plant nutrients with their 
occurrence mediated by biological organisms 
and physical processes [28], but results 
mechanically phytotoxic to seeds and plants right 
now the calcium cyanamide amendment [18,19]. 
Date from Fig. 2 showed a meaningful seed 
germination percentage and a slowly germination 
rate between control pots with an increase in 
calcium cyanamide concentration amended. 
These results would indicate a main decrease in 
weed seed bank. Bremner and Krogmeier [29] 
provide evidence on the adverse effect of urea 
fertilizer on seed germination due to ammonia 
formed through hydrolysis by soil urease. On the 
other hand, Roem et al. [30] showed that the 
germination of several heathland species was 
significantly reduced in plots with a pH below 5 
and that acidification was the most important 
factor in reducing species diversity.  
 
When applied to fields, cyanamide usually 
disappears within a couple of days, depending 
on the soil and its moisture content [31], through 
the enzyme cyanamide hydratase [32]. The main 
reason why the use of transplant is the most 
reliable method to ensure adequate crop 
establishment of commercial plantings of the 
most ornamental bedding crops is due plants are 
in contact with the pot substrate after cyanamide 
disappearance. At this time, cyanamide act as a 
fertilizer and improve I. wallerana growth (Fig. 1) 
in agreement with Sala et al. [15]. The second 
reason is that transplant put off plant-weed 
relationships until plants began their exponential 
growth, keeping in mind that control bedding 
plant RLAE and RGR (Table 1) are significant 
lower than most weed RLAE and RGR (Table 2).  
 
Weed control in container-grown nursery stock is 
a particularly serious problem because the extent 
of damage caused by weeds is often 
underestimated. Various researchers have found 
that as little as one weed in a pot (around 0.38 
m

3 
pot

-1
) affect the growth of a crop [33,34]. The 

mix used in our experiments showed as much as 
eight weeds pot

-1
 (25 weeds m

-3
 substrate) in 

control pots but near two weeds pot
-1

 (6 weeds 
m

-3
 substrate) in the higher concentration of 

calcium cyanamide-treated pots (Fig. 2). 
Although calcium cyanamide drastically reduced 
seed germination (Fig. 3), the growth of 
remained emerged weeds can be a serious biotic 
stress for the bedding pot plants. 
 
Weeds present in the river waste used in our 
experiments showed different response pattern 
to calcium cyanamide amendment. On the one 
hand, Conyza bonariensis, Fumaria capreolata 
and Stellaria media disappear even with the 
lowest calcium cyanamide concentrations. A 
second group (Amaranthus quitensis, Carduus 
acanthoides and Spaeralcea bonariensis) failed 
to emerge with the two higher calcium 
cyanamide doses. A third group (Amaranthus 
palmeri, Eupatorium hecatanthum, Polygonum 
punctatum, Sorghum halepense and Taraxacum 
officinale) only disappear when 2 kg m

-3
 calcium 

cyanamide was used. Finally, Althaea officinalis, 
Cyperus odoratus and Wedelia glauca are 
present and growth regardless calcium 
cyanamide concentration (Table 2). Soltys et al. 
[35] found that the concentration-dependent 
phytotoxic effects of cyanamide were noted 
during seed germination and in the root growth of 
the tested plants. They concluded that the 
monocotyledonous plants generally were less 
sensitive to cyanamide treatment than the 
dicotyledonous ones. Our results from Table 2 
did not agree with this previous suggestion. 
 
The toxic action of ammonium to plants has been 
explained by several mechanisms, which include 
reduced plant growth, changes in root 
architecture and decreases in the root/shoot ratio 
[36]. The disruption of hormonal homeostasis 
increased oxidative stress as well [37]. The 
ability of plants to tolerate high ammonium 
concentrations depends on several main drivers 
such as root carbon metabolism and the ability to 
maintain high respiration rates [38], tolerance of 
acidification of the root zone [39] and the 
capacity to restrict ammonium accumulation 
inside tissues [40]. However, data from Table 2 
indicate that even though significant weed specie 
differences, the higher calcium cyanamide 
concentration the lower RLAE, RGR and NAR (a 
growth parameter related to photosynthetic 
carbon fixation). 
 
Roots constitute the first ammonium sensor and 
the initial signals of ammonium toxicity appear at 
root level with a severe modification of the root 
system architecture. Commonly observed 
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modifications include shorter primary root 
systems; the inhibition of root elongation, 
embracing primary and lateral roots; the 
stimulation of lateral root branching, with 
changes in the insertion of lateral roots in the 
main root [41,42,43]. Growth of roots and its 
architecture is under control of phytohormones, 
mainly auxins [44] and cytokinins [45]. Roots 
(both main and lateral) grew more slowly on 
ammonium-grown plants, and the weight of the 
plant was positively correlated with auxin 
content, although no recovery was detected 
when auxin was applied externally to ammonium-
grown plants [37]. Di Benedetto et al. [46] 
showed that following a single application of the 
auxin indole acetic acid (IAA) or the cytokinin 
benzyl amino purine (BAP) in the ornamental 
foliage plant Epipremnum aureum, an increase in 
the accumulation of root biomass was found. The 
promotion of E. aureum growth was associated 
with increases in RLAE, RGR, NAR and net 
photosynthesis. The positive relationships 
between RLAE vs. RGR (Fig. 4a), RGR vs. NAR 
(Fig. 4b), RLAE vs. NAR (Fig. 4c), and RGR vs. 
root dry weight (Fig. 4d) when all weed data were 
plotted together, are in agreement with Di 
Benedetto et al. [46] results. These relationships 
suggest that both weed leaf area expansion and 
dry weight accumulation are under control of 
signals roots-induced.  

 
The use of transplant is the most reliable method 
to ensure adequate crop establishment of 
commercial plantings of the most ornamental 
bedding crops. Technological advances in 
transplanting have contributed to the growth of 
the bedding plant industry by reducing costs and 
increasing production reliability. On the other 
hand, sowing and growth ornamental plants in 
plug tray before transplant would avoid the 
phytotoxic calcium cyanamide substrate 
amendment (Fig. 1) and other pre-emergent 
herbicides [5,6,7]. 

 
Because of the Montreal Protocol on substances 
that deplete atmospheric ozone which agreed for 
a progressively decrease of substances toxic to 
humans and animals such as methyl bromide 
[47,16], the calcium cyanamide use for weed 
control would be a global alternative [48,17]. 
However, weed sensitivity to ammonium toxicity 
must be specifically researched. 
 
5. CONCLUSIONS 

 
Alternative substrates to white peat renew the 
abiotic stress in pot ornamental plants related to 

weed control, which can be expensive (stream 
boiler) or phytotoxic (herbicides). The 
effectiveness of calcium cyanamide on weed 
control was attributable in part of the action of 
hydrogen cyanamide on weed seed germination. 
The novelty data is that calcium cyanamide 
decrease weed relative growth rates as well. The 
last effect would be associated to root toxicity 
and probably explained by a change in hormonal 
root synthesis. Our results showed that a pre-
transplant calcium cyanamide amendment 
combining with a transplant routine optimize both 
I. wallerana growth and weed control.  
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