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Abstract

In this paper, we propose a multilevel least square support vector machine (LSSVM) for solving
elliptic boundary value problems based on wavelet kernel functions. This algorithm is constructed
by a sequence of residual corrections and separating the computations of different levels, where
different scale parameters are employed to accommodate different scales. In this multilevel
algorithm, a coarse data set and a large scale parameter are chosen and the target function is
interpolated in this data set to capture the large-scale variations of the target function at the
first level, next, a smaller scale parameter is used to interpolate the residuals on a finer data set,
capturing the finer details on the second level. The numerical tests on some linear second order
elliptic boundary value problems show the efficiency of the multilevel algorithm.
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1 Introduction

There are many machine learning methods [1] for solving differential equations originating from
neural network approaches that have been wildly studied in recent years [2, 3, 4, 5]. In this paper,
we discusse the Least Square Support Vector Machine (LSSVM, [6, 7]) based learning method
for solving differential equations [8]. Different from traditional mesh-based numerical methods,
the LSSVM does not need any mesh topology and it can give an approximate solution in closed
form (continuous and differentiable), desired accuracy for PDEs with irregular domains also can be
achieved.

Learning solutions to partial differential equations using radial base function(RBF) kernel based
LSSVM have proven to be particularly powerful. One important issue of this approach is with
respect to the scale parameter (support radius) in the kernel function. Numerical experience shows
that, for small scales, the training of the network is generally a good conditioned optimization
problem, but the general accuracy is low [9, 10], on the other side, for large scales, the training may
become ill-conditioned, but the general accuracy is good with smooth interpolation behaviour. For
these results, it is necessary to construct the multiscale RBF (MSRBF) network to accommodate
both the local and the global properties of the basis functions by including both small and large
scales in the network in a hierarchical multiscale way [9, 11, 12].

For the choice of kernel, a variety of RBF kernel could be possible, such as Gaussian radial base
function. Note that the idea of multiscale RBF network somehow comes from wavelet decompositions
[13, 14] and the nature of wavelet decompositions is multiscale. The wavelet methods derived
from wavelet decompositions have be used for the numerical solution of differential equations, see
[5, 15, 16]. And wavelet kernel support vector machine is shown to be successful in applications
such as regression and classification, see [17, 18, 19, 20, 21, 22]. So compare with Gaussian RBF
based LSSVM for solving differential equations proposed in [8], wavelet kernel functions are more
suitable for our multilevel LSSVM to approximate a solution with localized feathers or structures.
In this paper, we propose a wavelet kernel function based LSSVM for solving differential equations.

2 Multilevel Algorithm of LSSVM

2.1 LSSVM regression and wavelet kernel function

Consider a given training set {zi, yi}Ni=1 with input data zi ∈ Rm and output data yi ∈ R. Firstly,
we recall the goal in regression is to estimate an approximation ŷ = wTφ(z) + d, where w ∈ Rn,
d ∈ R, φ(·) : Rm → Rn is the nonlinear feature map and n is the dimension of the feature space.
The primal LSSVM model for regression is written as follows [7]:

minimize
w.d.e

1

2
wTw +

γ

2
eT e

subject to yi = wTφ(zi) + d+ ei, i = 1, ..., N,

(2.1)

where w and d are parameters to be determined, e = y − ŷ is the error of the approximation and
γ ∈ R+ is a regularization parameter. The dual solution is given by[

K+ γ−1IN 1N
1TN 0

] [
α
d

]
=

[
y
0

]
(2.2)

where Kij = K(zi, zj) = φ(zi)
Tφ(zj) is the (i, j)-th entry of the positive definite kernel matrix for a

positive definite kernel function K(z, r) = φ(z)Tφ(r) and α = [α1; ...;αN ] is the vector of Lagrange
multipliers. 1N = [1; ...; 1] ∈ RN , y = [y1; ...; yN ] and IN is the identity matrix.
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The key issue of the support vector machine is the choosing of the kernel function. In fact, a
function meets the Mercer conditions can be an admissible support vector kernel function [23]. In
this paper, we choose Mexican hat mother wavelet

h(z) = (1− z2) exp(−z2/2). (2.3)

Although not related, we note that a wavelet bases can be generated by taking dilations and
translations of the mother wavelet function. Note that a scale parameter is involved in the dilation,
thus can be naturally used to accommodate the multiscale phenomenon. Then an admissible wavelet
support vector kernel function can be constructed.

Theorem 2.1 ([17, 21]). The Mexican hat wavelet kernel function, with scale parameter a,

Ka(z1, z2) = Ka(z1 − z2) =

m∏
i=1

h
(z1i − z2i

a

)
=

m∏
i=1

(
1− ∥z1i − z2i∥2

a2

)
exp

(
−∥z1i − z2i∥2

2a2

)
,

(2.4)
is a translation invariant admissible support vector kernel function. Here z1, z2 ∈ Rm, a > 0 is
called the scale parameter of the kernel function.

2.2 Multilevel algorithm

We derive a multilevel algorithm by constructing a sequence of residual corrections and separating
the computations of different levels. Constructe the optimization problem on each scale separately,
so that the multilevel algorithm is proceeded by solving a sequence of optimization problem.

Given a linear second order elliptic partial differential equation

Lu(z) = f(z), z ∈ Σ ⊂ Rm, (2.5)

with the boundary conditions on the boundary ∂Σ

Bu(z) = g(z), z ∈ ∂Σ, (2.6)

where L and B are linear second order elliptic partial differential operator and boundary operator
respectively.

Let Kk(z1, z2) = φk(z1)
Tφk(z2) be kernel functions with different scale parameters on scale k,

and k = I, II.III, ... represent different scales. Suppose that a general approximate solution to
(2.5)-(2.6) is of the form

û(z) = ûI(z) + ûII(z) + ûIII(z) + ... = wT
I φI(z) + d+ wT

IIφII(z) + wT
IIIφIII(z) + ....

where

ûI(z) = wT
I φI(z) + d, (2.7)

ûk(z) = wT
k φk(z), k = II, III, ... (2.8)

To obtain the training set, assume a discretization of the domain Σ into two sets of collocation
points defined by

Zk
D = {ziD | i = 1, · · · , Nk}, k = I, II, III, ...

Zk
B = {ziB | i = 1, · · · ,Mk}, k = I, II, III, ...

where Zk
D and Zk

B denote the sets of collocation points located inside the domain and the collocation
points situated on the boundary, respectively. Nk = |Zk

D| and Mk = |Zk
B| denote the number of

points in ZD and ZB on different scales are given.
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For the first scale, the approximate solution can be found by solving the optimization problem

minimize
wI ,d,eI

1

2
wT

I wI +
γ

2
eTI eI

subject to LûI(z
i
D) = f(ziD) + eI,i, i = 1, ..., |ZI

D|,

BûI(z
j
B) = g(zjB), j = 1, ..., |ZI

B|.

(2.9)

Where eI is the error on first scale. Let {αI
i }

|ZI
D|

i=1 and {βI
j }

|ZI
B|

j=1 be Lagrange multipliers of the
optimization problem (2.9). According the Karush-Kuhn-Tucker(KKT) optimality conditions, we
have the dual problem in the following Lemma.

Lemma 2.2. [8] Suppose that KI is the Mexican hat wavelet kernel function defined in (2.4) with
KI(z1, z2) = φI(z1)

TφI(z2) and γI ∈ R+ is a regularization parameter, then the dual problem to
(2.9) for solving (2.5)-(2.6) is given byKI + γ−1

I IN SI c · 1N1

ST
I △I c̃ · 1M1

c · 1TN1
c̃ · 1TM1

0

αI

βI

d

 =

fg
0

 . (2.10)

The elements in (2.10) are given by:

N1 = |ZI
D|, M1 = |ZI

B|,
KI = (KI

ij)N×N , KI
ij = [L(φI(z

i
D))]T [L(φI(z

j
D))],

SI = (sIij)N1×M1 , SI
ij = [B(φI(z

i
B))]

T [L(φI(z
j
D))],

△I = (△I
ij)M1×M1 , △I

ij = [B(φI(z
i
B))]

T [B(φI(z
j
B))],

c = L(d)/d, c̃ = B(d)/d,

αI = [αI
1, · · · , αI

N1
]T , βI = [βI

1 , · · · , βI
M1

]T ,

f = [f(z1D), · · · , f(zN1
D )]T , g = [g(z1B), · · · , g(zM1

B )]T .

The approximate solution to (2.5)-(2.6) is given by

û(z) = ûI(z) = d+

|ZD|∑
i=1

αi[L(φ(z
i
D))]Tφ(z) +

|ZB|∑
i=1

βi[B(φ(ziB))]
Tφ(z). (2.11)

Then the second scale is a correcting to the first scale. The third or higher level scales can be also
added to improve the accuracy. For k-th(k = II, III, ...) scale, define the residuals by

f̃ = f − LûI − ...− Lûk−1, g̃ = g −BûI − ...−Bûk−1,

therefore the problem becomes {
Lũ(z) = f̃(z), z ∈ Σ,
Bũ(z) = g̃(z), z ∈ ∂Σ.

(2.12)

And define the error by
ek = u− ûI − ...− ûk

The residuals need to be interpolated at a finer data set on scale k, where αk and βk can be obtained
by the optimization problem:

minimize
wk.ek

1

2
wT

k wk +
γk
2
eTk ek

subject to Lûk(z
i
D) = f̃(ziD) + ek,i, ziD ∈ Zk

D, i = 1, · · · , |Zk
D|,

Bûk(z
j
B) = g̃(zjB), zjB ∈ Zk

B, j = 1, · · · , |Zk
B|,

(2.13)
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Lemma 2.3. Suppose that Kk are the Mexican hat wavelet kernel functions with different scale
parameters defined in (2.4) with Kk(z1, z2) = φk(z1)

Tφk(z2) and γk ∈ R+ are regularization
parameters, let αi, βi and d be obtained on scale i(i = I, II, ..., k − 1). Then the parameters
αk and βk on scale k satisfy the dual problem:[

Kk + γ−1
k IN2 Sk

ST
k △k

] [
αk

βk

]
=

[
f̃
g̃

]
. (2.14)

The elements of (2.14) are given by:

Kk = (Kk
ij)Nk×Nk , Kk

ij = [L(φk(z
i
D))]T [L(φk(z

j
D))],

Sk = (Sk
ij)Nk×Mk , Sk

ij = [B(φk(z
i
B))]

T [L(φk(z
j
D))],

△k = (△k
ij)Mk×Mk , △k

ij = [B(φk(z
i
B))]

T [B(φk(z
j
B))],

αk = [αk
1 , · · · , αk

Nk
]T , βk = [βk

1 , · · · , βk
Mk

]T ,

f̃ = [f̃(z1D), · · · , f̃(zNk
D )]T , ṽ = [g̃(z1B), · · · , g̃(zMk

B )]T ,

where Nk = |Zk
D|, Mk = |Zk

B|, and the approximate solution to (2.5)-(2.6) is given by

û(z) = ûI(z) + ...+ ûk−1(z) + ûk(z)

= ûI(z) + ...+ ûk−1(z) +

|Zk
D|∑

i=1

αk
i [L(φk(z

i
D))]Tφk(z) +

|Zk
B|∑

i=1

βk
i [B(φk(z

i
B))]

Tφk(z).

Note that in the above superposition of scale, firstly, the coarse data set and the large scale
parameter are used to capture the large-scale variations of the target function. Then the smaller
scale parameter is used to interpolate the residuals on the finer data set, capturing now the finer
details. The sum of both interpolants obviously better interpolates the target function at the data
sites on the finer data set. This process can be further applied to finer and finer scales till the
anticipated accuracy is achieved.

Remark 2.1. We restrict our attention to linear problem (2.5)-(2.6), c = L(d)/d, the action of the
linear differential operator L on the constant d, then divided by d, will be a constant, this can be
easily understood, for example, if we take

L = a1
∂2

∂x2
+ a2

∂2

∂x∂y
+ a3

∂2

∂y2
+ b1

∂

∂x
+ b2

∂

∂y
+ c,

thus the dual problem (2.10) is a linear system. As the same to [8], the computation of kij , sij and
△ij can be converted to partial derivatives of the kernel function (2.4). With (α, β, d) be solved
from (2.10), an explicit representation of the solution is achieved in the form (2.11).

3 Numerical Simulations

In this section, we will do some numerical simulations on both regular and irregular boundaries
to test the multilevel algorithm introduced. The error of an approximate solution is measured by
norms

RMSE =

√∑
i

e2i /N, L∞ = max
i

|ei|∞,

where ei = u(zi)− û(zi), u(zi) is the exact solution.

For simplicity, we use uniform grid points, with distance h in x and y directions. The choice of
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h on finer scale is half of that on coarser scale, i.e., the number of data points in the direction of
each variable on finer scale is almost twice that on coarser scale. The regularizaion parameter γ is
chosen by rules of thumb.

Example 3.1. Consider the singular linear second order equation defined on a rectangular domain

∇2u(x, y) = (2− π2y2)sin(πx), (x, y) ∈ [0, 1]× [0, 1],

with mixed Dirichlet-Neumann boundary conditions:

u(0, y) = 0, u(1, y) = 0,

u(x, 0) = 0,
∂u(x, 1)

∂y
= 2sin(πx).

The exact solution is u(x, y) = y2sin(πx). The numerical errors of multilevel algorithm are shown
in Table 1 and Fig. 1.

Table 1. Numerical errors for solving Example 1 (a = 4h, γ = 107)

Scale |ZD| |ZB| L∞ RMSE

1 9 20 0.02 0.67× 10−2

2 36 49 0.10× 10−2 0.59× 10−3

3 68 225 3.46× 10−5 1.04× 10−5

4 132 961 1.60× 10−6 4.66× 10−7

5 260 3969 7.28× 10−8 2.10× 10−8

From Table 1, we observe the algorithm can perform well for this mixed boundary value problem
and the numerical convergence of the approximate solution in the number of levels. As can be
seen from Fig. 1, the numerical solution with good accuracy can be obtained after two scales, the
accuracy is improved by at least one order of magnitude after adding a scale. But on any level of
scale, the error of the numerical solution near the Neumann boundary is always the largest.

Example 3.2. Consider the linear second elliptic PDE

∇2u(x, y) = (2− π2y2)sin(πx)

defined on a circular domain

Σ := {(x, y)|x2 + y2 − 1 ≤ 0, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1},

with the Dirichlet conditions. The exact solution is given by u(x, y) = y2sin(πx).

6
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(a) Numerical solution using two scales (b) Error of the solution using two scales

(c) Numerical solution using three scales (d) Error of the solution using three scales

(e) Numerical solution using four scales (f) Error of the solution using four scales

(g) Numerical solution using five scales (h) Error of the solution using five scales

Fig. 1. The numerical solution and errors for Example 1.
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(a) Numerical solution using two scales (b) Error of the solution using two scales

(c) Numerical solution using three scales (d) Error of the solution using three scales

(e) Numerical solution using four scales (f) Error of the solution using four scales

(g) Numerical solution using five scales (h) Error of the solution using five scales

Fig. 2. The numerical solution and errors for Example 2.
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The approximate solution and the numerical errors of multilevel algorithm for solving Example 2
are shown in Table 2 and Fig. 2. From Fig. 2, the algorithm is also effective in solving elliptic
equation problems with irregular domain. Compared with example 1, the accuracy of example 2
improves faster with scale superposition, and the error is also relatively smooth in the whole domain.
It can be seen that the algorithm performs better for Dirichlet boundary value problem than mixed
boundary value problem.

Table 2. Numerical errors for solving Example 2 (a = 4h, γ = 107)

Scale |ZD| |ZB| L∞ RMSE

1 8 9 6.14× 10−3 2.74× 10−3

2 16 45 6.12× 10−5 2.27× 10−5

3 32 193 6.36× 10−7 1.34× 10−7

4 64 793 4.29× 10−8 4.61× 10−9

5 128 3205 1.33× 10−9 7.45× 10−11

4 Conclusions

We designed a multilevel LSSVM for solving differential equations based on wavelet kernel functions.
The multilevel algorithm is constructed by a sequence of residual corrections and separating the
computations of different levels, where different scale parameters are employed to accommodate
different scales. In this algorithm, a coarse data set and a large scale parameter are chosen and
the target function is interpolated in this data set to capture the large-scale variations of the target
function at the first level, next, a smaller scale parameter is used to interpolate the residuals on a
finer data set, capturing the finer details on the second level. The numerical tests show the efficiency
of the algorithm for solving linear second order elliptic boundary value problems. The applications
of the wavelet based LSSVM to evolutionary equations and more complicated nonlinear partial
differential equations will be investigated in our future study.
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