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Abstract 
 

Semi generalised closed set in a Topological space was first introduced by P. Bhattacharya and    

B.K.Lahiri in 1987. A subset A of a topological space (X, ) is a semi generalised closed (sg-closed) set 

if (A)scl U whenever A U and U is semi-open in (X, ) . Some authors introduced the notion of 

sg-continuity in topological spaces. The same notion can be extended to topological ordered spaces.                
A topological ordered space is a topological space together with a partial order. In this paper, we 
introduce and study the notion of semi generalised increasing continuous function (sgi-continuous 
function), semi generalised decreasing continuous function (sgd-continuous function) and semi 
generalised balanced continuous function (sgb-continuous function) and study the relationships between 
them. 
 

 

Keywords: Topological ordered space; increasing set; decreasing set; balanced set and semi generalised 
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1 Introduction 
 
The study of topological ordered spaces (TOS) was introduced by L.Nachbin [2]. It is a triple 

(X, , )  where  is a topology and  is a partial order on X. Let (X, , )  be a TOS. For 

any Xx ,  [ , ] X /x y x y     and.  [ , ] X /x y y x    A subset A of a TOS (X, , )   is 

increasing if A [A]i and decreasing if A [A]d  where 
A

[A] [ , ]
a

i a


 
  

and 
A

[A] [ , ]
a

d a


  .              

The complement of an increasing set is a decreasing set and vice versa. A subset of a TOS ( , , )X    is a 

balanced set if it is both increasing and decreasing. 

 

2 Preliminaries 
 
In the present paper (X, ) represents a non-empty topological space on which no separation axioms are 

assumed unless otherwise mentioned. For a subset A of (X, ) , the closure is the intersection of all closed 

sets containing A and semi-closure is the intersection of all semi-closed sets containing A .They are denoted 

by (A)cl  
and (A)scl .respectively. 

 

Definition 2.1. A subset A  of a topological space ( , )X  is a semi-open set [5] if A (int(A))cl  and              

a semi-closed set if  int( (A)) Acl  . 

 

Definition 2.2. A subset A of a topological space ( , )X   
is a sg-closed set [1] if (A)scl U  whenever 

A   U and U is semi-open in (X, ) . 

 

Definition 2.3. A subset A of a topological ordered space ( , , )X   is a sgi-closed (resp. sgd-closed, sgb-

closed) set [4] if A is sg-closed and increasing (resp. decreasing, balanced). 

 
3 Sg-continuity in Topological Ordered Spaces 
 
We define new types of semi generalised continuous functions in topological ordered spaces. We recall that 

a function 1 2: ( , ) ( , )f X Y   is sg-continuous [1] if 
1(V)f 

is sg-closed whenever V  is a closed set 

in Y.  
 
The following notions are introduced in a topological ordered space. 
 

Definition 3.1. A function 
1 1: ( , , ) ( , , )f X Y    is 

  

(1) a semi generalised increasing continuous function (briefly sgi-continuous) if
1(V)f 

 is a sgi-closed 

set in X whenever V  is an i-closed set in Y. 

(2) a semi generalised decreasing continuous function (briefly sgd-continuous ) if 
1(V)f 

is a sgd-

closed set in X whenever V  is a d-closed set in Y. 

(3) a sg-balanced continuous function (briefly sgb-continuous) if 
1(V)f 

is a sgb-closed set in 

X whenever V  is a   b-closed set in Y. 
 



 
 
 

Ramachandram and Rao; ARJOM, 11(1): 1-5, 2018; Article no.ARJOM.43569 
 
 
 

3 
 
 

The following examples support the above definitions. 
 

Example 3.2. Let  , , ,X Y a b c   8 , ,{ , } ,X a b   3 ( , ), ( , ), ( , ), ( , ), ( , )a a b b c c a b a c 
 

 4 ( , ), ( , ), ( , ), ( , ), ( , ), ( , )a a b b c c a b c a c b  . Then 8 3( , , )X   and 8 4( , , )Y    are topological 

ordered spaces. The i-closed sets in Y are , X  and sgi-closed sets in X are , ,{ },{ , }X c b c . Define 

:f X Y as ( ) ,f a b ( )f b c and ( )f c a  then, f is a sgi-continuous function. 

 

Example 3.3. Let  , ,X Y a b c  ,  7 , ,{ },{ },{ , },{ , }X a b b c a b 
 

 8 , ,{ , } ,X a b 
 

 7 ( , ), ( , ), ( , ), ( , ) , a a b b c c b a   8 ( , ), ( , ), ( , ) , a a b b c c  then 7 7( , , )X   and 8 8( , , )Y    are 

topological ordered spaces. The d-closed sets in Y are , ,{ }X c  and sgd-closed sets in X  are 

, ,{ },{ , }X c b c .Define :f X Y as ( ) ,f a b ( )f b a  
and ( )f c c  

then, f  is a sgd-continuous 

function. 
 

Example 3.4.  Let   , , ,X Y a b c 
 

 8 , ,{ , } ,X a b 
 

 9 , ,{ },{ },{ , }X b c b c 
  

 1 ( , ), ( , ), ( , ), ( , ), ( , ), ( , ) ,a a b b c c a b b c a c 
 

 5 ( , ), ( , ), ( , ), ( , ), ( , )a a b b c c a c b c 
 

Then, 

8 5( , , )X   and 9 1( , , )Y    are topological ordered spaces. The b-closed sets in Y are , X  and the   sgb-

closed sets in X  are , X . Define :f X Y  
as ( ) ,f a b ( )f b c  

and ( )f c a . Then,
 f  is a 

sgb-continuous function. 

 

4 Independency of the functions   
 
Remark 4.1: The notions sgi-continuity and sgd-continuity are independent as seen in the following 
example. 
 

Example 4.2:  Let    , , ,X Y a b c 
 

 8 , ,{ , } ,X a b 
 

 3 ( , ), ( , ), ( , ), ( , ), ( , )a a b b c c a b a c 
 

 4 ( , ), ( , ), ( , ), ( , ), ( , ), ( , )a a b b c c a b c a c b  .Then, 8 3( , , )X   and 8 4( , , )Y   are topological ordered 

spaces. The i-closed sets in Y are , X  and sgi-closed sets in X are , ,{ },{ , }X c b c . Define 

:f X Y   as ( ) ,f a a ( )f b c  and ( )f c b  then, f is a sgi-continuous function. The d-closed 

sets in Y are , ,{ }X c and the sgd-closed sets in X are , ,{ , }X a c  
Then, f  is not a sgd-continuous 

function. 
 

 If we take   , , ,X Y a b c   8 , ,{ , } ,X a b   4 ( , ), ( , ), ( , ), ( , ), ( , ), ( , )a a b b c c a b c a c b  , 
 
 

 5 ( , ), ( , ), ( , ), ( , ), ( , )a a b b c c a c b c   then, 8 4( , , )X   and 8 5( , , )Y  
 

are
 

topological ordered
 
 

spaces. The i-closed sets in Y are , ,{ }X c  and sgi-closed sets in X are , X . Define 

:f X Y as ( ) ,f a a ( )f b a  and ( )f c c . Then, f  is not a sgi-continuous function.                     

The d-closed sets in Y  are , X  and sgd-closed sets in X  are , ,{ , },{ }X a c c . Then, f  is a                     

sgd-continuous function. 
 
Remark 4.3: The notions sgi-continuity and sgb-continuity are independent as seen in the following 
example. 
 



 
 
 

Ramachandram and Rao; ARJOM, 11(1): 1-5, 2018; Article no.ARJOM.43569 
 
 
 

4 
 
 

Example 4.4. In 8 4( , , )X  
 

and 8 5( , , )Y  
 

where  , , ,X Y a b c   8 , ,{ , } ,X a b   

 4 ( , ), ( , ), ( , ), ( , ), ( , ), ( , )a a b b c c a b c a c b 
 

and  5 ( , ), ( , ), ( , ), ( , ), ( , )a a b b c c a c b c  ,  

the i-closed sets in Y  are  , ,{ }X c
 

and sgi-closed sets in X  are , X . Define :f X Y  as 

( ) ,f a a ( )f b a  and ( )f c c . Then, f  is not a sgi-continuous function. The b-closed sets in 

Y are , X and sgb-closed sets in X are , X . Then, f  is a sgb-continuous function. 

On the other hand, in the spaces 11 7( , , )X  
 

and 11 8( , , )Y  
 

where 

 , , ,X Y a b c   11 , ,{ },{ , } ,X c c b   7 ( , ), ( , ), ( , ), ( , )a a b b c c b a  and 

 8 ( , ), ( , ), ( , )a a b b c c  , the i-closed sets in Y  are , ,{ },{ , }X a a b
 

and sgi-closed sets in X             

are , ,{ },{ , }X a a b . Define :f X Y  as ( ) ,f a a  ( )f b b  and ( )f c c . Then, f  is a               

sgi-continuous function. The b-closed sets in Y are , ,{ },{ , }X a a b  and sgb-closed sets in X are 

, ,{ , }X a b .Then, f  is not a sgb-continuous function. 

 
Remark 4.5: The notions sgd-continuity and sgb-continuity are independent as seen in the following 
example. 
 

Example 4.6: In the spaces 11 8( , , )X  
 

and 11 9( , , )Y  
 

where 

 , , ,X Y a b c   8 ( , ), ( , ), ( , )a a b b c c   and  9 ( , ), ( , ), ( , ), ( , )a a b b c c a c  , the b-closed 

sets in Y  are , X  and sgb-closed sets in X  are , ,{ },{ },{ , }X a b a b . Define 

:f X Y as ( ) ,f a c  ( )f b b  and ( )f c a . Then, f  is a sgb-continuous function. The                 

d-closed sets in Y are , ,{ },{ , }X a a b , and sgd-closed sets in X are , ,{ },{ },{ , }X a b a b . Then, f  is 

not a sgd-continuous function. 
 

For the other part, consider the topological ordered spaces 11 6( , , )X    and 11 7( , , )Y  
 

where 

 , , ,X Y a b c 
 

 6 ( , ), ( , ), ( , ), ( , ), ( , ), ( , )a a b b c c b a a c b c 
  

and  7 ( , ), ( , ), ( , ), ( , )a a b b c c b a  .               

The d-closed sets in Y are , ,{ , }X a b  and sgd-closed sets in X are , ,{ },{ , }X b a b . Define 

:f X Y as ( ) ,f a a ( )f b b  and
 ( )f c c . Then, f  is a  sgd-continuous function. The                   

b-closed sets in Y are , ,{ , }X a b
 
and sgb-closed sets in X are , X .Then, f  is not a sgb-continuous 

function. 
 

5 Conclusion  
 
The following results were proved in this paper. 
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Here the symbol A            B   indicates A and B are independent notions. 
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