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ABSTRACT 
 

Quantile regression is a statistical technique intended to estimate, and conduct inference about the 
conditional quantile functions. Just as the classical linear regression methods estimate model for 
the conditional mean function, quantile regression offers a mechanism for estimating models for 
the conditional median function, and the full range of other conditional quantile functions. In the 
Bayesian approach to variable selection prior distributions representing the subjective beliefs about 
the parameters are assigned to the regression coefficients. The estimation of parameters and the 
selection of the best subset of variables is accomplished by using adaptive lasso quantile 
regression. In this paper we describe, compare, and apply the two suggested Bayesian 
approaches. The two suggested Bayesian suggested approaches are used to select the best 
subset of variables and estimate the parameters of the quantile regression equation when small 
sample sizes are used.  Simulations show that the proposed approaches are very competitive in 
terms of variable selection, estimation accuracy and efficient when small sample sizes are used.   
 

 
Keywords:  Quantile regression; small sample size; selection of variables; estimated risk; relative 

estimated risk; Bayesian approaches. 
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1. INTRODUCTION 
 
Quantile regression [1] has gained increasing 
popularity as it provides richer information than 
the classic mean regression. Quantile regression 
is a statistical technique intended to estimate, 
and conduct inference about the conditional 
quantile functions. Just as the classical linear 
regression methods estimate models for the 
conditional mean function, quantile regression 
offers a mechanism for estimating models for the 
conditional median function and the full range of 
other conditional quantile functions. [2] proposed 
an efficient algorithm that computes the entire 
solution path of the lasso regularized quantile 
regression. [3] focus on the variable selection 
aspect of penalized quantile regression. Under 
some mild conditions, this study demonstrates 
the oracle properties of the SCAD (smoothly 
clipped absolute deviation) and adaptive-lasso 
penalized. [4] consider quantile regression in 
high-dimensional sparse models. In such 
models, the overall number of regressors is very 
large, possibly much larger than the sample size. 
[5] proposed the composite quantile regression 
estimator by averaging quantile regressions. This 
study illustrates that the composite quantile 
regression is selection consistent and can be 
more robust in various circumstances. 

 
Hierarchical Bayesian modeling provides a 
flexible and interpretable way of extending simple 
models by incorporating heuristic processes. 
Bayesian statistics provides a compelling and 
influential framework for representing and 
processing information. Over the last few 
decades, it has become a major approach in the 
field of statistics, and has come to be accepted in 
many or most of the physical, biological and 
human sciences. Bayesian models have great 
flexibility, and one aspect is the use of 
hierarchical structures in the model. Hierarchical 
models are normally used when there are a large 
number of similar units (loci, populations, 
individuals, etc.) and there is uncertainty of 
whether these units should be parameterized 
identically or independently. Bayesian inference, 
combined with Markov Chain Monte Carlo 
(MCMC) algorithms, has become increasingly 
popular and Bayesian approaches to quantile 
regression have been developed by [6]. The two 
major advantages of Bayesian inference for 
quantile regression models, as compared to the 
classical methods, are that (i) it does not rely on 
approximations to the asymptotic variances of 
the estimators, and (ii) it provides estimation and 
forecasts which fully take into account parameter 

uncertainty. [7] illustrates the application of 
Bayesian inference to quantile regression. 
Bayesian inference regards unknown parameters 
as random variables and describes an MCMC 
algorithm to estimate the posterior densities of 
quantile regression parameters. [8] extended this 
work to analyzing a Tobit quantile regression 
model, a form of the censored model in which 
�� = ��

∗  is observed if ��
∗ > 0  and �� = 0  is 

observed otherwise. A regression model then 
relates the unobserved �� to the covariants ��. [9] 
used the asymmetric Laplace  (AL) likelihood and 
combine MCMC with the expectation maximizing 
(EM) algorithm,  to determine inference on 
quantile regression for longitudinal data. [10] 
used the AL likelihood combined with non-
parametric regression modeling using piecewise 
polynomials to implement automatic curve fitting 
for quantile regression. Recently, both [11,12] 
proposed a correction to the MCMC iterations to 
construct asymptotically valid intervals. [13] used 
the same approach, but incorporating natural 
cubic splines. [14] pointed out that the value of 
quantile � not only controls the quantile but also 
the skewness of the AL distribution, resulting in 
limited explicitly. [15] using the R package bayes 
QR for Bayesian estimation of quantile 
regression. The package contains methods for 
both continuous as well as binary dependent 
variables. The residual distribution is symmetric 
when modeling the median. This motivated 
[16,17] to consider a more flexible residual 
distribution constructed using a Dirichlet process 
prior but still having the quantile equal to 0. The 
analysis of [14] included a general scale mixture 
of AL densities with skewness τ in their analysis, 
but conclude that in terms of ability to predict 
new observations, a general mixture of uniform 
distributions performs the best. 
 

The organization of this paper is as follows: In 
Section 2 the study described Bayesian lasso 
quantile regression methods which were used in 
this study.  In section 3 we introduce two new 
approximation methods to solve full condition 
posterior distribution. The first method is based 
on the Gamma function and the second method 
depend on the important sample. The simulation 
study for some distribution are given in Section 4. 
Finally, discussion and concluding analysis is 
provided in Section 5. 
 

2. BAYESIAN LASSO QUANTILE 
REGRESSION 

 

[17] employed a Laplacian prior p �β
�
�σ, λ�  = 

( σλ/ )exp �−σλ �β
�
��  on β

�
, β

�
∈ β , where β  is 
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parameter of quantile regression and assumed 
that the residuals ϵ become from the skewed 
Laplacian distribution. Specifically, Laplacian 
prior distributions are placed on the regression 
coefficients. [18] extended this idea to Bayesian 
adaptive Lasso quantile regression (BALQR). 
They put different penalization parameters on the 
different regression coefficients. Thus, we 
propose a Laplacian prior on β

�
 taking the form 
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where j  is a nonnegative regularization 

parameter and   is the scale parameter. [19,20] 
treated the hyperparameters of the inverse 
Gamma prior, with unknown parameters and 
estimated them along with the other parameters, 
which can be represented as a scale mixture of 
normal with an exponential mixing density [21].  
 

    0,
2

exp
2

2/exp
2

1
||exp

2

22
2

0









 










ds

s
st

s
t

                      

(2.2) 
 

Let, 
�
= �

�

�/��  Then the proposed Gamma 
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where the inverse Gamma distribution priors on  

2
j   (not 

j ) is of the form 
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where 0 and 0 are two hyper-parameters. 

The posterior density function of ,2
j combining 

the prior Equation (2-4) with Equation (2-5), is 
the inverse of Gamma distribution with the shape 

parameter 1 and the rate parameter

 2/js .The amount of shrinkage in the prior 

Equation (2-5) depends on the values of the 
hyper-parameters and . Because smaller the
 and larger   lead to bigger penalization, it is 
important to treat as unknown parameters to 
avoid enforcing specific values that affect the 
estimates of the regression coefficients. This 
procedure is quite different from Bayesian lasso 
quantile regression reported in [17]. BALQR uses 

a Laplacian prior for j  such that each j  has 

Lasso-type of penalization parameter  
j /2

1

 , 

as in the adaptive Lasso. 
 

The BALQR is a Bayesian hierarchical model 
given by: 
 

� = �� + � ′� + �� + ��������                       (2.6) 

 
where   
 

� = (��, ��, ��, … , ��), � = (�, ��, ��, … , ��)� =
(��, ��, ��, … , ��), � = (��, ��, ��, … , ��) 

 

We consider that 
j0  follows a standard normal 

distribution (0,1) with probability density function 
(pdf) as follows 
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The  i   follows a standard normal distribution 

(0,1) with pdf as follows 
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The  iz   follows an exponential with parameter  

   with pdf as follows 
 

.0),exp()|(   ii zzP
          (2.9) 

 

However,  s,   follows the joint pdf composed 

standard normal distribution with parameters 

(0,1) times exponential with parameter  22 j
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where , j = 1,2,…, k 
 

 λ  follows an inverse Gamma distribution with 

shape parameter  )1(  , which is given in (2-9) 

 Ϭ  follows a Gamma distribution  with two 
parameters (a,b) as follows 
 

.0),exp()( 1    bP a

          
(2.11) 

 

  and  have a joint non-informative prior 

distribution as follows 
 

.0,),( 1   P                             (2.12) 
 

The joint posterior distribution of all parameters is 
given by: 
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Equation (2.13) yields a tractable and efficient 
Gibbs sampler that works as follows: 

1.Generate  iz  ,  ix   and  iy   from N(0,1). 

 

2. Fix the value of  p  , so that the  thp   quantile 

is modeled. 
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in the parametrization of inverse Gaussian 
distribution the density function is given by  
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5. Simulate  .|j   normal distribution  
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6. Simulate  .|js   Inverse Gaussian 

distribution��′, �′�, � = 1,2, … � where  
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7. Simulate  .|   Gamma distribution 

),( 21 aa  , where  
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Where �  is sample size, �  is number of 
parameter, a  is Gamma parameter in the prior 
distribution in equation (2-11) and  
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8. Simulate  .|2
j   Inverse Gamma distribution   
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10. Simulate  .|   The conditional posterior 

distribution of     is 
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The Equation (2-21) can be rewritten as 
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The conditional posterior distribution of     can 
be illustrated by the two methods as follows: 

 
3. NEWSUGGESTED OF APPROXIMA-

TION METHODS 
 
In this study, two approximation methods are 
used to solve the conditional posterior 
distribution as follows. 

 
1. The first method based on Gamma function. 
Using the following form for the Gamma function 
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Where L is integer number,  577216.0   is 

the Euler-Mascheroni constant see [23]. 
 
By substituting Equation (3-1) in to Equation (2-
22) the posterior function becomes to  
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Under the condition  ,1   the terms of order 

three (i.e.,  )( 3O  ) can be ignored. So the  

.)|(P
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it is known that  ,6
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 LL   see [22].  After 

some calculation, the Equation (3.3) becomes: 
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Then, the posterior density function for     can 
be written as: 
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2. The second approximation method is based 
importance sampling. 
 
Importance sampling technique is a popular 
sampling tool used for Monte Carlo computing. It 
is used for evaluating numerical approximation of 
integrals and it is viewed as a variance reduction 
technique. Recently, importance sampling is 
used in variety of applications. In Bayesian 
analysis, the importance sampling algorithm is 
used as an approximation to the posterior density 
for generating random draws. Bayesian 
computations require us to evaluate 
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   (3.6) 

 

where,  )x|(P   is the posterior density. Then, 

evaluating expectations over the posterior 
distribution requires computing a posterior 
distribution and often a multidimensional 

integration. The expectation  )x|)(( E   can 

be approximated using an importance sampling. 
In its general form, importance sampling 
approximates the expectation by using a set of 

samples from some substitute distribution  )(q   
and assigning those samples weights 

proportional to the ratio  )(
)x|(



q
P

 (which is related 

to the normalization factor). Thus, importance 
sampling provides a simple and efficient way to 
conduct Bayesian inference via approximating 
the posterior distribution with samples from the 
prior distribution weighted by the likelihood. For 
more details in importance sampling technique 
see: [24,25]. 
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The importance sampling is proposed to 
compute the Bayes estimates. The posterior 

density function for  , given the data in 
Equation (3-2), can be reformulated as: 
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The above equation can be rewritten as 
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Where k is the number of parameters. Then, the 

posterior density function for     can be 
considered as 
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Consider that right-hand side of Equation (3-9) is 

denoted as  .)|(NP , then,  .)|(NP   and  

.)|(P   differ only by the proportionality 

constant. The importance sampling procedure is 
used to compute the Bayes estimates of any  

)(  using Equation (3-9). The, Bayes estimate 

of  )(   under squared error is  
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4. SIMULATION STUDY AND 
CONCLUSION  

 
A simulation study has been made to evaluate 
the performance of the proposed estimators 
based on the mean squared error (MSE) criterion 
and the relative mean squared (RMSE). The 

evaluation has been done by comparing the MSE 
and RMSE of the proposed estimators with other 
well-known estimators. It is noted that the 
posterior distribution doesn’t exist in closed form 
so the Gibbs sampler method is used to solve 
our problem. Two approximated methods to 
solve the full conditional posterior distribution of 
parameters are suggested. The first method is 
the approximation method based on the Gamma 
function. The second method is based on the 
importance of sample method. Compare and 
check the accuracy by finding the MSE and 
RMSE, applying each of than considering 
different sample sizes and specified distribution 
problems. 
 

4.1 Simulation Study 
 
The simulation setup is similar to the simulation 
studies in [17,18] with different parameter values 
for the error distributions. The quantile regression 
model used as: y = x′�	β + ε� , where the true 
value for the β′s  are set as (3,1.5,0,0,2,0,0,0)′, 
where x�′sis generated from normal distribution 
(0,1) during the simulation study. Where ε� were 
generated from different distributions with 
different parameters, so as to explain the 
influence of the change in the error distributions 
on the quantile regression equation, which is the 
basis for choosing through the Bayesian 
approaches. 
 
For each error distribution with shape parameters 
and for each sample size, the estimates of β

�
 

where j = 1,…,8 where measured by two the 
Bayesian approaches. 
 
This paper introduced a program by using 
Mathcad 15 statistical package to calculate the 
Bayesian approaches depending on the 
calculation of the MSE's and RMSE's for the 
quantile regression parameters, for the two 
Bayesian methods under consideration. 
 
Random samples (small sample) of size n=15, 
n=20 and 30 are used. In Bayesian approach, 
the random samples are generated under the 
assumption that they are independent and 
dependent variables. 
 
The distributions have been generated using the 
following parameters and their parameters 
respectively 
 

Lognormal ~ log (0,0.6); 
Cauchy ~C (0,0.5); 
Chi-Square ~ (3). 
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for each simulation study and for each p ∈ (0.1; 
0.25 ; 0.95), where p is represented quantile 
values which are arbitrary chosen in this study. 
 

These distributions have been generated using 
the above parameters that were chosen 
arbitrarily to compare between the methods 
under considerations with different small sample 
sizes. 
 

In this paper the mean square errors and relative 
mean square errors are used as a criteria to 
compare between the two Bayesian approaches. 
 

The MSE of the estimators β�
�
where j = 1,…, 8 

are used to measure its performance, where the 

MSE's of the estimatorsβ�
�
 for the parametersβ

�
 

calculated from the sample for β  for each 
parameter. The study repeated samples R = 
1000 runs, where R is the number of repeated 

samples and ( β�)  are the estimates. The criteria 
to compare between methods under 
considerations depend on the approach, which 
produce a small MSE and small RMSE, for all 
parameters then it, would be considered more 
suitable when the objective is to select the 
variables and estimate the parameters. 
 
The sampling runsR= 1000 replications for each 
distribution with parameters and three different 
small sample sizes to be sure of consistency of 
the results. 
 
For all  small sample sizes, for two approaches, 
and for three distributions parameters, the MSE's 
for each parameter β

�
were calculated using each 

approach separately. 
 
-All MSE's of Bayesian approximation estimators 
and Bayesian importance sample estimators 
presented in the Tables (1) - (9) with small 
sample sizes (15, 20, 30). We applied these 
approach in two cases . the first case of 
Bayesian approach when the random errors are 
independent importance distribution (i.i.d). to 
demonstrate the performance of the methods 
under consideration. .  
 
-In second case of Bayesian approach when the 
random errors are non- i.i.d. to demonstrate              
the performance of the methods under 
consideration. 
 
The data was generated from model of [18], 
 

� = 1 + �� + �� + �� + (1 + ��)� 

where: 
 
��~ N(0; 1); ��~ uniform(0; 1); �� = �� + �� + �  
where z ~N(1; 0) and�~ N(0; 1): 
 
Under consideration of two methods, namely 
approximation methods (based on Gamma 
distribution and importance method). 
 
The results explored in Tables (1)-(9). 
 
5. DISCUSSION  
 
The aim of this section is to discuss the results 
two methods with different distributions, different 
small sample size and different values of 
quantile. These results presented in Tables (1) -
(9). The distributions are log normal, Cauchy and 
Chi-Square. 
 
In all cases, MSE and RMSE are used to 
compare among of these methods under 
consideration. The Gibbs sampler is used to 
estimate the parameters of the three distribution 
in Bayesian method. The Bayesian methods, 
there exist two cases dependent and 
independent variables and two different methods, 
approximation and importance sample. By 
comparison between the results for the two 
independent methods (IIS and IA) for the  small 
samplesizes (n=15, n=20, n=30) are almost the 
same. In addition the results for the two 
dependent methods (DIS and DA) for the sample 
sizes (n=15, n=20, n=30) again are almost the 
same. Also MSE and RMSE for the DIS and DA 
is less than MSE and RMSE of IIS and IA as 
observed in Tables (1) and (9). The following 
Tables (1) - (9) presents and summarizes the 
simulation results based on 1000 repetitions with 
n=15, n=20 and n=30 for different values of 
quantile parameter = (0.1. 0.25, 0.95). Also all 
tables represents the considered four 
distributions (Cauchy, log normal and Chi-square 
distributions). The notations in columns IIS, IA, 
DIS, DA, represents the independent importance 
sample, independent approximation, dependent 
importance sample and dependent 
approximation, respectively. The notations in 
Rows ER, RER represents estimated risk and 
relative estimated risk respectively (noted that 
ER, RER denoted MSE andRMSE). 
 
The results of each distribution for all methods is 
as follows. 
 
Cauchy distribution: The study determined that 
when samples (n=15, n=20, n=30) with 
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parameters (0,0.5) for the Cauchy distribution, 
from the results in Tables (1-3) we see that the 
results approximately the same for all three 
sample sizes. The results of MSE and RMSE are 
almost the same that means the suggested 
approach is good when the sample size is small. 
 
Chi-Square: From Tables (4) to (6) represented 
the Chi-Square distribution with degree of 
freedom equal 3. It is noted that the results for 
the two dependent methods (DIS and DA) for the 
sample sizes (n=15, n=20, n=30) are almost the 

same. Also MSE and RMSE for the DIS and DA 
is less than MSE and RMSE of IIS and IA. 
 
-Log normal distribution: A comparison between 
the results for the two independent methods (IIS 
and IA) for the sample sizes (n=15, n=20, n=30) 
are almost the same. In addition the results for 
the two dependent methods (DIS and DA) for the 
sample sizes (n=15, n=20, n=30) again are 
almost the same. Also MSE and RMSE for the 
DIS and DA is less than MSE and RMSE of IIS 
and IA as observed in Tables (7) and (9). 

 

Table 1. Estimated risks of the Bayesian method for sample size n=15, Cauchy (0, 0.5) 
 

   IIS IA DIS DA 

 
�
=

�
.�

 
 

�
�

 �� 0.011 0.012 0.018 0.017 
�� 0.034 0.035 0.018 0.017 
�� 0.027 0.026 0.017 0.018 

�
�
�

 �� 2.694×10
-4

 6.398×10
-4

 3.882×10
-4

 1.064×10
-5

 
�� 4.181×10-4 3.72*×10-4 8.345×10-4 1.476×10-4 
�� 7.917×10

-4
 6.864×10

-5
 1.262×10

-4
 3.447×10

-5
 

 
�
=

�
.�

�
 

 

�
�

 �� 0.023 0.025 0.037 0.035 
�� 0.07 0.073 0.037 0.036 
�� 0.056 0.053 0.036 0.037 

�
�
�

 �� 5.614×10
-4

 1.333×10
-3

 8.087×10
-4

 2.229×10
-5

 
�� 8.714×10

-4
 7.754×10

-4
 1.739×10

-3
 3.074×10

-4
 

�� 1.649×10-3 1.429×10-4 2.629×10-4 7.193×10-5 

 
�
=

�
.�

� 

�
�

 �� 5.908×10
-3

 6.394×10
-3

 9.312×10
-3

 8.937×10
-3

 
�� 0.018 0.019 9.267×10

-3
 9.19×10

-3
 

�� 0.014 0.014 9.124×10-3 9.267×10-3 

�
�
�

 �� 1.422×10
-4

 3.378×10
-4

 2.049×10
-4

 5.588×10
-6

 
�� 2.207×10

-3
 1.966×10

-4
 4.404×10

-4
 7.815×10

-5
 

�� 4.178×10-4 3.612×10-5 6.658×10-5 1.817×10-5 
Where � is the quantile chosen 

 

Table 2. Estimated risks of the Bayesian method for sample size n=20, Cauchy (0, 0.5) 
 

   IIS IA DIS DA 

 
�
=

�
.�

 
 

�
�

 �� 0.014 7.126×10
-3

 0.02 0.02 
�� 0.041 0.022 0.02 0.02 
�� 0.031 0.016 0.02 0.02 

�
�
�

 �� 2.854×10
-4

 1.314×10
-4

 7.174×10
-5

 7.144×10
-5

 
�� 5.087×10-4 5.456×10-4 2.634×10-5 1.813×10-4 
�� 1.322×10-4 4.166×10-5 6.654×10-4 2.665×10-4 

 
�
=

�
.�

�
 

 

�
�

 �� 0.028 0.018 0.042 0.042 
�� 0.085 0.055 0.042 0.041 
�� 0.064 0.04 0.042 0.041 

�
�
�

 �� 5.944×10
-4

 3.285×10
-4

 1.494×10
-4

 1.486×10
-4

 
�� 1.06×10

-3
 1.364×10

-3
 5.491×10

-5
 3.774×10

-4
 

�� 2.755×10-3 1.041×10-4 1.386×10-3 5.555×10-4 

 
�
=

�
.�

� 
 

�
�

 �� 7.131×10
-3

 0.068 0.011 0.011 
�� 0.022 0.208 0.011 0.01 
�� 0.016 0.15 0.011 0.01 

�
�
�

 �� 1.506×10-4 1.249×10-3 3.784×10-5 3.771×10-5 
�� 2.686×10

-4
 5.181×10

-3
 1.392×10

-5
 9.569×10

-5
 

�� 6.979×10-4 3.97×10-4 3.512×10-4 1.406×10-4 
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Table3. Estimated risks of the Bayesian method for sample size n=30, Cauchy (0, 0.5) 

 
   IIS IA DIS DA 

 
�
=

�
.�

 
 

�
�

 �� 0.017 0.016 0.025 0.025 
�� 0.048 0.05 0.025 0.023 
�� 0.038 0.038 0.025 0.025 

�
�
�

 �� 6.612×10
-5

 6.885×10
-5

 3.583×10
-4

 9.71×10
-4

 
�� 8.191×10-4 6.113×10-4 9.676×10-4 9.217×10-4 
�� 1.492×10-3 6.801×10-4 2.124×10-3 4.666×10-5 

 
�
=

�
.�

�
 

 

�
�

 �� 0.036 0.034 0.052 0.052 
�� 0.1 0.104 0.052 0.049 
�� 0.079 0.08 0.053 0.052 

�
�
�

 �� 1.418×10
-4

 1.434×10
-4

 7.465×10
-4

 2.023×10
-4

 
�� 1.718×10

-3
 1.274×10

-3
 2.016×10

-3
 1.92×10

-4
 

�� 3.099×10-3 1.417×10-3 4.424×10-3 9.715×10-5 

 
�
=

�
.�

� 
 

�
�

 �� 9.214×10
-3

 8.583×10
-3

 0.013 0.013 
�� 0.025 0.026 0.013 0.012 
�� 0.02 0.02 0.013 0.013 

�
�
�

 �� 3.491×10-5 3.634×10-5 1.891×10-4 5.125×10-4 
�� 4.324×10

-4
 3.226×10

-4
 5.106×10

-4
 4.865×10

-4
 

�� 7.875×10
-4

 3.589×10
-4

 1.121×10
-3

 2.46×10
-5

 
 

Table 4. Estimated risks of the Bayesian method for sample size n=15, chi square (0, 3) 
 

   IIS IA DIS DA 

 

�
=

�
.�

 

 

�
�

 �� 0.012 0.012 0.018 0.017 

�� 0.034 0.034 0.018 0.018 

�� 0.027 0.027 0.018 0.017 

�
�
�

 �� 9.352×10-5 8.945×10-5 9.252×10-4 1.053×10-4 

�� 8.808×10
-4

 4.468×10
-4

 1.861×10
-4

 2.211×10
-4

 

�� 1.156×10-3 2.185×10-4 7.94×10-4 6.091×10-4 

 

�
=

�
.�

�
 

 

�
�

 �� 0.024 0.025 0.037 0.036 

�� 0.071 0.072 0.036 0.037 

�� 0.055 0.056 0.037 0.036 

�
�
�

 �� 1.948×10-4 1.864×10-4 1.927×10-3 2.195×10-4 

�� 1.835×10
-3

 9.309×10
-4

 3.877×10
-4

 4.607×10
-4

 

�� 2.407×10-3 4.553×10-4 1.654×10-4 1.269×10-3 

 

�
=

�
.�

� 

 

�
�

 �� 6.071×10-3 6.254×10-3 9.306×10-3 9.189×10-3 

�� 0.018 0.018 9.247×10
-3

 9.302×10
-3

 

�� 0.014 0.014 9.351×10-3 9.059×10-3 

�
�
�

 �� 4.936×10-5 4.722×10-5 4.883×10-4 5.561×10-5 

�� 4.649×10
-4

 2.359×10
-4

 9.823×10
-5

 1.167×10
-4

 

�� 6.099×10-4 1.154×10-4 4.19×10-5 3.215×10-4 
 

Table 5. Estimated risks of the Bayesian method for sample size n=20, chi square (0, 3) 
 

   IIS IA DIS DA 

 
�
=

�
.�

 
 

�
�

 �� 0.013 0.013 0.02 0.019 
�� 0.042 0.039 0.019 0.02 
�� 0.03 0.031 0.021 0.021 

�
�
�

 �� 2.813×10-4 1.299×10-4 8.248×10-4 3.938×10-4 
�� 3.56×10

-3
 8.741×10

-4
 3.525×10

-4
 5.886×10

-4
 

�� 2.522×10-3 1.642×10-3 1.271×10-4 4.661×10-4 
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   IIS IA DIS DA 
 �
=

�
.�

�
 

 

�
�

 �� 0.028 0.028 0.042 0.04 
�� 0.087 0.081 0.04 0.042 
�� 0.062 0.064 0.043 0.043 

�
�
�

 �� 5.86×10
-4

 2.707×10
-4

 1.718×10
-3

 8.205×10
-4

 
�� 7.416×10

-4
 1.821×10

-3
 7.344×10

-4
 1.226×10

-3
 

�� 5.255×10-4 3.421×10-3 2.648×10-4 9.712×10-4 

 
�
=

�
.�

� 
 

�
�

 �� 7.112×10-3 6.989×10-3 0.011 0.01 
�� 0.022 0.021 0.01 0.011 
�� 0.016 0.016 0.011 0.011 

�
�
�

 �� 1.484×10-4 6.854×10-4 4.353×10-4 2.078×10-4 
�� 1.879×10

-3
 4.614×10

-4
 1.86×10

-4
 3.107×10

-4
 

�� 1.331×10
-3

 8.668×10
-4

 6.71×10
-5

 2.46×10
-4

 
 

Table 6. Estimated risks of the Bayesian method for sample size n=30, chi square (0, 3) 
 

   IIS IA DIS DA 

 
�
=

�
.�

 
 

�
�

 �� 0.017 0.016 0.025 0.024 
�� 0.048 0.048 0.025 0.024 
�� 0.038 0.038 0.026 0.024 

�
�
�

 �� 1.618×10-4 7.81×10-4 6.227×10-5 3.557×10-4 
�� 8.184×10

-4
 2.177×10

-3
 5.828×10

-4
 1.901×10

-4
 

�� 9.23×10
-4

 1.688×10
-4

 1.848×10
-5

 1.59×10
-3

 

 
�
=

�
.�

�
 

 

�
�

 �� 0.035 0.034 0.052 0.05 
�� 0.101 0.099 0.051 0.05 
�� 0.079 0.078 0.053 0.051 

�
�
�

 �� 3.37×10-4 1.627×10-3 1.298×10-4 7.411×10-4 
�� 1.705×10

-3
 4.535×10

-3
 1.214×10

-3
 3.96×10

-4
 

�� 1.923×10
-3

 3.513×10
-4

 3.852×10
-5

 3.314×10
-3

 

 
�
=

�
.�

� 
 

�
�

 �� 8.986×10-3 8.677×10-3 0.013 0.013 
�� 0.026 0.025 0.013 0.013 
�� 0.02 0.02 0.014 0.013 

�
�
�

 �� 8.539×10
-5

 4.122×10
-4

 3.286×10
-5

 1.877×10
-4

 
�� 4.32×10-4 1.149×10-3 3.076×10-4 1.003×10-4 
�� 4.871×10

-3
 8.906×10

-5
 9.748×10

-6
 8.394×10

-4
 

 

Table 7. Estimated risks of the Bayesian method for sample size n=15, log normal (0,0.6) 
 

   IIS IA DIS DA 

 
�
=

�
.�

 
 

�
�

 �� 0.011 0.012 0.018 0.017 
�� 0.034 0.035 0.018 0.018 
�� 0.026 0.026 0.017 0.018 

�
�
�

 �� 1.838×10-4 4.345×10-4 3.882×10-4 3.324×10-4 
�� 7.08×10-4 1.404×10-3 8.345×10-4 6.37×10-4 
�� 1.556×10

-4
 5.88×10

-4
 1.262×10

-4
 5.976×10

-4
 

 
�
=

�
.�

�
 

 

�
�

 �� 0.024 0.024 0.037 0.036 
�� 0.071 0.072 0.037 0.037 
�� 0.054 0.054 0.036 0.037 

�
�
�

 �� 3.829×10
-4

 9.052×10
-4

 8.087×10
-4

 6.923×10
-4

 
�� 1.475×10-3 2.928×10-3 1.739×10-3 1.327×10-3 
�� 3.243×10

-4
 1.226×10

-3
 2.628×10

-4
 1.245×10

-3
 

 
�
=

�
.�

� 
 

�
�

 �� 6.05×10
-3

 6.147×10
-3

 9.312×10
-3

 9.145×10
-3

 
�� 0.018 0.018 9.267×10-3 9.408×10-3 
�� 0.014 0.014 9.124×10-3 9.447×10-3 

�
�
�

 �� 9.702×10
-5

 2.293×10
-4

 2.049×10
-4

 1.754×10
-4

 
�� 3.737×10-4 7.411×10-4 4.404×10-4 3.362×10-4 
�� 8.212×10-5 3.103×10-4 6.659×10-5 3.154×10-4 
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Table 8. Estimated risks of the Bayesian method for sample size n=20, log normal (0,0.6) 
 

   IIS IA DIS DA 

 
�
=

�
.�

 
 

�
�

 �� 0.013 0.013 0.02 0.02 
�� 0.04 0.04 0.02 0.02 
�� 0.03 0.031 0.02 0.02 

�
�
�

 �� 7.362×10-6 5.36×10-4 6.02×10-4 2.307×10-6 
�� 1.855×10

-5
 8.505×10

-4
 7.745×10

-4
 7.149×10

-5
 

�� 9.787×10
-5

 3.896×10
-4

 4.048×10
-4

 1.002×10
-3

 

 
�
=

�
.�

�
 

 

�
�

 �� 0.028 0.028 0.041 0.042 
�� 0.083 0.083 0.041 0.041 
�� 0.062 0.065 0.041 0.042 

�
�
�

 �� 1.543×10-5 1.116×10-3 1.254×10-3 4.853×10-6 
�� 3.861×10

-4
 1.771×10

-3
 1.613×10

-3
 1.489×10

-4
 

�� 2.037×10
-4

 8.113×10
-4

 8.433×10
-4

 2.089×10
-3

 

  

�
�

 �� 7.086×10-3 7.106×10-3 0.01 0.011 
�� 0.021 0.021 0.01 0.01 
�� 0.016 0.017 0.01 0.011 

�
�
�

 �� 3.887×10
-6

 2.829×10
-4

 3.177×10
-4

 1.218×10
-6

 
�� 9.79×10-5 4.491×10-4 4.087×10-4 3.773×10-5 
�� 5.165×10

-5
 2.057×10

-4
 2.136×10

-4
 5.291×10

-4
 

 
Table 9. Estimated risks of the Bayesian method for sample size n=30, log normal (0,0.6) 

 
   IIS IA DIS DA 

 
�
=

0
.1

 
 

�
�

 �� 0.016 0.017 0.024 0.025 
�� 0.047 0.048 0.025 0.025 
�� 0.036 0.037 0.025 0.025 

�
�
�

 �� 4.231×10
-4

 1.135×10
-5

 9.973×10
-4

 2.356×10
-4

 
�� 4.735×10

-3
 7.515×10

-4
 7.164×10

-4
 5.41×10

-4
 

�� 3.067×10-4 2.327×10-3 4.632×10-4 1.671×10-4 

 
�
=

0
.2
5

 
 

�
�

 �� 0.034 0.036 0.05 0.053 
�� 0.099 0.101 0.052 0.051 
�� 0.076 0.076 0.051 0.052 

�
�
�

 �� 8.831×10
-4

 2.367×10
-5

 2.078×10
-3

 4.908×10
-4

 
�� 9.858×10

-3
 1.565×10

-3
 1.493×10

-3
 1.127×10

-3
 

�� 6.351×10-4 4.848×10-3 9.652×10-4 3.481×10-4 

 
ρ
=

0
.9
5

 
 

�
�

 �� 8.572*10^-3 8.996×10-3 0.013 0.013 
�� 0.025 0.026 0.013 0.013 
�� 0.019 0.019 0.013 0.013 

�
�
�

 �� 2.233×10-4 5.991×10-6 5.264×10-4 1.243×10-4 
�� 2.499×10

-3
 3.966×10

-4
 3.781×10

-4
 2.856×10

-4
 

�� 1.618×10
-4

 1.228×10
-3

 2.445×10
-4

 8.818×10
-5

 
 
In general, in the above simulation study for all 
values of the parameter , the results shows that 
in the independent approximation method and 
the importance sample same behavior a small 
sample sizes observed in all tables. The mean 
square error and relative mean square error 
decreases as the sample size (n) increases for 
all different distributions and different values of 
the quantile parameter ( ) in two methods. By 
comparison between the results for the three 
distributions, we found that approximate the 
same behavior for the small sample size.   

6. CONCLUSION 
 
In the above sections treatment the quantile 
regression model, Bayesian adaptive Lasso 
quantile regression (BALQR) by using a small 
sample size. Also they put different penalization 
parameters on the different regression 
coefficients. Bayesian adaptive Lasso quantile 
regression approaches used to select the best 
subset of variables and estimate the parameters 
of the quantile regression equation when small 
sample sizes are used.  The posterior distribution 
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doesn’t exist in the closed form so Gibbs sampler 
method is used to solve the our problem. The full 
conditional posterior distribution is solved by 
using the new approaches approximation method 
and importance sample method. The numerical 
results of MSE and RMSE for the three 
distributions (Cauchy, Chi-Square, Log-Normal 
distributions) for many values of ρ  and small 
different sample size in two case (approximation 
method and importance sample). The 
simulations study shown that the proposed 
approaches are very competitive in terms of 
variable selection, estimation accuracy and 
efficient when small sample sizes are used.     
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