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Abstract 
In order to ensure that the large-scale application of photovoltaic power gen-
eration does not affect the stability of the grid, accurate photovoltaic (PV) power 
generation forecast is essential. A short-term PV power generation forecast 
method using the combination of K-means++, grey relational analysis (GRA) 
and support vector regression (SVR) based on feature selection (Hybrid Kmeans- 
GRA-SVR, HKGSVR) was proposed. The historical power data were clus-
tered through the multi-index K-means++ algorithm and divided into ideal 
and non-ideal weather. The GRA algorithm was used to match the similar 
day and the nearest neighbor similar day of the prediction day. And selected 
appropriate input features for different weather types to train the SVR model. 
Under ideal weather, the average values of MAE, RMSE and R2 were 0.8101, 
0.9608 kW and 99.66%, respectively. And this method reduced the average 
training time by 77.27% compared with the standard SVR model. Under non- 
ideal weather conditions, the average values of MAE, RMSE and R2 were 1.8337, 
2.1379 kW and 98.47%, respectively. And this method reduced the average 
training time of the standard SVR model by 98.07%. The experimental results 
show that the prediction accuracy of the proposed model is significantly im-
proved compared to the other five models, which verify the effectiveness of 
the method. 
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1. Introduction 

In the face of limited fossil energy and the need to adjust the energy structure, 
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the exploration of renewable energy power generation technology is of great sig-
nificance [1]. A study shows that the earth receives about 1.8 × 1011 MW of power 
per second from solar radiation [2]. Photovoltaic power generation is one of the 
most promising solar power technologies [3]. Photovoltaic energy has the advan-
tages of cleanliness, wide distribution and abundant reserves, and has become 
the best substitute for industrial and residential power generation [4]. According 
to the 2020 report of the International Renewable Energy Agency, in the past 8 
years, the global photovoltaic power generation cost has dropped by more than 
70%, and the global installed capacity has reached 578.553 GW [5]. 

However, due to the chaotic nature of the weather system, the production of 
photovoltaic energy is highly random, volatile and intermittent, which may 
lead to grid power and voltage imbalances, and also greatly increase the diffi-
culty of large-scale photovoltaic energy applications [6] [7]. In order to improve 
the power system’s ability to consume photovoltaic energy, many solutions have 
been proposed, including energy storage optimization [8], demand response 
strategy [9] [10], power flow optimization [11], stand-alone microgrid [12], 
and PV power forecasting [13]. Considering economy and feasibility compre-
hensively, photovoltaic power generation forecast is one of the most promising 
solutions to the impact of large-scale photovoltaic energy application on the grid 
[14] [15]. 

The current photovoltaic power generation forecasting technologies have three 
main directions: physical methods, time series statistical methods and ensemble 
methods [14]. [16] proposed a partial function linear regression model to fore-
cast the day-ahead photovoltaic power generation. The regression method has a 
low amount of calculation, but the prediction accuracy is relatively low. [17] pro-
posed an ANN model based on an extreme learning machine algorithm to pre-
dict photovoltaic power generation. Artificial neural network can handle nonli-
near problems and has excellent self-learning ability, so it has high prediction 
accuracy. However, the ANN multi-layer network structure greatly increases the 
complexity of the model, which makes training and optimizing the model con-
sume a lot of computing resources and longer training time. In [18] [19] [20], 
the support vector machine (SVM) is used for short-term photovoltaic output 
forecasting. SVM can also handle non-linear problems, has excellent learning abil-
ity and does not rely heavily on prior knowledge. The training speed is fast and 
has the ability to prevent overfitting, with good generalization. 

The ensemble method solves the limitations of a single model by mixing dif-
ferent models with unique functions, thereby improving the prediction perfor-
mance [21]. For the prediction of photovoltaic power generation, the ensemble 
method that mixes various effective methods is more effective and accurate [22]. 
For example, the hybrid GA-SVM model [20], which performed better than the 
SVM model. In [23], a hybrid Kmeans-GRA-Elman model was proposed, the 
performance of Kmeans-GRA-Elman was better than BP neural network, Elman, 
GRA-BPNN and GRA-Elman. 

Photovoltaic power generation has obvious seasonal and weather characteris-
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tics [24]. Weather conditions can be roughly divided into two types: the ideal 
weather type (sunny day), and non-ideal weather types [25]. For ideal weather, 
the prediction accuracy of many prediction methods is high enough [26]. It can 
be seen from [27] [28] that the prediction accuracy of these methods for non- 
ideal weather was much lower than that of ideal weather. In order to improve 
the prediction performance under non-ideal weather, similar algorithms have 
been used in many studies to extract output features under similar weather. For 
example, [29] proposed a prediction method based on similar days and improved 
BP neural network. The similarity algorithm can effectively extract the output 
characteristics of different weather types. Moreover, compared to directly using 
a large amount of historical data to train the model, the use of similar days not 
only saves a lot of computing resources, but also improves the prediction accu-
racy of the model. However, if the time interval between the similar day and the 
forecast day is too long, the characteristics of the photovoltaic array (surface 
cleanliness, module aging, conversion efficiency, etc.) have changed a lot, which 
will cause a large error between the predicted result and the actual value [25]. 

A short-term photovoltaic power generation forecast method using the com-
bination of K-means++, grey relational analysis (GRA) and support vector re-
gression (SVR) based on feature selection is proposed in this paper. The pro-
posed HKGSVR (hybrid Kmeans-GRA-Support Vector Regression) forecast-
ing model is compared with SVR, HKGLSTM (hybrid Kmeans-GRA-LSTM), 
HKGBP (hybrid Kmeans-GRA-Back Propagation Neural Network), HKGLR (hy-
brid Kmeans-GRA-Linear Regression), HKGARIMA (hybrid Kmeans-GRA-Auto- 
regressive Integrated Moving Average), respectively, to demonstrate its superio- 
rity in predictive performance. The main contributions of this paper include: 

1) A novel day-ahead PV power forecasting method utilizes SVR, clustering 
and similarity algorithms is proposed. 

2) Clustering historical power data through multi-index K-means++ to obtain 
power generation modes of different weather types. Overcome the limitation of 
directly categorizing according to weather tags. According to the average power 
of each cluster, it is divided into ideal weather cluster and non-ideal weather 
cluster. 

3) The GRA algorithm is used to match the nearest neighbor similar day, and 
the error caused by the long time interval between the similar day and the fore-
cast day is reduced by using the information of the nearest neighbor similar day. 

4) By analyzing the correlation between photovoltaic output power and vari-
ous meteorological factors, 10 feature combinations are proposed. Select appro-
priate input features for ideal and non-ideal weather to further improve the pre-
diction accuracy of photovoltaic power generation. 

The remainder of this paper is organized as follows. Section 2 describes the 
hybrid Kmeans-GRA-SVR model. Section 3 illustrates clustering and model eval-
uation metrics. Section 4 introduces the experiments and result analysis. Finally, 
conclusions are given in Section 5. 
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2. Hybrid K-Means-GRA-SVR Model 
2.1. K-Means++ Clustering Algorithm 

K-means++ clustering algorithm is an improved version of K-means algorithm. 
This algorithm separates the K initial cluster centers more from each other. In 
this work, which is selected as the classifier due to its higher efficiency and im-
proved robustness compared with others (e.g., standard K-means, K-medoids, 
Gaussian mixture models, etc.) [30]. The running process of K-means++ is as 
follows: 

Step 1: Randomly select a sample as the first cluster center C1; 
Step 2: Calculate the probability of each sample being selected as the next 

cluster center: 

( )
( )

2

2
x X

D x

D x
∈∑

                           (1) 

where, D(x) represents the distance between the sample and the nearest cluster 
center. 

Then use the roulette method to select the next cluster center; 
Step 3: Repeat step 2 until K cluster centers are selected; 
Step 4: For each sample xi in the datasets, calculate its distance to K cluster 

centers, and then put it into the class corresponding to the smallest distance 
cluster center; 

Step 5: For each cluster, recalculate its cluster center Ci: 

1
ii x c

i

c x
c ∈

= ∑                           (2) 

Step 6: Repeat steps 4 and 5 until the position of the cluster center does not 
change. 

In this part, the historical power data is directly clustered by season to obtain 
different power generation modes due to the diversity of weather. Moreover, the 
aging of the equipment itself and its own parameters will be different under dif-
ferent weather, it is difficult for us to accurately measure these changes. The 
characteristics of historical power data will integrate these changes into it. After 
clustering the historical power data, the centroid value of each cluster is calcu-
lated by the minimum, average and maximum of global horizontal irradiance 
(GHI), diffuse horizontal irradiance (DHI), relative humidity (RH) and temper-
ature (T)(12 meteorological factor eigenvalues). 

2.2. Grey Relational Analysis Algorithm 

The basic idea of the grey relational analysis algorithm is to judge the correlation 
degree by comparing the geometric similarity between the reference sequence 
and several data columns. Generally, the more consistent the change tendency of 
the reference sequence and the comparison sequence, the higher the degree of 
correlation between the two variables. The flow of the GRA algorithm is as fol-
lows: 
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Step 1: Determine the reference sequence y and the comparison sequence xi: 

( ){ }| 1, 2, ,y y k k n= =                      (3) 

( ){ }| 1, 2, , , 1, 2, ,i ix x k k n i m= = =                (4) 

where, n and m represent the dimension of the eigenvalues and the number of 
comparison sequence, respectively. 

Step 2: Non-dimensionalization of variables: 

( ) ( ) ( )
( ) ( )

*

max min

, 1, 2, , ; 0,1, 2, , ; 1, 2, , 1j av
j

D k D k
d k k n i m j m

D k D k
−

= = = = +
−

  
 (5) 

where, Dj(k) contains reference sequence and comparison sequence, Dav(k), 
Dmin(k) and Dmax(k) are the average, minimum and maximum values of each 
column, j represents sum of the number of reference sequence and comparison 
sequence. 

Non-dimensionalization is used to solve the problem that the columns cannot 
be compared due to the different dimensions. 

Step 3: Calculate correlation coefficient ξi(k): 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
min min max max

max max
i ii k i k

i
i ii k

y k x k y k x k
k

y k x k y k x k

ρ
ξ

ρ

− + −
=

− + −
       (6) 

where, ρ is called the resolution coefficient, here, ρ is 0.5. 
Step 4: Calculate correlation degree. 
Calculate the average value of the correlation coefficient at each moment (that 

is, each point in the curve) ri: 

( )
1

1 , 1, 2, ,
n

i i
k

r k k n
n

ξ
=

= =∑                      (7) 

Step 5: Sort correlation degree. 
After determining the cluster to which the prediction day belongs, the correla-

tion between the prediction day and each sample in the cluster is calculated by 
GRA based on 12 meteorological factor eigenvalues, and the date with the corre-
lation degree greater than the threshold (an appropriate correlation value that 
takes into account the similarity and the number of samples) is regarded as the 
similar days. Based on GRA global matching results: for the ideal weather, the 
sample with the highest correlation in the 7 days before the forecast date is set as 
the nearest neighbor similar day; for non-ideal weather, the sample with the 
highest correlation in the 30 days before the prediction is set as the nearest 
neighbor similar day. 

2.3. Support Vector Regression 

Based on the structural risk minimization theory, the support vector machine 
constructs a hyperplane in the feature space, thereby overcoming the local op-
timal problem and requiring fewer training samples [30]. When the data type is 
complex, support vector regression is used. For a set of data ( ){ }, , 1, 2, ,i iX Y i n=  , 
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Xi is the input variable of the sample, and Yi is the target value. The support 
vector machine equation based on Vapnik theory is as follows [31]: 

( ) ( )Tf x x bω φ= +                         (8) 

where, ω is a vector of weight coefficients, Φ(x) is the nonlinear mapping func-
tion and b denotes a bias constant.  

ω and b can be obtained by the following formula: 

2 *
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+ +∑                    (9) 
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               (10) 

where, iξ  and *
iξ  are slack variables, and C denotes the penalty variable, ε is 

the insensitive loss function. 
By introducing Lagrangian multipliers and optimal constraints, (8) can be 

transformed into: 

( ) ( ) ( )* *

1
, ,

n

i i i i i
i

f x a a a a K x x b
=

= − +∑                (11) 

where, K(x, xi) = Φ(xi)Φ(xj) is the kernel function. 
In this paper, the radial basis function (RBF) kernel is applied to construct the 

SVR model. The RBF kernel is presented as:  

( ) ( )2, expi i i iK x x x xγ= − −                   (12) 

where, γ is the kernel parameter. 

2.4. The HKGSVR Model Workflow 

The flow chart of the hybrid K means-GRA-LSTM model is shown in Figure 1, 
and the workflow is as follows: 

Step 1: Obtain historical photovoltaic output power and meteorological factor 
data, and deal with the missing and abnormal data in the data set. 

Step 2: Use the multi-index K-means++ algorithm to cluster historical photo-
voltaic power data by season, and calculate the 12 meteorological factor eigen-
values as the central value of each cluster. According to the average power of 
each cluster, it is divided into ideal weather cluster and non-ideal weather clus-
ter.  

Step 3: The Euclidean distance, Pearson correlation coefficient and GRA cor-
relation between the 12 meteorological eigenvalues of the forecast day and the 
centroid value of each cluster are calculated to determine the cluster to which the 
forecast day belongs. 

Step 4: Calculate the correlation between the predicted day and each sample in 
the matched cluster through GRA to obtain the similar days (as the training set) 
and the nearest neighbor similar day (as the validation set) and normalize them. 
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Figure 1. The working process of the hybrid K-means-GRA-SVR model. 

 
Step 5: Select appropriate input features and similar days are used to train 

SVR. Determine the C and γ of SVR through grid search and cross-validation, 
and use the nearest neighbor similar day to test. 

Step 6: Use the trained model to predict the prediction day. 

3. Evaluation Metrics 
3.1. Clustering Evaluation Metrics 

If the ground truth labels are not known, evaluation must be performed using 
the model itself. The Silhouette Coefficient is an example of such an evaluation, 
the score is higher when clusters are dense and well separated. Silhouette Coeffi-
cient S(i) is defined as follows [32]: 

( ) ( ) ( )
( ) ( ){ }max ,

b i a i
S i

a i b i
−

=                      (13) 

where, a(i) is the mean distance between a sample and all other points in the 
same cluster, b(i) is the mean distance between a sample and all other points in 
the next nearest cluster. Average the Silhouette Coefficient of all points, which is 
the total Silhouette Coefficient of the clustering result. 

Davies-Bouldin index is defined as follows [33]: 
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1
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n ω ω≠=
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∑                    (14) 

where, iS  is the average distance from the points in the cluster to the cluster 
centroid, 

2i jω ω−  is the distance between the centroid of cluster i and j.  
The Davies-Bouldin index is lower if the model clusters have better separa-

tion. 
SSE is also an effective metric, that is, the sum of squared errors of the dis-

tance between the centroid of each cluster and the points in the cluster. SSE is 
defined as follows: 

( )2

1
SSE ,

K

i
i

dist x c
=

= ∑∑                      (15) 

3.2. Metrics of Photovoltaic Power Forecasting Techniques 

In order to evaluate the performance of the proposed method HKGSVR for 
photovoltaic power generation forecasting, the root mean square error (RMSE), 
average absolute error (MAE) and coefficient of determination (R2) indicators 
were calculated. The mean absolute error can better reflect the difference be-
tween the predicted value and the true value. RMSE is used to measure the devi-
ation between the predicted value and the actual value, so it is more sensitive to 
outliers (that is, if the predicted value of a point is very different from the true 
value, the RMSE of the curve will be very large). R2 is used to test the fit of the 
predicted value to the true value, and is generally used to evaluate the prediction 
performance of the model. They are defined as follows [14]. 

1) The RMSE is defined as: 

1

1RMSE
N

fi ai
i

P P
N =

= −∑                      (16) 

where, Pai and Pfi are the actual and predicted value at i hour. N refers to the 
number of hours a sample contains. 

2) The MAE is expressed as: 

1

1MAE
N

fi ai
i

P P
N =

= −∑                       (17) 

3) The R2 is given as: 
2

1 1 12
2 2

2 2

1 1 1 1

R
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∑ ∑ ∑

∑ ∑ ∑ ∑
           (18) 

4. Experimental Analysis 
4.1. Data 

In this paper, the general datasets on the DKASC (Desert Knowledge Australia 
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Solar Center) website are used for related experiments. The photovoltaic array is 
composed of 22 polycrystalline silicon photovoltaic panels with a rated power of 
265 W, whose total rated power is 5.83 kW. The photovoltaic array is located at 
the Desert Knowledge Precinct in Alice Springs, a town in the Northern Terri-
tory that enjoys one of the country’s highest solar resources in an arid desert en-
vironment. The configuration information of the photovoltaic array is shown in 
Table 1. Meteorology (global horizontal irradiance, diffuse horizontal irra-
diance, relative humidity and temperature) and historical power data of PV ar-
rays from March 1, 2018 to February 29, 2020 were used in the experiment. The 
experiment uses data with an interval of 1 hour from 7:00 to 18:00 every day. 

4.2. Number of Clusters and Weather Division 

In order to obtain the appropriate number of clusters for each season, SSE, DBI 
and Silhouette Coefficient (S) are used for evaluation. Taking autumn as an ex-
ample, the experimental results are shown in Figure 2. 
 

 

Figure 2. Evaluation of clustering results of historical power data in autumn. 
 
Table 1. The configuration information of photovoltaic array. 

Item Information 

Array Rating 5.83 kW 

Panel Rating 265 W 

Number Of Panels 22 

Panel Type HSL 60 S 

Array Area 36.74 

Inverter Size/Type SMA SMC 6000A 

Array Tilt/Azimuth Tilt = 20, Azimuth = 0 (Solar North) 

Nominal working temperature 45 ± 3 Celsius 

Temperature coefficient of power −0.41%/Celsius 
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It can be seen from Figure 2 that SSE decreases as the number of clusters in-
creases. When the number of clusters is 3, the downward trend begins to slow 
down. DBI has the best performance when the value of K is 3. When the value of 
K is 2 and 3, the value of S is 0.71 and 0.64, respectively. Then, as the value of K 
increases, the value of S drops sharply. So the value of K is chosen between 2 and 
3. When K = 2, the blue cluster and the red cluster merge into one cluster. 
However, the blue clusters are mostly smooth arcs, while the red clusters are 
mostly polylines. Therefore, the value of K is chosen to be 3. The blue cluster is 
selected as the ideal weather cluster (most of the curves are smooth and the av-
erage power is larger in the cluster), and the green and red clusters are non-ideal 
weather clusters (most of them are broken lines in the clusters, and the average 
power is small, the average power of the green cluster is 123.09 kW, and the av-
erage power of the red cluster is 301.90 kW).  

The evaluation of clustering results in each season is shown in Table 2. In or-
der to prevent local optima or other abnormal situations, 100 rounds of experi-
ments were carried out. Considering all indicators and clustering results com-
prehensively, the number of clusters in spring is 3, the number of clusters in 
summer is 2, the number of clusters in autumn is 3, and the number of clusters 
in winter is 3. 

The clustering results of each season are divided into ideal weather clusters 
and non-ideal weather clusters by comparing the average power and geometric 
shape (arc and polyline) of each cluster. The average power of each cluster in the 
four seasons is shown in Table 3. The ideal weather clusters are mostly smooth  
 
Table 2. Cluster evaluation metrics for each season. 

Metrics Spring Summer Autumn Winter 

SSE K = 2 44,578.41 20,278.67 26,813.26 4218.80 

K = 3 32,045.12 14,899.18 15,383.50 2942.09 

K = 4 24,354.12 11,971.90 11,657.92 2473.00 

DBI K = 2 0.6723 0.9740 0.8402 0.7100 

K = 3 0.7846 0.9440 0.7098 0.6375 

K = 4 1.0187 1.0247 0.7962 0.9049 

S K = 2 0.6383 0.6156 0.7119 0.4861 

K = 3 0.5893 0.5866 0.6390 0.5074 

K = 4 0.5231 0.5705 0.4073 0.5018 

 
Table 3. Average power of each cluster in four seasons (kW). 

Cluster number Spring Summer Autumn Winter 

Cluster1 437.41 440.65 423.34 339.07 

Cluster2 281.24 331.46 123.09 376.46 

Cluster3 111.08 
 

301.90 419.81 
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arcs, and the average power is relatively large. The non-ideal weather clusters are 
mostly broken lines, and the average power is small. Therefore, spring cluster 1, 
summer cluster 1, autumn cluster 1 and winter cluster 2 and 3 are divided into 
ideal weather clusters, and the rest are non-ideal weather clusters. 

4.3. Selection of Similar Day Threshold and Nearest Similar Day 

The similar days are obtained by calculating the GRA correlation between the 
predicted days and the samples in the matching clusters. In order to improve the 
prediction accuracy while reducing the computational cost and speeding up the 
training speed of the model, it is necessary to select an appropriate correlation 
threshold. A higher correlation threshold can improve the prediction accuracy, 
but too few training samples may cause overfitting. After comprehensive con-
sideration, the similar day correlation threshold of each forecast day, the nearest 
neighbor similar day and its correlation degree are shown in Table 4 and Table 
5. It can be seen that the nearest neighbor similar days of ideal weather are 
mostly adjacent days, while the time intervals of nearest neighbor similar days of 
non-ideal weather are relatively long. 

4.4. Design of SVR Model 

This part is mainly to explore the optimal C and γ of SVR, which are usually re-
lated to the characteristics of power generation in different seasons. Grid search 
and cross-validation are used to find the optimal number of C and γ for SVR. 
This experiment uses PyCharm (python3.6) to train and optimize the SVR mod-
el on a Win 7 System personal computer with Intel core i5-3230CPU, 2.60 GHz 
processor and 4 GB RAM. 
 
Table 4. Forecasting day, similar day correlation threshold, nearest neighbor similarity 
day and correlation under ideal weather. 

Item Spring Summer Autumn Winter 

Forecasting day 09/15/2019 02/09/2020 04/18/2019 08/17/2019 

similar days threshold 0.90 0.88 0.92 0.86 

nearest neighbor similarity day 09/14/2019 02/08/2020 04/15/2019 08/16/2019 

Correlation degree 0.9295 0.9452 0.9913 0.9579 

 
Table 5. Forecasting day, similar day correlation threshold, nearest neighbor similarity 
day and correlation under non-ideal weather. 

Item Spring Summer Autumn Winter 

Forecasting day 11/02/2019 02/25/2020 04/28/2019 08/07/2019 

similar days threshold 0.92 0.87 0.91 0.91 

nearest neighbor similarity day 10/18/2019 02/05/2020 04/17/2019 07/12/2019 

Correlation degree 0.9295 0.9452 0.9913 0.9579 
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It can be seen from Table 6 and Table 7 that the optimal training time of the 
ideal weather model for each season is 2.0342, 1.9506, 2.3272, 0.6826 s, and the 
average time is 1.74865 s. And the optimal training time of the model for each 
season of non-ideal weather is 0.2490, 0.2400, 0.2240, 0.2060 s, and the average 
time is 0.22975 s. The number of similar days matched has a greater impact on 
the training optimization time. Comparing Table 6 and Table 7, it can be found 
that because the data complexity of non-ideal weather is higher than that of ideal 
weather, the C of non-ideal weather is generally larger than that of ideal weather, 
and the γ of non-ideal weather is generally smaller than that of ideal weather. 

4.5. Feature Selection 

In order to select the appropriate input feature, GRA and Pearson correlation 
analysis is performed between the power generation and various meteorological 
factors. The historical power and meteorological data for the year from March 1, 
2018 to February 28, 2019 are used for analysis. The result is shown in Figure 3. 
The definition of Pearson correlation coefficient is as follows: 
 

 

Figure 3. The correlation between photovoltaic power generation and various meteoro-
logical factors. 
 
Table 6. The optimal SVR structure for each season under ideal weather. 

Structure Spring Summer Autumn Winter 

Training data (564, 2) (408, 2) (612, 2) (156, 2) 

C 100,000.00 100,000.0 100,000.00 1.00 

γ 0.0001 0.0001 0.002 1.00 

Time (s) 2.0342 1.9506 2.3272 0.6826 

 
Table 7. The optimal SVR structure for each season under non-ideal weather. 

Structure Spring Summer Autumn Winter 

Training data (108, 3) (180, 3) (144, 3) (60, 3) 

C 1,000,000.0 10,000.0 1,000,000.0 1,000,000.0 

γ 0.000001 0.0001 0.00001 0.000001 

Time (s) 0.2490 0.2400 0.2240 0.2060 
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where, X and Y are meteorological factors and photovoltaic output power re-
spectively, and N is the number of sampling points per day.  

It can be seen from Figure 5 that the Pearson correlation coefficients between 
photovoltaic power generation and T, RH, GHI, and DHI are 0.35, −0.41, 0.97, 
and 0.35, respectively. GHI has the greatest impact on photovoltaic output, and 
there is a negative correlation between relative humidity and photovoltaic pow-
er. The GRA correlations between photovoltaic power generation and T, RH, 
GHI, and DHI are 0.68, 0.60, 0.88 and 0.67, respectively. GHI still has the largest 
impact on photovoltaic output. 

Based on the above analysis, the paper proposes 10 feature combinations. The 
prefix N represents the nearest neighbor similar day, P, G, and M respectively 
represent Power, GHI and meteorological factor eigenvalues. For example, NG_MG 
represents the nearest neighbor day GHI and predicted day meteorological fac-
tor eigenvalues and GHI. 

For ideal weather, due to its high prediction accuracy, the main consideration 
for the selection of its input features is to select a feature combination that is 
easier to obtain and requires less data accuracy while ensuring sufficient predic-
tion accuracy. Therefore, the input features of the ideal weather are power of the 
nearest neighbor similar day and 12 meteorological factor eigenvalues of the 
forecast day (NP_M). For non-ideal weather, the main goal of feature selection is 
to improve the prediction accuracy. Tables 8-10 show the evaluation of 10 fea-
ture combinations of non-ideal weather in each season. The best performance of 
the evaluation indicators in the table is bolded. 

It can be seen from Tables 8-10 that the MAE of NG_MG feature combina-
tion in each season is 1.3733, 2.0817, 1.6475, and 2.2323 kW, respectively. And  
 
Table 8. MAE (in kW) evaluation of 10 feature combinations. 

Feature Spring Summer Autumn Winter Average 

NG_MG 1.3733 2.0817 1.6475 2.2323 1.8337 

NMP_M 6.9802 5.8165 9.2623 3.1488 6.3020 

NP_M 5.2198 6.7131 10.2075 2.7698 6.2275 

NG_M 3.6054 6.3498 8.3381 3.6163 5.4774 

NM_M 12.1144 12.9347 15.7812 16.1616 14.2480 

NMPG_MG 2.7202 2.0359 3.9729 2.0185 2.6869 

NPG_MG 2.9866 2.3195 4.2225 2.1003 2.9072 

NP_MG 2.5947 2.2328 4.1497 2.4596 2.8592 

NG_G 2.8937 2.2657 3.3403 1.6866 2.5466 

MG 1.6100 3.3220 3.7172 1.6253 2.5686 
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Table 9. RMSE (in kW) evaluation of 10 feature combinations. 

Feature Spring Summer Autumn Winter Average 

NG_MG 1.4699 2.6625 1.8700 2.5492 2.1379 

NMP_M 7.2800 6.3683 10.2603 3.8242 6.9332 

NP_M 6.0625 7.8041 10.6872 3.2925 6.9616 

NG_M 4.2990 8.1207 10.2338 4.5935 6.8118 

NW_M 12.8652 14.9801 17.5154 18.6947 16.0138 

NMPG_MG 2.9276 2.4981 4.3010 2.3739 3.0251 

NPG_MG 3.1398 2.7112 4.4120 2.4219 3.1712 

NP_MG 3.0082 2.6862 4.2862 2.8474 3.2070 

NG_G 3.1922 2.7433 3.4749 1.9734 2.8459 

MG 1.7974 3.7430 3.9093 2.0774 2.8818 

 
Table 10. R2 evaluation of 10 feature combinations. 

Feature Spring Summer Autumn Winter Average 

NG_MG 0.9918 0.9731 0.9926 0.9814 0.9847 

NMP_M 0.7987 0.8464 0.7770 0.9582 0.8451 

NP_M 0.8604 0.7693 0.7580 0.9690 0.8392 

NG_M 0.9298 0.7502 0.7781 0.9396 0.8494 

NM_M 0.3714 0.1499 0.3501 −1e−5 0.2178 

NMPG_MG 0.9675 0.9764 0.9608 0.9839 0.9721 

NPG_MG 0.9626 0.9722 0.9588 0.9832 0.9692 

NP_MG 0.9656 0.9727 0.9611 0.9768 0.9690 

NG_G 0.9613 0.9715 0.9744 0.9889 0.9740 

MG 0.9877 0.9469 0.9676 0.9877 0.9725 

 
the average MAE is 1.8337 kW, which is the smallest among all feature combina-
tions. The RMSE of the NG_MG feature combination in each season was 1.4699, 
2.6625, 1.8700, 2.5492 kW. And the average RMSE was 2.1379 kW, the best per-
formance among all the feature combinations. The R2 of each season of NG_MG 
feature combination is 99.18%, 97.31%, 99.26% and 98.14%. And the average R2 
is 98.47%, which is the highest degree of fit among all feature combinations. 
From the perspective of comprehensive performance, NG_MG feature combina-
tion has higher prediction accuracy and robustness, so NG_MG is selected as the 
input feature of non-ideal weather. 

4.6. Forecasting Results and Discussion 

Figure 4 shows the prediction results of the models in each season under ideal  
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Figure 4. Forecast results of each season under ideal weather. 
 
weather. The feature combination is NP_M. The average value of R2 is 0.9966. 
The MAE are 1.4521, 1.4661, 0.7120, and 0.2132 kW respectively. The average 
value of RMSE is 0.9608 kW. The proposed model’s MAE enhancement with 
respect to the SVR model is 45.51%, 25.37%, 81.21%, 91.72%, respectively. The 
presented model’s RMSE improvement relative to the SVR model is 41.63%, 
38.80%, 77.97%, 90.37%, respectively. The average R2 of the proposed model is 
also better than the SVR model. And this method reduced the average training 
time by 77.27% compared with the standard SVR model. 

Under non-ideal weather, the forecast results of the HKGSVR model and the 
other five forecast models for the four seasons are shown in Figures 5-8. It can 
be seen from the figure that the HKGSVR model has the highest degree of fit in 
each season.  

From the spring forecast results in Figure 5, it can be seen that HKGSVR has 
the highest degree of fit, HKGLSTM is the second, and the SVR trend is more 
consistent with the predicted day. From the summer forecast results in Fig- 
ure 6, it can be seen that each point of HKGSVR has a high degree of fit, and 
HKGLSTM has a good performance except for one point that has a lower de-
gree of fit. Through the observation of the autumn forecast results in Figure 7, 
HKGSVR still performs best, and the trends of SVR and HKGARIMA are more 
consistent with the forecasted day. From the winter forecast results in Figure 8, 
it is found that both HKGSVR and SVR perform better, and HKGLSTM and 
HKGBP have poor performance due to less training data. 

According to the MAE value of each model given in Figure 9, the HKGSVR's 
average value of MAE is 1.8337 kW, which is the minimum value of all models. 
The presented model’s average MAE improvement relative to the compared five 
models (SVR, HKGLSTM, HKGBP, HKGLR, HKGARIMA) are 26.61%, 41.80%, 
58.18%, 57.36%, 52.98%, respectively. 
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Figure 5. 6 model prediction results for a spring day. 
 

 

Figure 6. 6 model prediction results for a summer day. 
 

 

Figure 7. 6 model prediction results for an autumn day. 
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Observation in Figure 10 finds that the average RMSE of the HKGSVR model 
is 2.1379 kW, which is the best value among all models. The proposed model’s 
average RMSE enhancement with respect to the compared five models is 24.13%, 
52.12%, 59.87%, 61.37%, 52.66%, respectively. 

Comparing the R2 values of the models shown in Table 11 shows that the av-
erage R2 of the proposed model is 0.9847, which is better than other models.  
 

 

Figure 8. 6 model prediction results for a winter day. 
 

 

Figure 9. MAE evaluation under non-ideal weather. 
 

 

Figure 10. RMSE evaluation under non-ideal weather. 
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Table 11. Daily R2 comparison results of 6 models. 

Models Spring Summer Autumn Winter Average 

HKGSVR 0.9918 0.9731 0.9926 0.9814 0.9847 

SVR 0.9586 0.9650 0.9886 0.9804 0.9732 

HKGLSTM 0.9406 0.9468 0.9486 0.9369 0.9432 

HKGBP 0.9242 0.9109 0.9001 0.9431 0.9196 

HKGARIMA 0.9424 0.9308 0.9400 0.9544 0.9419 

HKGLR 0.9374 0.8685 0.9323 0.9038 0.9105 

 
Under non-ideal weather, compared to the standard SVR (the average training 
optimization time is 11.5389 s), the average training optimization time of the 
HKGSVR model is 0.2225 s, which is 98.07% less than the standard SVR.  

5. Conclusion 

A hybrid day-ahead photovoltaic power generation prediction model based on 
K-means++, GRA and SVR is proposed. The historical power data are clustered 
by multi-index K-means++, and divided into ideal weather clusters and non-ideal 
weather clusters according to the average power of each cluster. And it chooses 
the appropriate feature combination for different weather, different feature 
combination which has a greater impact on the model performance. It also uses 
GRA to match the similar day and the nearest neighbor similar day of the pre-
diction day to improve the prediction accuracy and reduce the training optimi-
zation time of the model. Compared with the standard SVR model under ideal 
weather, the HKGSVR model not only improves the prediction accuracy but also 
greatly shortens the training time. Under non-ideal weather, the average MAE, 
RMSE and R2 of the proposed model are 1.8337, 2.1379 kW and 98.47%, respec-
tively, which have better performance than the other five models. And the train-
ing time is 0.2225 s, which is 98.07% less than the standard SVR. When there are 
more accurate forecasting weather information and less training data, the 
HKGSVR model has higher forecast accuracy. In general, HKGSVR has higher 
accuracy, shorter training time and better generalization performance. There-
fore, the model can be used to predict the daily power generation of photovol-
taic power plants. However, in terms of model structure optimization, this paper 
uses grid search, so there is room for improvement in the optimization speed 
and search range, which will be the direction of further research. 
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