
Journal of Agricultural Science; Vol. 10, No. 8; 2018 
ISSN 1916-9752 E-ISSN 1916-9760 

Published by Canadian Center of Science and Education 

174 

Root-to-Shoot Communication to Modulate Source-Sink Relationship 
in Tomato Depends on Phytochromes 

Valéria Cury Galati1, Reginaldo de Oliveira1, Lucas Aparecido Gaion1, Vanessa Cury Galati2 
& Rogério Falleiros Carvalho1 

1 Department of Biology Applied to Agriculture, São Paulo State University, Brazil 
2 Centro Universitário de Votuporanga (UNIFEV), Votuporanga, SP, Brazil 

Correspondence: Rogério Falleiros Carvalho, Department of Biology Applied to Agriculture, São Paulo State 
University, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Brazil. Tel: 55-16-997-796-442. E-mail: 
rogerio.f.carvalho@unesp.br 

 

Received: April 26, 2018      Accepted: May 28, 2018      Online Published: July 15, 2018 

doi:10.5539/jas.v10n8p174          URL: https://doi.org/10.5539/jas.v10n8p174 

 

Abstract 
Phytochromes have been reported as strategic photoreceptors that can modulate the partition of photoassimilates 
between source and sink. However, so far, it is unknown whether phytochrome accumulation in the root is part 
of the control mechanisms of the source-sink relationship that modulates root and shoot growth. Thus, the 
objective of this work was to investigate phytochrome involvement in the source-sink relationship and in the 
vegetative and reproductive development of tomato plants (Solanum lycopersicum L. cv. Micro-Tom or MT). 
The experimental design was completely randomized with four treatments, provided by grafting combinations 
between aurea (au), which is phytochrome deficient, and the near isogenic line MT: (MT/MT, au/au, MT/au and 
au/MT). We observed differentiated responses for many parameters analyzed. For example, the root dry mass 
accumulation and stern diameter obtained by MT/MT, MT/au and au/MT grafting were 33% and 31% higher, 
respectively, than those obtained by au/au. In the au/MT combination, there were greater root dry mass and total 
dry mass accumulations. Based on the changes in vegetative and reproductive development observed from 
grafting combinations between MT and the mutant au, we can conclude that phytochromes function in the 
control of photoassimilate partitioning between roots and stems during tomato growth. 
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1. Introduction 
Plant development is strongly influenced by countless internal and external factors, such as the intensity and 
quality of red light; far-red ratios are signals that modulate the photoassimilate transport dynamics (Bocallandro 
et al., 2003; Tang & Liesche, 2017). However, this is dependent on the perception of light by specialized 
photoreceptors called phytochromes, which are part of a complex signal transduction network responsible for 
coordinating plant development in response to light conditions (Sun et al., 2005; Salisbury et al., 2007; Martínez 
García et al., 2010). These photoreceptors show two interconvertible relatively stable forms: one that absorbs red 
(R) light (~660 nm) and another that absorbs far-red (FR) light (~730 nm). For instance, under shading 
conditions, there is a reduction in the R/FR ratio that is perceived by the phytochromes and triggers intricate 
mechanisms that promote, for example, stem elongation to find better and adequate light conditions (Ballaré; 
Pierik, 2017; Van Gelderen et al., 2018). In fact, plants deficient in functional phytochromes exhibit exaggerated 
stem elongation and leaf chlorosis (Muramoto et al., 2005; Carvalho et al., 2011). This occurs mainly because 
the stem becomes the main sink of the plant and thus reduces the resources available for the development of 
roots and leaves (Casal, 2013). Currently, it is well known that the mechanisms by which phytochromes 
modulate the reduction in R/FR light responses involve many intricate molecular pathways in the shoot (Lee et 
al., 2017; Yang, Xie, Jiang, Z. Li, Huang, & L. Li, 2018).  

Nevertheless, it has only recently been shown that phytochromes can accumulate in roots and modulate plant 
development (Warnasooriya & Montgomery, 2011; Costigan, Warnasooriya, Humphries, & Montgomery, 2011; 
Júnior et al., 2018; Sakuraba & Yanagisawa, 2018). However, one question remains: if phytochromes accumulate 
in the root, do they function in the mechanisms controlling the source-sink relationship that involves root and 
shoot communication? 
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To better understand the factors involved in root-to-shoot signaling, grafting has been an important research tool 
because molecular and/or biochemical changes, either endogenously or exogenously induced, in the scion can 
result from modifications in both the root and shoot (Gratão et al., 2015, Gaion et al., 2018). Thus, to study light 
signaling, especially that phytochrome-dependent, in photoassimilate partition control, it is interesting to 
associate the grafting technique with molecular tools, such as photomorphogenic mutants.  

Therefore, in this work, we demonstrated by grafting that the presence of Micro-Tom functional phytochromes 
and their combination, as scion or rootstock, in phytochrome-defective aurea mutant modulates the partition and 
allocation of photoassimilates, especially between roots and stems. 

2. Material and Methods 
2.1 Plant Material 

Seeds of tomato cv. Micro-Tom (MT) and photomorphogenic mutants deficient in phytochrome aurea (au) 
(Carvalho et al., 2011) were germinated in plastic trays containing a mixture of Bioplant® substrate and 
expanded vermiculite in a ratio of 1:1 (v:v), and 15 days after sowing (DAS), seedlings of homogeneous 
developmental pattern were selected.  

2.2 Grafting and Cultivation 

The grafted plants were obtained by cutting them into a wedge shape and inserting them into a “V”-shaped 
incision in the rootstock (Peres et al., 2005). A completely randomized design was used with four treatments 
from combinations between MT and au (MT/au, au/MT, MT/MT and au/au, the first genotype being the graft 
and the second the rootstock) with three repetitions. After grafting, the plants were transferred to a floating moist 
chamber, where they remained until 30 DAS, when the complete healing of the grafting region was verified. 
After this time, the seedlings were transplanted into 1.4 L pots containing the same substrate for cultivation of 
the abovementioned seedlings. In addition, supplemental fertilization with 1 g L-1 NPK 10:10:10 was carried out 
together with 4 g L-1 dolomitic limestone. Throughout the experimental period of 65 days (sowing to harvest), 
the plants were irrigated daily. 

2.3 Parameters Evaluated 

At the end of the experiment, plant growth analyses were performed, such as length, density and root area, by 
coloring the root system with methylene blue solution for approximately 2 minutes, followed by image recording 
using a Hewlett Packard digitizer model 5C and processing by Delta-T Scan software. The total leaf area was 
also obtained by scanning the leaves and subsequent analysis of the images by the Delta-T Devices LTD image 
analysis system. The length and diameter of the stem were measured using a digital pachymeter, and these 
measurements were made from the region of stem insertion in the soil. Finally, dry biomass accumulation was 
also analyzed, for which the root, stem and leaf material were separately packed in paper bags and oven-dried at 
55 °C for 96 hours and weight was measured using a digital analytical balance (Denver Instrument Company 
AA-200) with an accuracy of 0.0001 g. In addition, the reproductive characteristics, including the number of 
fruits per plant, fruit diameter (using a digital pachymeter), fruit weight and fruit soluble solids content, were 
evaluated by means of a digital refractometer (Atago PR-101 Palette, AOAC 1997).  

2.4 Statistical Analyzes 

The results were submitted to analysis of variance (ANOVA) and F test, and when significant, the averages were 
compared using the Tukey test at 5% probability using the SISVAR® SOFTWARE (Ferreira, 2011).  

3. Results and Discussion 
3.1 Root Development 

Regarding root length, the highest values were observed in self-grafted MT/MT plants compared to au/au, 
MT/au and au/MT plants (Table 1). Indeed, the reduction in root growth in au/au and MT/au was expected 
because the synthesis chromophore of phytochrome in the roots is necessary for its photoregulation. The au 
mutant is deficient in this biosynthesis; consequently, root growth and development will be impaired (Muramoto 
et al., 2005; Costigan, Warnasooriya, Humphries, & Montgomery, 2011; Bianchetti et al., 2017). However, the 
root length of au/MT also decreased when compared to MT/MT.  

In addition, the root area was influenced by the type and position of the genotype (Table 1), with more 
pronounced responses in MT/MT self- and reciprocal MT/au-grafted plants, at 2943.1 mm2 and 4442.1 mm2

, 
respectively, whereas smaller root areas were found in plants in which the genotype of the shoot was deficient in 
phytochrome [i.e., au/au (2142.3 mm2) and au/MT (2744.2 mm2)]. These results indicate that the balance of 
phytochromes present in the roots and shoots is fundamental in determining the longest root length. Furthermore, 
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it has been described in several studies that phytochromes located in the shoot are able to modulate the 
development of the roots by long-distance pathway signals (Salisbury et al., 2007; Zheng et al., 2013; Van 
Gelderen et al., 2018).  

 

Table 1. Length, density, root area and dry mass of auto-grafting plants of MT and au and their reciprocal 
combinations MT/au, au/MT 

Combinations Length of roots Root density Root area Root dry mass 

 ---------- mm -------- ------- mg cm-3 ------ --------- mm2 -------- ------- g plant-1 ------

MT/MT 5681.4 a 18.38 a 2943.1 ab 0.03 a 

au/au 2957.4 b 11.83 b 2142.3 b 0.02 b 

MT/au 3613.9 b 14.45 ab 4442.1 a 0.03 a 

au/MT 3071.2 b 12.28 b 2744.2 b 0.03 a  

Test F 17.65** 9.77** 8.29** 13.69** 

CV (%) 13.6 11.63 19.0 8.60 

Note. CV: coefficient of variation. Means followed by distinct letters in the columns, differ by Tukey test (P < 
0.05). **; and ns: significant (P < 0.01); and not significant, respectively.  

 

Similarly, root density (Table 1) was significantly higher in the self-grafted MT/MT (18.38 mg cm-3) than in the 
au/au (11.83 mg cm-3) and au/MT (12.28 mg cm-3), but no difference was observed when compared to MT/au 
(14.45 mg cm-3). In fact, several studies have evidenced the involvement of phytochromes as part of the 
mechanisms that modulate the production and allocation of photoassimilates from shoots to roots to promote the 
latter’s development (Kasperbauer & Hunt, 1992; Wang et al., 2016; Tang & Liesche, 2017). 

However, our results demonstrate that, in addition to modulating development, phytochromes act in partitioning 
and mobilization of photoassimilates to roots, for instance, the accumulation of RDM (root dry mass) obtained in 
the grafting of MT/MT, MT/au and au/MT was 33% higher than that in au/au. Therefore, considering the higher 
accumulation of biomass in au/MT (0.03 g plant-1) than in au/au (0.02 g plant-1), it is possible to infer that the 
action of phytochromes reflected positively on the root dry mass accumulation. 

Thus, we determined that the light signal perceived by the grafting combination that has perfect functional 
phytochromes in shoots or roots (MT/MT, MT/au and au/MT) was responsible for the greater content of 
photoassimilates; these photoassimilates produced in shoot were reallocated to roots, favoring root growth 
mainly from MT/MT and MT/au combinations. 

3.2 Shoot Development and Dry Mass Accumulation and Partitioning 

To better understand the role of root phytochromes in shoot development, biometric analyses were performed 
measuring the following: stem diameter (SD), stem elongation (SE), leaf area (LF), dry stem mass accumulation 
(DSMA) and leaf dry mass (LDM) (Table 2). Initially, we observed that SE from MT/MT, MT/au and au/MT 
was very similar. On the other hand, when we compared MT/MT stem elongation with the mutant defective in 
phytochrome self-grafted au/au plants, a 31% reduction in stem elongation was observed (Table 2). Indeed, it is 
known that the deficiency in phytochromes present in au induces greater stem elongation, resulting in diameter 
reduction (Terry & Kendrick, 1996; Carvalho et al., 2011), which is consistent with our results (Figure 1).  

Thus, SD is an important trait to be evaluated because it is directly related to stem growth and consequently to 
photoassimilate accumulation in this organ (Casal, 2013). In this direction, what has been observed in this study 
was as follows: although there was a considerable reduction in au/au SD compared to MT/MT, the SE was not 
significantly affected (Table 2). Moreover, it is important to note that this parameter was slightly higher in the 
au/au (10.80 cm) and au/MT (10.0 cm) plants than in MT/MT (9.89 cm) and MT/au (9.31 cm). 
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Table 3. Total fruit, fruit diameter, fresh fruit weight and soluble solids contents in the fruits of the auto-grafting 
MT and au and their combinations MT/au, au/MT 

Combinations Total fruits Diameter of fruit Fruit weight Soluble solids content

 Numbers cm g planta-1 °Brix 

MT/MT 4.0 a 1.96 b 3.73 b 4.94 a 

au/au 3.0 a 1.97 b 3.81 b 4.92 a 

MT/au 5.0 a 2.11 a 4.19 ab 4.78 b 

au/MT 3.0 a 2.12 a 4.88 a 4.76 b 

Test F 1.6 ns 14.43** 5.49* 22.72** 

CV (%) 30.0 1.94 9.31 0.95 

Note. CV; coefficient of variation. Means followed by distinct letters in the columns, differ by Tukey test (P < 
0.05). **; and ns: significant (P < 0.01); and not significant, respectively. 

 
In fact, in addition to an inverse relationship between size and soluble solids content, fruits constitute a strong 
draining organ that demands reserves of other parts of the plant during the reproductive period (Rodrigues et al., 
2014; Turhan, Ozmen, Serbeci, & Seniz, 2011). Therefore, there are many mechanisms involved in the import, 
metabolism and accumulation of sugars in tomato fruits, influenced directly by a complex signaling pathway 
between phytochromes and hormones (Gupta et al., 2014; Bianchetti et al., 2017). However, our results indicate 
that the phytochrome-dependent responses observed in the au mutation are triggers near the reproductive stage, 
suggesting that they can synthesize some amount of functional phytochrome at this stage, even maintaining its 
characteristic phenotype with chlorotic leaves throughout the cycle (Sharrock, Parks, Koornneef, & Quail, 1988; 
Tuinen et al., 1996; Terry, Ryberg, Raitt, & Page, 2001). 

In summary, our results provide information about the control of the partition of photoassimilates and their 
relocation of the source organs to the sink, which in part is controlled by phytochromes accumulated in the roots, 
involving complex morphophysiological differentiation that still needs to be further explored in au as well as in 
its grafting combinations with MT. 

4. Conclusion 
Based on the changes in vegetative and reproductive development observed from the grafting combinations 
between MT and the mutant au, we concluded that phytochromes function in the control of the partition of 
photoassimilates between roots and stem during the growth of the tomato. 
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