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Abstract

Solar magnetic fields play a key role in understanding the nature of the coronal phenomena. Global coronal
magnetic fields are usually extrapolated from photospheric fields, for which farside data is taken when it was at the
frontside, about two weeks earlier. For the first time we have constructed the extrapolations of global magnetic
fields using frontside and artificial intelligence (AI)-generated farside magnetic fields at a near-real time basis. We
generate the farside magnetograms from three channel farside observations of Solar Terrestrial Relations
Observatory (STEREO) Ahead (A) and Behind (B) by our deep learning model trained with frontside Solar
Dynamics Observatory extreme ultraviolet images and magnetograms. For frontside testing data sets, we
demonstrate that the generated magnetic field distributions are consistent with the real ones; not only active regions
(ARs), but also quiet regions of the Sun. We make global magnetic field synchronic maps in which conventional
farside data are replaced by farside ones generated by our model. The synchronic maps show much better not only
the appearance of ARs but also the disappearance of others on the solar surface than before. We use these
synchronized magnetic data to extrapolate the global coronal fields using Potential Field Source Surface (PFSS)
model. We show that our results are much more consistent with coronal observations than those of the
conventional method in view of solar active regions and coronal holes. We present several positive prospects of our
new methodology for the study of solar corona, heliosphere, and space weather.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503); Solar corona (1483); Convolutional neural
networks (1938); The Sun (1693); Space weather (2037); Astronomical models (86)

1. Introduction

Solar magnetic fields dominate the structure and dynamics of
the corona and inner heliosphere (Jess et al. 2016). The
magnetic field is an energy source of solar flares and their
accompanying coronal mass ejections (Amari et al. 2018; Inoue
et al. 2018). Photospheric magnetic fields are routinely
measured, but direct measurements of coronal magnetic fields
are very difficult and rare. Thus, several models of extrapola-
tion or magnetohydrodynamic (MHD) simulation have been
developed to derive coronal magnetic fields from photospheric
magnetograms (Mikić et al. 2018; Nandy et al. 2018). A
synoptic map of solar magnetic fields has been widely used for
the input boundary condition of the coronal models. The map
constructed by merging together frontside magnetograms,
which are daily updated near-central-meridian data, over 27-
day solar rotation period (Bertello et al. 2014). For the farside
of the map, data assimilation techniques with magnetic surface
flux transport models and helioseismic farside detections were
applied (DeVore et al. 1984; Schrijver & DeRosa 2003).
However, those approaches still have limitations to predict real-
time farside magnetic fields, especially for rapid changes in
magnetic fields by flux emergence or disappearance near
the limb.

Deep learning, a subset of machine learning in artificial
intelligence (AI) and also known as deep neural networks, has
been developed to find the best mathematical manipulation to
turn the input into the output, whether it be a linear or nonlinear
relationship. It has made many advances to solve space weather
problems like solar flare forecast (Huang et al. 2018; Park et al.
2018), coronal hole detection (Illarionov & Tlatov 2018), etc.
The Pix2Pix (Isola et al. 2017) model, which is based on the

conditional Generative Adversarial Networks (cGAN; Mirza &
Osindero 2014), is a novel deep learning method excellent for
image translation tasks that have been well demonstrated in
solar astronomy and space weather (Park et al. 2019, 2020; Ji
et al. 2020). Kim et al. (2019; hereafter KPL19) proposed an
approach to generate solar farside magnetograms from the
Solar TErrestrial RElations Observatory (STEREO; Kaiser
et al. 2008)/Extreme UltraViolet Imager (EUVI; Howard et al.
2008) 304Å images. The orbit of STEREO Ahead (A) and
Behind (B) is at a distance of about 1 au, and drift away from
the Earth at a rate of about 22° per year in opposite directions.
They applied the Pix2Pix and trained and evaluated the model
with pairs of frontside Solar Dynamics Observatory (SDO;
Pesnell et al. 2011)/Atmospheric Imaging Assembly (AIA;
Lemen et al. 2011) 304Å images and SDO/Helioseismic and
Magnetic Imager (HMI; Scherrer et al. 2012) line-of-sight
(LOS) magnetograms before the generation of farside data.
However, their results were limited to the maximum magnetic
field strength of ±100 Gauss, and showed low correlations in
solar quiet regions. It was noted that the Pix2Pix has an issue
with generating high-resolution data, and the lack of details
and realistic features in the high-resolution results (Chen &
Koltun 2017). Wang et al. (2018) proposed an improved model
to solve the issues with a novel adversarial loss and multi-scale
architectures of the networks, and they named the model
“Pix2PixHD.” Shin et al. (2020) tried to generate magneto-
grams from Ca II K images, and their results show that the
Pix2PixHD model is useful to generate ones with a large
dynamic range (±1400 Gauss).
In this Letter, we make an upgraded model with ±3000

Gauss dynamic range based on the Pix2PixHD and use
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multi-channel images for input. We describe the detailed
structure of the model in Section 3.1. We train the model with
frontside SDO extreme ultraviolet (EUV) passband images and
magnetograms, and then generate farside magnetograms from
the corresponding images of STEREO A and B by the model in
Section 4.1. Next we generate a synchronic map of photo-
spheric field, which replaces the conventional synoptic map at
the farside with the AI-generated ones in Section 4.2. Hereafter,
this is called the HMI and AI synchronic map. Finally, we
extrapolate coronal magnetic fields from the synchronic map
using a Potential Field Source Surface (PFSS) model. Then
we compare them with EUV observations as well as those from
the conventional method in Section 4.3. We present several
prospects of our results in Section 5.

2. Data

We use pairs of full-disk SDO/AIA three passband images
and SDO/HMI LOS 720 s magnetograms to train our deep
learning model. The three EUV passbands are 304, 193, and
171Å, corresponding to the chromosphere, corona, and upper
transition region, respectively (Lemen et al. 2011). The data
pairs have a cadence of 12 hr (at 00 UT and 12 UT each day)
from 2011 January 1 to 2017 December 31. We use 4231 pairs
of the multi-channel EUV images for input and magnetograms
for output of our model. We construct a training set with
10 months and an evaluation set with two months, and both are
selected for each year without any duplication between the two
sets. In order to train and evaluate various inclination
conditions, which cause different distributions of southern/
northern magnetic field strength for each month (Pastor Yabar
et al. 2015), the months are selected randomly. We take 3412
pairs for the training data set and 819 pairs for the evaluation
data set.

To generate farside magnetograms, we use STEREO/EUVI
A and B (304, 195, and 171Å) passband images, which have
similar response characteristics to the SDO/AIA images
(Downs et al. 2012). These SDO and STEREO passbands are
often used together for global solar studies (Su & Van
Ballegooijen 2012; Cairns et al. 2018). The farside EUV
images are selected from the closest times (within one hour) to
the synoptic data, which is a conventional boundary condition
for the coronal magnetic field extrapolation.

The following data pre-processing is applied to the EUV
data and magnetograms for effective training and generating.
We make Level 1.5 images with the standard SolarSoftWare
(SSW) packages (Freeland & Handy 1998) of aia_prep.pro,
hmi_prep.pro and secchi_prep.pro function, which process the
images by calibrating, rotating, and centering. We downsample
them to be same resolution (1024×1024 pixels), and the solar
radius (Re) is fixed at 450 pixels. We mask the area outside
0.98Re of disk center to minimize the uncertainty of limb data.
For the calibration of the EUV data, all data numbers are scaled
by median values of the original data on the solar disk, which
are fixed at 100. Then the logarithms of the scaled data are
normalized from −1 to 1 with the saturation values of 0 (lower
limit) and log(200) (upper limit). Then we combine the three
passband images from SDO and the STEREOs into the RGB
channel dimensions. The magnetograms for training have an
upper and lower saturation limit of ±3000 Gauss for normal-
ization. Finally, we manually exclude a set of SDO data pairs
and STEREO data with poor quality; for example, noise images

because of solar flares, those with incorrect header information,
those with infrequent events such as eclipses, transits, etc.
We use HMI daily updated radial field synoptic map with

polar field correction (Sun et al. 2011) for the conventional
magnetic field map at the photosphere. Hereafter, this is called
the HMI synoptic map, and is provided by the Joint Science
Operation Center (JSOC). The synoptic map well represents the
region within ±60° of longitude with a daily updated frontside
magnetogram. However, the map still has several uncertainties
at the farside. Here, we improve the farside of the synoptic map
in Section 4.2.

3. Method

3.1. Pix2PixHD Model

We adopt the Pix2PixHD model, which is one of the popular
deep-learning methods for image translation of high-resolution
images without significant artifacts, to generate solar farside
magnetograms. The Pix2PixHD consists of two major net-
works: one is a generative network (generator) and the other is
a discriminative network (discriminator). The generator tries to
generate realistic output from input, and the discriminator tries
to distinguish the more realistic pair between a real pair and a
fake pair. The real pair consists of a real input and a real output.
The fake pair consists of a real input and an output from the
generator. We construct a real input, a real output, and an
output from the generator as a combined image of three EUV
passbands, a magnetogram, and an AI-generated magnetogram,
respectively.
The generative network consists of several convolutional

layers and transposed convolutional layers. A convolutional
layer contains a set of filters that extract features automatically
from the input data, like a human visual system, and whose
parameters are learned or updated during the model training
process. A transposed convolutional layer is an inverse process
of convolution and tries to reconstruct output from the
extracted features. The discriminative network is a classifier
that consists of several convolution layers. Features that are
passed through the convolution layers are fed into a single
sigmoid output in order to produce a probability output in the
range of 0 (fake) to 1 (real) so that the discriminator acts like a
classifier.
While the model is training, both networks compete with

each other and get an update at every step with loss functions.
Loss functions are objectives that score the quality of results by
the model, and the network automatically learns that they are
appropriate for satisfying a goal, i.e., the generation of realistic
magnetograms. We train and evaluate our model using SDO
frontside data pairs, and generate farside magnetograms from
STEREO’s EUV observations as an input of the generator.
Networks of the Pix2PixHD model get an update with two

loss functions: one is a conditional generative adversarial
network (cGAN) loss (cGAN), and the other is a feature-
matching loss (FM). The cGAN loss is a basic function of the
models based on cGANs, and aim for the generator and
discriminator to compete. In order to clearly discriminate the
real and fake pairs, the discriminator tries to maximize the loss.
The generator tries to generate realistic data that fools the
discriminator, thus minimizing the loss. The cGAN gets a
lower value when D(x, G(x)) has a value close to 1, in which
the AI-generated image is similar to the real output. The loss of
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cGAN is given by

= + - G D D x y D x G x, log , log 1 , , 1cGAN( ) ( ( )) ( ( ( ))) ( )

where x, y, and G(x) are a real input, a real output, and an
output from the generator, respectively. The FM is to
regularize the fake pair to have more similar distribution and
statistics with the real pair from multiple layers of the
discriminator. The loss of feature matching is given by
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where T, i, and Ni are the total number of layers, a serial
number of the layers, and the number of pixels in output feature
maps of each layer, respectively.

Figure 1 shows the main structure of our model, which has
one generator and two discriminators (D1 and D2). One
discriminator gets input pairs of the original pixel size, and the
other gets input pairs that are downsampled by half. Each
discriminator classifies real pairs and generated pairs with
different scales, and guides the generative networks to generate
globally consistent images and produce finer details. Their full
loss function combines both cGAN loss and feature-matching
loss. We use 10 for a relative weight (λ), which controls the
importance of cGAN and FM as in Wang et al. (2018). When
the model is trained, the generator tries to minimize the full loss
and the discriminators try to maximize the cGAN loss
(Equation (3)). To minimize or maximize the loss, we use
Adam solver (Kingma & Ba 2015) as an optimizer for both the
generator and the discriminator.
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In our model, an input image (x) of three EUV channels is
given to a generator and it generates an HMI-like magnetogram
(G(x)). The model calculates cGAN and FM from the results of

discriminators. Then the networks get an update at every step
with the losses and they are iterated until the assigned iteration,
which is a sufficient number assuring the convergence of
the model. We train the model with 3412 pairs of training
data set for 630,000 iterations (∼150 epochs), and save AI-
generated magnetograms from the evaluation inputs every
10,000 iterations. Our code is available athttps://github.com/
JeongHyunJin/Jeong2020_SolarFarsideMagnetograms. In the
readme file, we explain the architecture and selected hyper-
parameters of our deep-learning model. For basic and extensive
information on the deep learning, please refer to Buduma &
Locascio (2017), Goodfellow et al. (2016), and Subramanian
(2018).

3.2. PFSS Model

We use PFSS extrapolation, which is a well-established
method for estimating large scale structure of global corona
(Riley et al. 2006). PFSS is much more widely used for the
space weather forecast (Hakamada et al. 2005; Pomoell &
Poedts 2018) than the Nonlinear Force-Free Field (NLFFF)
extrapolation and the magnetohydrodynamic (MHD) approach.
The extrapolation calculates current-free field of the corona
from the bottom boundary radius to the source surface radius
(RSS) by solving the Laplace equation, which is given by

 F =r 0, 4B
2 ( ) ( )

where ΦB is a scalar potential. At the source surface, the
magnetic field is assumed to be radial, because the outflowing
solar wind drags the field out into the heliosphere. Open field
lines arriving at the source surface are associated with coronal
holes (CHs; Lowder et al. 2014). The CHs are regions of low-
intensity emission in EUV and X-rays due to their low density
and temperature compared to the surrounding quiet corona. The
solar winds and interplanetary magnetic fields are known
to originate from these regions (Wang et al. 1996). The

Figure 1. Flowchart and structures of our deep-learning model. G is the generator, D1 and D2 are the discriminators, x is an EUV image with three passbands, y is a
real magnetogram, and G(x) is an AI-generated magnetogram.
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heliocentric height of RSS has been conventionally assumed to
be 2.5 solar radius (Re). However, the lower RSS produces
better results near solar minimum (Lee et al. 2011). Lowering
the RSS in the PFSS model results in more open fluxes and more
coronal hole areas. In this Letter we use two values: 2.0Re and
2.5Re. The input boundary condition is the measured radial
magnetic fields in the photosphere-like HMI synoptic maps.
We compute the PFSS model on a uniform grid of 155×
240×480 (r×θ×f).

4. Results

4.1. Generation of Solar Farside Magnetograms

We train and evaluate our deep-learning model using pairs of
SDO/AIA three EUV passband images and SDO/HMI LOS
magnetograms. Table 1 shows results of three objective
measures for full disk, active regions (ARs), and quiet regions
(QRs) between real and AI-generated magnetograms for the
evaluation data set. First, we calculate correlation coefficients
(CCs) between the total unsigned magnetic flux (TUMF) of the
SDO/HMI magnetograms with a full dynamic range and that
of AI-generated ones. Our model shows that the CCs are 0.99,
0.95, and 0.98 for 819 full disk, 1,281 ARs, and 819 QRs.
These values demonstrate that our model can successfully
generate TUMF over all regions. Second, we calculate CCs
between the net magnetic flux (NMF) of SDO/HMI magneto-
grams and that of AI-generated ones, and those are 0.86, 0.93,
and 0.97 for the same data sets, respectively. Because discrete
magnetic field polarity at the limb of solar disk, NMF CC for
full disk is lower than those for ARs and QRs. Third, mean
pixel-to-pixel CCs between SDO/HMI magnetograms and that
of AI-generated ones after 8×8 binning are 0.81, 0.79, and
0.62. These imply that our model greatly improves the

generation of magnetograms for not only ARs but also QRs
when compared with results of KPL19. In particular, it is
noticeable that the mean pixel-to-pixel CCs of the QRs has
greatly increased.
Figure 2 shows a comparison of magnetograms on 2014

April 1: a real one, one by KPL19, and ours. It is taken from the
evaluation data set. AI-generated magnetograms from KPL19
and our model show overall magnetic field distributions well.
However, in detailed magnetic structures, our AI-generated
magnetogram is much more consistent with the real one than
one by KPL19 with a couple of strong points. First, the NOAA
AR 12021 (red box), which shows strong (higher than 1,000
Gauss) magnetic fields, are well generated by our model.
Second, the networks of magnetic fields (blue box) are well

Figure 2. Comparisons of a real SDO/HMI line-of-sight magnetogram and AI-generated magnetograms. (a) AI-generated data by KPL19 model. (b) Real
magnetogram on 2014 April 1 at 12:00 UT. (c) AI-generated one by our model. Full-disk magnetograms are displayed as white for positive polarity and black for
negative one. A solar AR on the center of the solar disk (red box) and a QR on the limb (blue box) are zoomed and represented with other color maps showing the
large dynamic range values in Gauss.

Table 1
Three Objective Measures of Comparison between SDO/HMI Magnetograms

and AI-generated Ones for Full Disk, ARs, and QRs

Full Disk AR QR

825 images 1,033 patches 825 patches

(1,024×1,024
pixels)

(128×128
pixels)

(128×128
pixels)

Ours KPL19 Ours KPL19 Ours KPL19

Total unsigned
magnetic flux CC

0.99 0.97 0.95 0.95 0.98 0.74

Net magnetic
flux CC

0.86 L 0.93 L 0.97 L

Mean pixel-to-pixel
CC (8×8
binning)

0.81 0.77 0.79 0.66 0.62 0.21

Note.For comparison with the previous research, the results of KPL19 are
shown together.
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generated by our model, and the distributions of magnetic
polarity look like real one. Based on those results, our model
generates more reliable magnetograms than KPL19.

We generate more realistic farside magnetograms from the
corresponding three EUV passband images of STEREOs by the
model. The images of STEREOs are scaled to SDO ones with a
correction factor that is estimated from the ratio of the median
on-disk brightness of those images (Ugarte-Urra et al. 2015;
Liewer et al. 2017). It is not meant as an absolute calibration
correction, but it makes consistent conditions with training data
for the deep-learning model. Thus the farside magnetograms
generated make it possible to monitor the continuous evolution
of solar magnetic field distribution over the solar surface. Our
farside magnetograms generate ARs with realistic magnetic
field strength (Figure 3).

4.2. Generation of HMI and AI Synchronic Maps

We generate the HMI and AI synchronic map using the
farside AI-generated magnetograms. The AI-generated ones are
converted from full disk images to Carrington heliographic
coordinated maps, and from the line of sight to the radial
magnetic field by applying the radial-acute method (Wang &
Sheeley 1992) based on their coordinates. A farside part (from
60° to 300° Carrington longitude) of the HMI synoptic map is
replaced by the AI-generated magnetograms within ±60° if the
farside EUV data are available. Our synchronic map greatly
improves farside magnetic fields, which can be generated at
almost the same time as near-real-time EUV observations.
We compare farside photospheric field maps and an EUV

304Å synchronic map, which is reconstructed with multi-
viewpoints observations of SDO/AIA and STEREO/EUVI A

Figure 3. A series of full-disk EUV images and magnetograms. (a) The first and fourth EUV images are taken from SDO/AIA 304, 193, and 171 Å passbands. The
second and third EUV images are taken from STEREO/EUVI A and B 304, 195, and 171 Å passbands. (b) The first and fourth magnetograms are taken from SDO/
HMI. The second and third magnetograms are AI-generated farside ones by the model. The yellow boxes show the tracking of solar ARs over a solar rotation. The
positions of the boxes are slightly different due to the inclination angle between the ecliptic plane and orbit of the spacecraft. (c) EUV images and magnetograms in the
yellow box area are zoomed. Full-disk magnetograms are displayed as white for positive polarity and black for negative one. The color map of zoomed magnetograms
shows large dynamic range values in kG.
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and B on 2011 June 1 (Figure 4). Each map is interpolated to
an uniform, 240×480 grid in latitude and Carrington
longitude for the comparisons of input conditions to compute
the coronal field extrapolation. The farside of the HMI synoptic
map (Figure 4(a)) and the EUV synchronic map (Figure 4(d))
show noticeable differences, because the farside of the synoptic
map was taken several days previously. There were several flux
appearance (cases A1, A2, and A3 in Figure 4) and flux
disappearance (case D1 in Figure 4) of ARs. There was also a
flux emergence and a shift of the location of an AR moving
west (case A4 in Figure 4). Each location of A1–4 and D1 in
Figure 4 was set according to the EUV map. The Air Force
Data Assimilative Photospheric flux Transport (ADATP)
Global Oscillation Network Group (GONG) map (Hickmann
et al. 2015) provided by the National Solar Observatory (NSO)
is based on a magnetic surface flux transport model, and can
predict the changes of sequential magnetic flux that showed at
the solar frontside (cases A1 and D1 case in Figure 4(c)). As
shown in cases A2 and A3 in Figure 4(c), rapid changes
associated with the emergence of new magnetic regions at the
limb or farside are not properly reproduced. Our synchronic
map shows not only the appearance and disappearance of ARs
(cases A1–2, A4, and D1 in Figure 4(b)) but also a shift of an
AR (case A4 in Figure 4(b)). In the case of STEREO data
unavailability (e.g., case A3 in Figure 4(b)), our result cannot
predict the appearance of the AR.

4.3. Extrapolation of Coronal Magnetic Fields

We use the HMI and AI synchronic map as a bottom
boundary condition to extrapolate global coronal magnetic
fields. Then we predict open field areas (CHs) from the results
of extrapolation, and compare those with CHs observed in
EUV emissions. Figure 5 shows the results of extrapolations

calculated from the HMI synoptic and HMI and AI synchronic
data, and EUV observations of STEREO/EUVI 284Å and
SDO/AIA 211Å from 2011 June 1 to 21. Those EUV
passbands are not used for training and generation, and ARs
and CHs are well identified in those images. There was a
continuous magnetic flux emergence of the NOAA AR 11236
over a solar rotation. We select the data when the AR was near
the center of the solar disk in each spacecraft observation, and
indicate them with green arrows. The first and second rows in
Figure 5 show STEREO EUV images at the solar farside and
the extrapolation results at the corresponding positions. These
positions are 94° Carrington longitude near the west limb
and 267° Carrington longitude near the east limb of the solar
frontside. There were appearances of two ARs including
NOAA AR 11236 near the center of the solar disk observed by
STEREO A (Figure 5(b)). The PFSS extrapolation from HMI
synoptic data cannot represent those ARs, and depict long CH
structures along the latitudinal direction near the meridian
(Figure 5(a)). On the other hand, the extrapolation from HMI
and AI synchronic data well represents the ARs and CHs
under the NOAA AR 11236 (Figure 5(c)). 23 days later, flux
emergences of the NOAA AR 11236 and another AR on its
southeast region were observed by STEREO-B on 2011 June
14 (Figure 5(e)). The PFSS extrapolation from HMI synoptic
data show similar CH distributions as the extrapolations from
several days previous (Figure 5(d)). The extrapolation from our
synchronic data well represents the distributions of the ARs
and CHs consistent with the observed images (Figure 5(f)).
The third row in Figure 5 shows SDO observations at the
frontside and PFSS results at the corresponding position on
2011 June 21. The results of these calculations are mostly
same, because both extrapolations are computed by the
observed frontside magnetograms (Figures 5(g) and (i)). The

Figure 4. Comparisons of solar farside magnetic field maps of the photosphere with the EUV 304 Å synchronic map. (a) Conventional HMI synoptic map on 2011
June 1 at 12:00 UT. (b) HMI and AI synchronic map. (c) ADAPT GONG map. (d) EUV 304 Å synchronic map. Each map is shows 60° to 300° Carrington longitude
and within ±60° latitude. “A” indicates appearance or shift case of solar ARs and “D” indicates a disappearance case. The polarity of the magnetic fields are shown as
a color map of full-disk magnetograms in Figures 2 and 3.
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PFSS results of our synchronic data (Figures 5(c), (f) and (i))
show continuous sequences of ARs and CHs from the farside to
the frontside of the Sun.

Figure 6 shows the EUV observations and CHs identified
from the extrapolations in view of Carrington maps from 2011
December 25 to 2012 January 21. The first row in Figure 6
shows synchronized EUV maps from STEREO/EUVI A and B
195Å and SDO/AIA 193Å. The second row in Figure 6
shows the results from our HMI and AI synchronic data, and
the third row in Figure 6 corresponds to the results from
conventional HMI synoptic data. There are two major magnetic
flux emergence of the ARs. They are linked with equatorial

open field regions (CHs), which are indicated with green and
pink arrows in Figure 6. Those ARs and CHs are more
consistent with our results than those of the conventional
method. Our extrapolations show overall consistent distribu-
tions of global magnetic field polarities over one solar rotation.
We calculate the magnetic fluxes for each area (green box in

Figure 6) including an equatorial coronal hole. On 2011
December 25, when the coronal hole is on the farside of the
Sun, the total unsigned magnetic flux, positive magnetic flux,
and negative magnetic flux from our HMI and AI synchronic
data are 2.1×1021, 6.2×1020, and 1.5×1021 Mx, respec-
tively. In HMI synoptic data they are 2.3×1021, 1.0×1021,

Figure 5. Comparisons between EUV observations and results of PFSS extrapolations from conventional and HMI and AI synchronic data in view of full-disk
observations. (a)–(c) Result of PFSS extrapolation from HMI synoptic data, EUV observation, and PFSS extrapolation from HMI and AI synchronic data at the
position of STEREO A on 2011 June 1. (d)–(f) Those at the position of STEREO-B on 2011 June 14. (g)–(i) Those at the position of SDO on 2011 June 21. Positive
and negative polarities of the open fields are indicated with blue and red colors. Closed field lines are indicated with dark yellow. Field lines at the limb and open field
area on the surface are only displayed for comparison. The PFSS is computed with RSS=2.0Re and RSS=2.5Re, and those open field areas are displayed with
hatched pattern and filled area, respectively. The solar surface is filled with the bottom boundary data to show the distribution of ARs. The green arrow represents
appearances of the NOAA AR 11236.
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and 1.3×1021 Mx, respectively. In our case the ratio of the
negative magnetic flux to the total unsigned magnetic flux is
about 71%, while the ratio from the synoptic data is about 55%.
For 2012 January 11 data, where the equatorial coronal hole is
well predicted, the ratio of our result is about 70%, and 71%
from the synoptic data. Our results show more consistent
magnetic fluxes of the unipolar region than those from the HMI
synoptic data. These results represent that our AI-generated
magnetograms well generate distributions of magnetic fluxes in
coronal holes.

5. Summary and Prospects

We want to stress on that our new methodology has several
positive prospects for the study of solar corona, heliosphere,
and space weather. First, AI-generated farside magnetograms,
together with frontside magnetograms, can be used for the
long-term evolution of sunspots and solar magnetic fluxes. In
this Letter, we have applied a deep learning model to the
generation of solar farside magnetograms in order to
extrapolate solar coronal magnetic fields. We show that the
AI-generated magnetograms in our model can generate strong
magnetic fields, which show correlations with real magneto-
grams of full disk, ARs, and QRs that are higher than those
of KPL19. The improvements provide new opportunities for
global magnetic flux studies, such as tracking solar ARs and
studying their evolution (Ugarte-Urra et al. 2015) or studying
the time evolution of open and total magnetic fluxes at the solar
surface (Solanki et al. 2002). As deep learning technology
advances, our AI-generated data will become more realistic and
the applications from the AI-generated ones will show more
promising results.

Second, our synchronic map can better input data for not
only the PFSS global field extrapolations but also MHD
approaches such as the Magnetohydrodynamic Algorithm
outside a Sphere (MAS) model (Mikić et al. 2018). We show
that our maps are more consistent with EUV observations than
the conventional photospheric data. The MAS model has been
used to be computed for higher heights of corona than the
source surface radius of the PFSS and constructs the physical
parameters of corona, which are not only magnetic field vectors
but also plasma properties such as mass density, gas pressure,
and velocity. If our results are used for the input of the MAS
model, we expect that the model can produce more reasonable
solar coronal and heliospheric physical parameters.
Third, the HMI and AI synchronic map may be improved

with data assimilation methods and photospheric flux transport
models, which include the effects of differential rotation,
meridional flow, super-granulation, and random background
flux. In our study, we simply replace a farside HMI synoptic
map by the AI-generated farside magnetograms. There are
several techniques that assimilate magnetograms into the flux
transport model, e.g., the Schrijver and DeRosa model
(Schrijver & DeRosa 2003) and the ADAPT model (Hickmann
et al. 2015). As shown in their methods, our AI-generated
farside magnetograms can be assimilated into the flux transport
model, and as a result we expect that the model may show
better results than before. This model has the advantage that
the map has a better stable balance in magnetic flux on
the boundary of the generated data and on the map close to the
boundary.
Fourth, extrapolated coronal magnetic field data can be used

for initial boundary conditions of several space weather
prediction models. We have shown that the PFSS extrapola-
tions with the synchronic data are also more consistent with

Figure 6. Comparisons between EUV synchronic maps and results of PFSS extrapolations from conventional and HMI and AI synchronic data in view of Carrington
maps over a solar rotation. (a)–(c) EUV synchronic maps from STEREO/EUVI A and B 195 Å and SDO/AIA 193 Å on 2011 December 25, and those on 2012
January 11 and 21. (d)–(f) Results of PFSS extrapolation from HMI and AI synchronic data corresponding to the EUV maps. (g)–(i) Those from HMI synoptic data
corresponding to the EUV maps. Green and pink arrows indicate two solar ARs linked with equatorial open field regions. The boxes with green represent the areas,
which include a coronal hole, where we compute the magnetic fluxes. Other features are described in Figure 5.

8

The Astrophysical Journal Letters, 903:L25 (9pp), 2020 November 10 Jeong et al.



EUV observations than the conventional methods and show
continuous sequences of coronal structure changes over several
solar rotations. Our improved PFSS extrapolation data will be
useful as better input conditions for the solar wind forecasting
(Hakamada et al. 2005; Pomoell & Poedts 2018), which is a
major component for space weather. For example, the Wang-
Sheeley-Arge (WSA) solar wind model (Arge & Pizzo 2000)
has been widely used to forecast the solar wind at 1 au from the
coronal extrapolation. It provides improved solar wind
conditions to heliospheric MHD models, such as an ENLIL
model for forecast of corona mass ejection arrivals (Steenburgh
et al. 2013). Our method will provide more accurate solar
wind predictions, especially for the farside of the Sun and
heliosphere.

Fifth, our PFSS extrapolation can be help us study the global
environment from the Sun to the interplanetary space. The
extrapolation has been widely used for decades to study
interplanetary fields (Schatten et al. 1969; Rust et al. 2008),
photospheric sources of the solar wind (Wang & Sheeley 2003),
and solar energetic particle events (Nitta et al. 2006; Park et al.
2013). Recently, the Parker Solar Probe (PSP; Fox et al. 2016),
the first spacecraft to fly into the low solar corona, has been
collecting data on the magnetic fields, which has then been
compared with the time series predictions of radial magnetic
fields from the PFSS (Bale et al. 2019; Panasenco et al. 2020).
When the training data for our deep-learning model have been
prepared for this solar cycle, we hope to compare the results
with the PSP observations. Solar Orbiter, which was launched
in 2020, is equipped with a wide range of not only in situ but
also remote-sensing instruments (Mueller et al. 2013), which
can be better examined with our method. Moreover, our study
may give us new insight on the global solar research techniques
and on how to construct a set of instruments on board future
spaceborne solar imaging missions such as the L4 and L5
missions (Vourlidas 2015).
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