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ABSTRACT 
 

The cytotoxicity data of 46 naphthylisoquinoline derivatives that will inhibit 50% of cell growth 
(pIC50) were used to develop quantitative structure-activity relationships (QSAR). 433 molecular 
descriptors was obtained from DFT (B3LYP/6-311+G*) level of calculation for each molecule and 
used in multiple linear regression (MLR) analysis to generate 4 models, out of which the one with 
the highest statistical significance having correlation coefficient R = 0.791 and cross validated 
squared correlation coefficient Q2 = 0.573 was selected as the best model. The QSAR model 
indicate that the MDE descriptors (MDEC-33) play an important role in the cytotoxicity of 
naphthylisoquinoline. The accuracy of the proposed MLR model was illustrated using the following 
evaluation techniques: cross-validation, Y-randomization and external validation on test set. The 
predictive ability of the model was found to be satisfactory and could be used for designing a 
similar group of anti-malarial drugs with lower cytotoxicity. 
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1. INTRODUCTION 
 
Malaria represents a significant global health 
threat, with 40% of the world’s population being 
at risk of contracting the disease. Malaria is a 
devastating disease in sub-Saharan Africa, 
where about 90% of cases and deaths occur, it is 
also a serious public health problem in certain 
regions of South East Asia and South America. 
About 630,000 (six-hundred and thirty thousand) 
people died from the disease in 2012 [1], with 
pregnant women and children under the age of 
five being the most vulnerable to infection [2]. 
Human malaria transmitted by female Anopheles 
mosquitoes is caused by four species of 
Plasmodium, which are, P. falciparum, P. vivax, 
P. ovale and P. malariae. Of these species, P. 
falciparum is responsible for the most severe 
form of malaria [3]. The endemic nature of 
malaria is rapidly getting worse partly due to the 
unavailability of effective drugs and partly due to 
development of resistance towards some 
traditional drugs such as chloroquine and 
pyrimethamine [4-8].  
 
Although there are vast numbers of available 
antimalarial drugs, the control of this ancient 
infection is increasingly threaten by the 
emergence of drug-resistant strains of the 
malaria parasite, Plasmodium [9]. With drug 
resistance becoming a rapidly increasing 
problem and given the lack of suitable vaccines, 
the development of efficient, non-toxic, and 
inexpensive new drugs is an urgent task [10-12]. 
 
The naphthylisoquinoline alkaloids (NIQs) 
represent a class of natural products isolated 
from rare and difficult-to-cultivate tropical plants. 
They have manifold activities against various 
tropical diseases. Some C, C-linked 
naphthylisoquinolines, among them e.g. 
dioncophylline C and dioncopeltine A, show 
interesting in vitro and even in vivo activities 
against P. falciparum [13-15]. These and other 
promising bioactivities make the 
naphthylisoquinoline alkaloids suitable 
pharmaceutical lead structures for the synthesis 
of new potent agents [16,17]. 
 
The Structure– Property (Activity) Relationship 
(QSAR/QSPR) methods have been efficiently 
used for the study of toxicity mechanisms of 
various reactive chemicals. This is a powerful 
technique, which quantitatively relates variations 
in toxicity/activity to changes in molecular 
properties of the compounds, in terms of 
descriptors. In the area of computer – aided 

toxicity prediction, quantitative structure activity 
relationship (QSAR) have been seen as an 
attractive method for toxicity and fate 
assessment [18], which has been a problem for a 
very long time. The study of the quantitative 
relationship between toxicity/activity and 
molecular structure (QSTR/QSAR) is an 
important area of research in computational 
chemistry and has been widely used in the 
prediction of toxicity and other biological activities 
of organic compounds [19,20], thereby saving 
resources and expedite the process of the 
development of new molecules and drugs. 
Although various degree of research have been 
conducted on naphthylisoquinoline [21-24], 
research involving the use molecular descriptors 
to calculate molecular cytotoxicity of 
naphthylisoquinoline alkaloids have not been 
reported. 
 
This research is aim at finding the accuracy of 
QSAR analysis in predicting the cytotoxicity of 
naphthylisoquinoline alkaloids, and also to 
investigate the descriptor(s) responsible for 
producing such toxicity. The result obtained will 
guide further structural optimization and predict 
the potency and physiochemical properties of 
clinical drug candidates. 
 
2. MATERIALS AND METHODS 
 
2.1 Methodology 
 
A data set of 44 compounds of 
naphthylisoquinoline with their cytotoxicity has 
been taken from published journals [22,23]. The 
Cytotoxicity value [IC50 (µM)] reported in the 
literature were converted to their molar units and 
then further to negative logarithm scale (pIC50) 
and subsequently used as the dependent 
variable for the QSAR analysis. The structures 
and cytotoxic activity data of the compounds are 
listed in Table 1. 
 
2.2 Analysis Procedures and Descriptor 

Generation 
 
The compounds were sketched using the 
ChemBioDraw software. The sketched structures 
ware then transferred to Spartan 14 v.1.1.0 for 
the generation of 3D structures and geometric 
optimization. The geometries of the generated 
3D were pre-optimized using molecular 
mechanics force field (MMFF) in the Spartan. 
The Geometry optimizations was performed 
through B3LYP/6-311G* at Spartan 14 v.1.1.0. 
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The minimum energy structures were used to 
obtain the electronic descriptors. Some 
descriptor values of all the molecules were 
calculated using PaDEL software while other 
descriptors were calculated from the ChemBio 
3D Ultra software. Other chemical and 
physicochemical properties were determined by 
the chemical structure (lipophilicity, hydrophilicity 
descriptors, electronic descriptors, and energies 
of interaction). The preprocessing of the 
independent variables (descriptors) was done by 
removing invariable, which resulted in 433 
descriptors in total, which was further treated by 

excluding descriptors that are highly inter-
correlated to avoid data redundancy, bringing the 
descriptors numbers to 94 used for QSAR 
analysis and was considered as independent 
variables in this study. On the basis of Kennard-
Stones algorithm, 34 compounds out of 44 were 
selected as the training set (for generation the 
models) and the remaining 10 were selected as 
the test set (for validation of the models). 
Compounds 20, 27, 29, 30, 31, 33, 35, 37, 39 
and 40 as thus the test sets, while the remaining 
compounds are the training sets. 

 
Table 1. Series of naphthylisoquinoline alkaloids w ith their cytotoxicity against L 6 cell line 

 
S/N Structures  Cytotoxic activity 

IC50 (µM) 
pIC50 

1 

  

100 4.00 

2 

    

43.79 4.36 

3 

 

34.34 4.46 

4 

 

94.18 4.03 
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S/N Structures  Cytotoxic activity 
IC50 (µM) 

pIC50 

5 

 

100 4.00 

6 

 

27.00 4.57 

7 

 

100 4.00 

8 

   

98.20 4.01 

9 

   

37.51 4.43 
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S/N Structures  Cytotoxic activity 
IC50 (µM) 

pIC50 

10 

 

40.23 4.40 

11 

  

100 4.00 

12 

 

58.84 4.23 

13 

  

52.22 4.28 

14 

    

100 4.00 

15 

 

100 4.00 
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S/N Structures  Cytotoxic activity 
IC50 (µM) 

pIC50 

16 

   

100 4.00 

17 

    

100 4.00 

18 

 

56.70 4.25 

19 

    

100 4.00 

20 

   

100 4.00 
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S/N Structures  Cytotoxic activity 
IC50 (µM) 

pIC50 

21 

   

96.76 4.01 

22 

 

38.36 4.42 

23 

   

50.76 4.29 

24 

   

34.87 4.46 

25 

        

57.07 4.24 

26 

 

71.98 4.14 
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S/N Structures  Cytotoxic activity 
IC50 (µM) 

pIC50 

27 

   

72.54 4.14 

28 

 

386.03 3.41 

39 

  

184.86 3.73 

30 

 

127.95 3.89 

31 

   

410.72 3.39 

 32 

   

406.98 3.39 

33 

   

300.95 3.52 
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S/N Structures  Cytotoxic activity 
IC50 (µM) 

pIC50 

34 
                                                         

 

217.17 3.66 

 35 

 

90.05 4.05 

36 

 

95.67 4.02 

37 

 

151.00 3.82 

38 

 

23.13 4.64 

39 

 

289.21 3.54 

40 

 

267.86 3.57 
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S/N Structures  Cytotoxic activity 
IC50 (µM) 

pIC50 

41 

 

209.73 3.68 

42 

   

470.88 3.33 

43 

 

264.65 3.58 

44 

 

287.39 3.54 

 
All the calculated descriptor values were 
considered as independent variable and 
cytotoxicity as dependent variable. BuildQSAR 
software was used to generate QSAR models by 
multiple linear regression analysis. Statistical 
measures used were: R2_correlation-coefficient, 
Q2- leave-one-out (LOO) cross-validation, F-test 
(Fischer’s value) for statistical significance, s-
standard deviation, R2

rand - Y-randomization. The 
values of the calculated descriptors used for the 
multiple linear regression are showed in Table 2. 
The correlation matrix generated is showed in 
Table 3. In addition to low p-value or high F-
statistics, a QSAR model is considered to be 
predictive if it satisfied the following conditions: 
R2 ˃ 0.6, Q2 

˃ 0.6 and R2
pred ˃ 0.5 [25,26]. From 

the predictive models selected, the model with 
largest values of R and R2, smallest values of 
SEE, highest values of F and smallest values of 
PRESS and most especially highest value of R2

m 
(overall) was choosing as the best model. The 
validation was done using the data from which 

the model was created (an internal method) and 
using a separate data set (an external method). 
In the internal validation, the following 
parameters were determined as seen in Table 5, 
least squares fit, R2 (coefficient of determination) 
for the comparison between the predicted and 
experimental activities,. The leave-one-out (LOO) 
cross-validation, Q2 used to evaluate the 
predictive power of the model and the Y-
randomization, (R2

rand) which ensures that the 
model is not due to a chance. However, a high 
Q2 value does not necessarily give a suitable 
representation of the real predictive power of the 
model so, an external validation was performed 
in order to make more realistic validation of the 
predictive power of the models. The determined 
parameters as showed in Table 4 are R2

pred 
which points to the external predictability of the 
model, [(R2 – Ro

2)/ R2], [(R2 – R’o
2)/ R2] and R2

m 
(overall), which  includes prediction for both test 
set and training set (using LOO predictions) 
compounds. 
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Table 2. Descriptors used for generation of models 
 
Compd  
No. 

pIC50 BCUTp-1h ETA_Eta_B  MDEC-33 XLogP  Weta3. unity  Weta1. 
polar 

η 

1 4.00 -1.0491 -1.5806 -1.3959 -1.7165 1.3643 0.5399 -0.0199 
2 4.36 0.3215 0.0292 0.5551 0.6932 -0.6961 -0.1694 -0.9601 
3 4.46 -0.0497 -1.8525 0.5551 0.0457 -0.0831 -0.0698 -0.8896 
4 4.03 -0.1889 -1.3641 0.5551 -0.6079 0.5181 0.2531 -1.2187 
5 4.00 0.4062 0.6030 1.2154 1.8171 1.3155 0.6031 -1.2657 
6 4.57 0.2204 -1.2786 1.2154 1.1696 1.0703 0.4683 -1.7358 
7 4.00 0.2634 0.8472 1.2154 -0.1457 -0.2102 -0.1137 -1.8533 
8 4.01 -0.0350 -1.0345 1.2154 -0.7932 0.1441 -0.0740 -1.8533 
9 4.43 0.2587 0.8472 1.2154 -0.2618 -0.0663 -0.1259 -0.9601 
10 4.40 -0.0373 -1.0345 1.2154 -1.1546 0.3695 -0.0836 -0.9836 
11 4.00 -0.3176 -0.5689 -0.3858 -0.6700 0.5375 -0.0771 0.0506 
12 4.23 -0.2921 -1.0345 0.1831 0.6473 -0.5306 0.0845 0.1681 
13 4.28 -0.4777 -0.7903 0.1831 0.3205 -0.5848 0.0743 0.2621 
14 4.00 -0.2457 -0.3525 0.3413 1.0464 -0.5993 -0.1694 0.0741 
15 4.00 -0.4313 -0.1083 0.3413 0.7196 -0.4901 -0.1374 0.1681 
16 4.00 -0.2747 -0.3525 0.3413 -0.5092 -0.8112 -0.2575 -0.2080 
17 4.00 -0.4604 -0.1083 0.3413 -0.8359 -0.7474 -0.2290 -0.1610 
18 4.25 -0.2199 -0.3525 0.3413 0.1607 -0.9769 0.9299 0.1211 
19 4.00 -0.4055 -0.1083 0.3413 -0.1661 -1.0236 -1.7910 0.2386 
21 4.01 -0.4364 1.7461 0.3413 0.5720 -0.5763 -1.6542 0.3326 
22 4.42 -0.0985 -0.8181 0.9212 1.8099 -0.1072 -1.7272 -0.6310 
23 4.29 -0.3326 -0.1083 0.5019 -0.1661 -0.6973 -1.5539 0.3091 
24 4.46 0.2439 -0.9263 1.2890 1.8099 0.1929 -1.4322 -0.4195 
25 4.24 0.1510 -0.6821 1.2890 1.4832 -0.0831 0.2679 -0.2080 
26 4.14 -0.0985 -0.8181 0.9212 1.8099 -0.1072 0.4540 -0.6310 
28 3.41 -1.3308 0.4947 -0.9803 -1.0803 1.5652 0.6003 0.4032 
32 3.39 -1.8477 -0.0791 -1.5120 -1.3806 2.2237 0.9094 2.1190 
34 3.66 0.4092 0.5385 -0.8033 0.7410 -0.4475 -1.4252 1.4844 
36 4.02 2.7641 0.3865 -0.8279 -0.3391 1.6128 -0.3562 0.2856 
38 4.64 0.9195 0.6030 1.4195 0.0650 -0.9665 -0.0233 -1.0071 
41 3.68 0.1039 4.0531 -1.4457 -0.5051 0.0936 0.8175 -1.1716 
42 3.33 -2.1723 -0.5169 -1.8208 -1.4101 0.6935 0.2353 2.2835 
43 3.58 2.1150 0.0569 -1.3959 -0.5835 0.6992 4.3539 0.4032 
44 3.54 -0.0630 0.6030 -0.1779 -1.7837 -1.0235 -0.2280 1.2258 
 

Table 3. Correlation matrix of physicochemical para meters used in model generation 
 
  pIC50 BCUTp-1h ETA_Eta_B  MDEC-33 XLogP  Weta3. unity  Weta1. polar  η 
pIC50 1        
BCUTp-1h 0.31722 1       
ETA_Eta_B -0.35127 0.17061 1      
MDEC-33 0.79096 0.22554 -0.25414 1     
XLogP 0.52444 0.27590 -0.08202 0.56454 1    
Weta3.unity -0.34988 -0.05348 -0.10001 -0.41223 -0.22058 1   
Weta1.polar -0.31851 0.19169 0.01322 -0.36138 -0.25725 0.39372 1  
η -0.63759 -0.37003 0.03445 -0.69634 -0.32137 0.08917 -0.00572 1 

 
Table 4. Golbraikh and Tropsha acceptable model cri teria for selected models 

 
Models  Q2 R2

EXT |Ro
2 - R’o

2| [ ( R2 – Ro
2)/ R2 ] K 

1 0.5729 0.7865 0.0217 0.0056 0.9738 
2 0.5251 0.8063 0.0336 0.0008 0.9749 
3 0.5935 0.7044 0.0697 0.0053 0.9747 
4 0.5762 0.6716 0.0182 0.0359 0.9695 
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Table 5. Statistical parameters of the 4 best score d models 
 

Models  R2 R2
adjs  F s R2

m (overall)  SPress  SDEP n k 
1* 0.6256 0.6139 53.4729 0.2120 0.6339 1.6410 0.2197 34 1 
2 0.6842 0.6526 21.6648 0.2011 0.5580 1.8246 0.2317 34 3 
3 0.7098 0.6579 13.6937 0.1996 0.6236 1.5616 0.2143 34 5 
4 0.7341 0.6751 12.4258 0.1945 0.5830 1.6284 0.2188 34 6 

NB. *= Best of the selected model 
 

Table 6. Comparison of observed toxicity with predi cted toxicity of the selected models 
 
Compd  
no. 

Observed 
activity (µM) 

Predicted  cytotoxicity (µM)  
*Model 1  Model 2  Model 3  Model 4  

1 4.00 3.60 3.68 3.90 3.87 
2 4.36 4.15 4.16 4.30 4.30 
3 4.46 4.15 4.25 4.38 4.38 
4 4.03 4.15 4.21 4.27 4.26 
5 4.00 4.34 4.29 4.17 4.14 
6 4.57 4.34 4.40 4.43 4.41 
7 4.00 4.34 4.26 4.27 4.25 
8 4.01 4.34 4.36 4.38 4.38 
9 4.43 4.34 4.26 4.08 4.09 
10 4.40 4.34 4.36 4.18 4.20 
11 4.00 3.89 3.92 3.96 3.97 
12 4.23 4.05 4.09 4.17 4.16 
13 4.28 4.05 4.06 4.11 4.09 
14 4.00 4.09 4.09 4.17 4.15 
15 4.00 4.09 4.06 4.09 4.06 
16 4.00 4.09 4.08 4.13 4.12 
17 4.00 4.09 4.05 4.06 4.05 
18 4.25 4.09 4.09 4.07 4.04 
19 4.00 4.09 4.06 4.15 4.16 
20^ 4.00 4.09 3.96 3.96 3.93 
21 4.01 4.09 3.93 3.95 3.92 
22 4.42 4.25 4.27 4.45 4.44 
23 4.29 4.13 4.10 4.09 4.11 
24 4.46 4.36 4.39 4.38 4.40 
25 4.24 4.36 4.37 4.22 4.21 
26 4.14 4.25 4.27 4.33 4.29 
27^ 4.14 4.25 4.24 4.27 4.22 
28 3.41 3.72 3.62 3.63 3.56 
29^ 3.73 3.93 3.91 3.79 3.83 
30^ 3.89 4.15 4.11 4.13 4.18 
31^ 3.39 3.57 3.49 3.66 3.56 
32 3.39 3.57 3.49 3.28 3.22 
33^ 3.52 3.76 3.77 3.48 3.53 
34 3.66 3.77 3.80 3.85 3.92 
35^ 4.05 3.96 3.94 3.88 3.92 
36 4.02 3.76 3.98 3.77 3.99 
37^ 3.82 3.77 3.99 4.01 4.20 
38 4.64 4.39 4.38 4.21 4.26 
39^ 3.54 3.59 3.59 3.70 3.68 
40^ 3.57 3.58 3.61 3.73 3.75 
41 3.68 3.59 3.38 3.70 3.65 
42 3.33 3.48 3.42 3.47 3.39 
43 3.58 3.60 3.81 3.59 3.69 
44 3.54 3.94 3.91 3.68 3.73 

Numbers with ^ represent the test sets 
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Table 7. R 2 and Q 2 values after  
Y-randomization 

 
Iteration  MLR 

R2 Q2 
1 0.015 0.000 
2 0.006 0.000 
3 0.124 0.015 
4 0.189 0.096 
5 0.128 0.020 
6 0.000 0.000 
7 0.003 0.000 
8 0.017 0.000 
9 0.131 0.009 
10 0.001 0.000 
11 0.023 0.000 
12 0.038 0.000 
13 0.011 0.000 
14 0.009 0.000 
15 0.016 0.000 

 
The applicability domain (AD) for the best models 
was checked by the leverage approach to verify 
prediction reliability [27,28]. Not even a robust, 
significant, and validated QSAR model can be 
expected to reliably predict the modeled property 
for the entire universe of chemicals. In fact, only 
the predictions for chemicals falling within this 
domain can be considered reliable and not model 
extrapolations To visualize the applicability 
domain of a QSAR model, the Williams plot – the 
plot of standardized residuals versus leverage 
values for graphical detection of both response 
outliers (Y outliers) and structurally influential 
chemicals (X outliers) in a model – is used. 
Leverage values was calculated for both training 
compounds and test compounds. A leverage 
higher than the warning leverage h* means that 
the compound predicted response can be 
extrapolated from the model, and thus, the 
predicted value must be used with great care. On 
the other hand, a standardized residual value 
greater than two indicates that the value of the 
dependent variable for the compound is 
significantly separated from the remainder 
training data, and hence, such predictions must 
be considered with much caution too. In this 
work, only predicted data for new compounds 
belonging to the applicability domain of the 
training set were considered reliable. 
 

3. RESULTS AND DISCUSSION 
 
3.1 QSAR Results 
 
Selection descriptors that correlate to cytotoxic 
activity is an important step in QSAR modeling. 
In this research, a total number of 433 

descriptors ranging from 0D- to 3D- classes of 
descriptors available in PaDEL have been 
computed and were subjected to MLR analysis. 
The QSAR models were constructed using a the 
BuildQSAR software - employed to 
systematically search for models with one or 
more variables which give rise to multiple linear 
regression (MLR) models – by setting the R2 > 
0.65. The correlation between the different 
physicochemical descriptors as independent 
variable and the pIC50 as dependent variable was 
determined.  
 
Model 1. 
 

pIC50 = + 3.9934 (± 0.0761) + 0.2810 (± 
0.0785) MDEC-33   
(n = 34; R = 0.791; s = 0.212; F = 53.473; p 
< 0.0001; Q2 = 0.573; SPress = 0.226; SDEP 
= 0.223) 

 
Model 2. 
 

pIC50 = + 3.9971 (± 0.0730) + 0.0755 (± 
0.0852) BCUTp-1h - 0.0655 (± 0.0702) 
ETA_Eta_B + 0.2464 (± 0.0802) MDEC-33   
(n = 34; R = 0.827; s = 0.201; F = 21.665; p 
< 0.0001; Q2 = 0.525; SPress = 0.247; SDEP 
= 0.235) 

 
Model 3. 
 

pIC50 = + 4.0053 (± 0.0722) - 0.1047 (± 
0.0663) ETA_Eta_B + 0.0765 (± 0.0755) 
XLogP - 0.0859 (± 0.0917) Weta.unity - 
0.0540 (± 0.0732) Weta1.polar - 0.1814 (± 
0.0755) η 
(n = 34; R = 0.842; s = 0.200; F = 13.694; p 
< 0.0001; Q2 = 0.594; SPress = 0.236; SDEP 
= 0.218) 

 
Model 4. 
 

pIC50 = + 4.0121 (± 0.0711) + 0.0701 (± 
0.0914) BCUTp-1h - 0.1157 (± 0.0663) 
ETA_Eta_B + 0.0611 (± 0.0764) XLogP - 
0.0815 (± 0.0898) Weta3.unity - 0.0700 (± 
0.0745) Weta1.polar - 0.1636 (± 0.0773) η   
(n = 34; R = 0.857; s = 0.194; F = 12.426; p 
< 0.0001; Q2 = 0.576; SPress = 0.246; SDEP 
= 0.222) 
 

3.2 Discussion 
 
Four (4) of the statistically significant models are 
given above and their statistical measures are 
listed in Table 5. The participated descriptors in 
these models are BCUTp-1h, MDEC-33, 
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ETA_Eta_B, XLogP, Weta3.unity, Weta1.polar 
and η. These descriptors represent, respectively, 
nlow highest polarizability weigheted BCUT, 
Molecular distance edge between all tertiary 
nitrogens, Branching index EtaB, partition 
coefficient, Directional WHIM, weighted by units 
weights, Directional WHIM, weighted by atomic 
polarizability and absolute hardness. While 
BCUT (Burden-CAS-University of Texas 
eigenvalues) descriptor, MDEC-33, Calculate 
Molecular Distance Edge (MDE) Descriptors for 
C, N and O, WHIM (Weighted Holistic Invariant 
Molecular descriptors) encodes information on 
the structural fragments, XLogP encodes 
prediction of the octanol/water partition 
coefficients of organic compounds and absolute 
hardness of the compounds. Extended 
topochemical descriptor. The descriptors, in all 
the models, have been scaled between the 
intervals 0 to 1[25] to ensure that a descriptor will 
not dominate simply because it has larger or 
smaller pre-scaled value compared to the other 

descriptors. In this way, the scaled descriptors 
would have equal potential to influence the 
QSAR models. The values of the coefficient of 
determinations as well as that of Q2, all show that 
the model is predictive. The result of the Y-
randomization performed as in Table 7 shows 
that the model did not occur by chance. The 
signs of the regression coefficients have 
indicated the direction of influence of explanatory 
variables in above models. The positive 
regression coefficient associated to a descriptor 
will augment the activity profile of a compound 
while the negative coefficient will cause 
detrimental effect to it. In all the generated 
models, the MDEC-33 descriptor is the most 
important descriptors. The positive regression 
coefficient of the descriptor ensures that 
decreasing the value of the descriptors would 
lead to lower cytotoxic prediction. In the Williams 
plot, it will be observe that all the compounds 
(Training + Test set) are all within the domain of 
the selected model. 

 

  
 

  
 

Fig. 1. (a) Correlation between the predicted pIC 50 and the experimental pIC 50 by eq. (1). (b) 
Correlation between the predicted pIC 50 and the experimental pIC 50 by eq. (2). (c) Correlation 
between the predicted pIC 50 and the experimental pIC 50 by eq. (3). (d) Correlation between the 

predicted pIC 50 and the experimental pIC 50 by eq. (4) 
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Fig. 2. Williams Plot for the training as well as t he test sets. cut-off value: h* = 0.176 
NB      Training set         Test set 

 
4. CONCLUSION  
 
In this article, a QSAR study of 44 antimalarial 
drugs was performed based on the theoretical 
molecular descriptors calculated mostly using the 
PaDEL software. Models were generated, Out of 
which model 1 consisting of MDEC-33 was 
selected as the best model. Validations indicated 
that the QSAR model built was robust and 
satisfactory. And that the selected descriptor 
plays a vital role in predicting the cytotoxicity of 
naphthylisoquinolines. The descriptor can be 
considered for further designing of newer 
molecules with lower toxicity and better activity 
for the treatment of malarial. 
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