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Abstract

In simulations of viscously evolving accretion disks, the inner boundary condition is particularly important. If
treated incorrectly, it induces incorrect behavior very quickly, because the viscous time is shortest near the inner
boundary. Recent work has determined the correct inner boundary in Eulerian simulations. But in quasi-
Lagrangian simulations (e.g., SPH, moving mesh, and meshless), where the inner boundary is modeled by
removing mass within a finite zone, the inner density profile typically becomes anomalously depleted. Here we
show how the boundary condition should be applied in such codes, via a simple modification of the usual
approach: when one removes mass, one must speed up the remaining material so that the disk’s angular momentum
is unchanged. We show with both 1D and 2D moving-mesh (AREPO) simulations that this scheme works as desired
in viscously evolving disks. It produces no spurious density depletions and is independent of the mass removal
rate, provided that the disk is adequately resolved and that the mass removal rate is not so extreme as to trigger
instabilities. This “torque-free” mass removal technique permits the use of quasi-Lagrangian codes to simulate
viscously evolving disks, while including a variety of additional effects. As an example, we apply our scheme to a
2D simulation of an accretion disk perturbed by a very massive planet, in which the disk is evolved to viscous
steady state.

Unified Astronomy Thesaurus concepts: Computational methods (1965); Stellar accretion disks (1579);
Protoplanetary disks (1300); Planet formation (1241); Circumstellar disks (235); Planetary system forma-
tion (1257)

1. Introduction

In simulating accretion disks, it is common to adopt an inner
boundary that lies far outside of the true disk inner edge. This
allows the computationally expensive—and often uncertain—
dynamics of the innermost regions to be avoided. In this Letter,
we work out the correct inner boundary condition, such that a
disk with a large inner boundary mimics one with a boundary
further in. We then show how it may be applied in a simple
way to quasi-Lagrangian codes. We focus on a viscously
evolving disk that is perturbed by an embedded planet, but
discuss some other applications in Section 4.

Since the viscous time decreases inwards (Lynden-Bell &
Pringle 1974), an incorrect inner boundary condition can
quickly lead to an incorrect density profile in the inner parts of
the simulation—long before the density in the vicinity of the
planet can evolve viscously.3 But that short inner viscous time
also suggests the principle that should be applied to determine
the correct inner boundary: that the inner parts of the disk
should be locally in steady-state, with a radially independent
mass accretion rate.

In Eulerian simulations of accretion disks, inner boundary
conditions may be applied at a fixed spatial location, as done in
our previous work (Dempsey et al. 2020, hereafter DLL20); see
also Section 2.3. But, in quasi-Lagrangian simulations, it is
more natural to remove mass within an inner zone, as has been
done in smoothed particle hydrodynamics (SPH; e.g., Bate
et al. 1995); in meshless codes (e.g., Hopkins 2017); and in

structured and unstructured moving-mesh codes (Farris et al.
2014; Muñoz & Lai 2016). In the aforementioned papers, mass
is removed without changing the velocity of the remaining
material.4 This method, as shown below, artificially exerts a
torque on the disk, which leads to an incorrect inner density
profile within the computational domain.5

Artifacts induced by artificial mass removal have recently
given rise to a controversy in the context of disks with
embedded stellar binaries. Tang et al. (2017) claimed that the
inner mass removal procedure can be crucial for determining
the sign of the torque on the binary. If that were true, the
surprising result that accreting binaries expand (Muñoz et al.
2019, 2020) could be an artifact of incorrect mass removal.
While follow-up studies (Duffell et al. 2019; Moody et al.
2019) were unable to confirm the Tang et al. claim, it is still
desirable to devise mass removal methods that introduce no
artifacts at all. In this work, we describe and implement such a
method in the moving-mesh code AREPO (Springel 2010).

2. Torque-free Inner Boundary

2.1. Why the Inner Boundary Should be Torque-free

The 1D equations of mass and angular momentum
conservation for a viscous accretion disk, in the absence of a
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3 We do not address the outer boundary because its effects are less pernicious:
they are only important on timescales longer than the viscous time at the outer
boundary. See also Dempsey et al. (2020), who work out the outer boundary
condition needed for such long timescales.

4 Bate et al. (1995) also correct for the discontinuity in density that develops
across the accretion radius in SPH simulations due to a lack of particles at
smaller radii; see Section 5 for further details.
5 Krumholz et al. (2004) apply mass removal in a correct way. But
puzzlingly, their resulting inner density profile is not correct. We discuss their
work further in Section 5.
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planet, are (Lynden-Bell & Pringle 1974)
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where ℓ=r2Ω(r) is the specific angular momentum;
Ω∝r−3/2 is the Keplerian angular speed, i.e., ignoring the
pressure correction; ( )M r is the radial mass flux; and Fν=3π
ν Σ ℓ is the viscous angular momentum flux, where ν is the
kinematic viscosity. One may solve the above equations for
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and that expression may then be inserted into Equation (1),
yielding a diffusive partial differential equation for Σ.

The fact that the viscous time decreases inwards implies that,
if Σ at some fiducial radius is varying due to viscous evolution,
then the Σ at much smaller radii can be determined by setting
∂t=0 in the above equations. Doing so, we find

( ) =M rconst. in , 4

( )D º - =nT F Mℓ rconst. in . 5

The quantity ΔT is the net torque, i.e., it is the sum of two
angular momentum fluxes: the (outwards) viscous flux and the
(inwards) advective flux. As a result, the surface density far
inside of the fiducial radius is given by
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As is well-known, the Σ profile in a steady-state disk is a sum
of two terms, with two arbitrary constants, M andΔT (Lynden-
Bell & Pringle 1974).

The second term in Equation (6) falls with distance faster
than the first. Therefore, while these two terms are comparable
at the disk’s true inner edge (Lynden-Bell & Pringle 1974), the
second one becomes subdominant further out. Consequently, in
order to apply an inner boundary condition far beyond the true
inner edge, one should enforce ΔT=0 at the boundary. We
call this a “torque-free” boundary.

For future reference, we refer to the Σ solution with ΔT=0
as the ZAM (“zero angular momentum flux”) solution, i.e.,
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2.2. Implementation of Torque-free Inner Boundary

A torque-free inner boundary is simple to implement when
solving the 1D equations with a finite difference method.
Substituting Equation (3) into the relation - =nF Mℓ 0 yields
a relationship between Fν and ∂r Fν, and hence between Σ and
∂r Σ, that can be applied at the inner boundary (a Robin
boundary condition). Essentially the same technique can also
be implemented in 2D Eulerian hydrodynamical codes with
little difficulty, e.g., with FARGO3D (Benítez-Llambay &
Masset 2016), as done in DLL20.

On the other hand, in quasi-Lagrangian codes it is more
natural to remove mass throughout an extended zone. In most
previous work, mass is removed either by eliminating entire

particles (e.g., Bate et al. 1995), or by draining mesh cells,
reducing their mass and momenta by the same fraction (e.g.,
Farris et al. 2014; Muñoz & Lai 2016). In both cases, the
velocity of the remaining fluid is left unchanged. This
technique, which we call “naive mass removal,” violates the
torque-free inner boundary condition, because when momen-
tum is removed, an angular momentum sink term must be
added to Equation (2). As a result, in viscous steady state the
value of ΔT at the outer edge of the mass removal zone (which
we denote r0) will be nonzero. Note that r0 corresponds to what
we have been calling the inner boundary, because it is the inner
boundary of the region where the physics is properly modeled
(i.e., no mass removal). Of course, the region inside of r0 (the
mass removal zone) is still modeled with the code.
One may enforce ΔT=0 at r0 by ensuring that there are no

sources or sinks of angular momentum in the mass removal
zone, so that Equation (2) remains unchanged. In quasi-
Lagrangian codes, this can be accomplished by increasing the
azimuthal velocity of a mesh cell every time its mass is
reduced, such that its angular momentum is preserved. We call
this technique “torque-free mass removal,” and we shall
investigate it in more detail in the remainder of this Letter.

2.3. Torque-free versus Naive Mass Removal in 1D

It is instructive to demonstrate the difference between
torque-free and naive mass removal in 1D. Mass removal can
be modeled in 1D simulations by modifying Equation (1) to
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where γ is a mass removal function that vanishes for r�r0.
For r<r0, we choose the form

( ) ( ) ( )g g= -r r r1 , 90 0
2

which rises to γ0 at the origin; here, γ0 is a constant with units
of inverse time.
To model torque-free mass removal, we evolve

Equations (2) and (8) with a finite difference code. We
initialize with the ZAM value for Σ, set the outer boundary
condition to have fixed M (via Equation (3) with M specified),
and run until the Σ profile reaches steady state. We also set
ν=const×r1/2 and adopt the aforementioned Robin inner
boundary condition at r=0.01r0.
The result is shown in Figure 1 (top panel), for three values

of γ0. We see that torque-free mass removal produces the
correct (ZAM) profile at r>r0, independent of γ0, as desired.
Inside of r0, the depression in Σ increases with increasing γ0.
As discussed below, in 2D simulations one typically wishes to
choose γ0∼10– tn100 ,0, where tn,0 is the viscous time (i.e.,
r2/ν) at r0.
The bottom panel of Figure 1 contrasts what happens with

naive mass removal. For that panel we proceed as before,
except that we add the sink term g p- Sr ℓ2 to Equation (2), for
reasons discussed above. We infer from the plot that naive
mass removal depresses the density profile outside of r=r0,
relative to the correct ΣZ. This depression worsens as γ0
increases. In general, deviations from ΣZ indicate that the inner
edge of the disk is being incorrectly torqued—in this case due
to the mass removal algorithm.
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3. Torque-free Mass Removal in AREPO

We run 2D quasi-Lagrangian simulations with AREPO
(Springel 2010; Pakmor et al. 2016), which solves the
Navier–Stokes equations (Muñoz et al. 2013) on a moving
mesh. The mesh is constructed from a Voronoi tessellation of
points that move with the fluid. Our setup is broadly similar to
that of Muñoz et al. (2014): the viscous stress tensor is
implemented via a kinematic shear viscosity, parameterized
with the Shakura & Sunyaev (1973) α prescription, and the
equation of state is locally isothermal with constant aspect
ratio. Here, we use α=H/r=0.1. The central potential is
softened inside of r0 with a spline function (Springel et al.
2001) such that outside of r0 the potential is exactly Keplerian.
See the Appendix for further computational details, including a
resolution study.

We implement torque-free mass removal as described in
Section 2.2. At every timestep, we reduce the mass of a cell at
the rate given by Equation (9), while preserving the cell’s
angular momentum, which has the effect of boosting the cell’s
azimuthal velocity. Our initial Σ profile has a cavity out to 3r0,
and an outer exponential cutoff at r=100r0.

In Figure 2 (top panel), we compare the AREPO 2D solutions
to those obtained by solving the 1D equations, for g t= n200 ,0
and =40/τν,0. We find excellent agreement between the two

methods at r>r0. The simulations in the figure have been run
to a time equal to 800 orbits at r0, which corresponds to a
viscous time at r≈3r0. But the Σ profiles cease to evolve
visibly at times 400 orbits at r0. There is a modest
discrepancy between AREPO and 1D results for the case with
lower γ0 due to the larger discretization errors at smaller r (see
also below).
The bottom panel shows a similar comparison, but for naive

mass removal—both in AREPO and in the 1D code. As before,
the results of the two codes agree at >r r0. For the simulations
shown, naive mass removal gives a noticeable density
depletion relative to the ideal (ZAM) solution out to
r∼3–5r0. Similar depressions are often seen in
SPH simulations of protoplanetary disks that implement naive
mass removal via a sink particle (e.g., Hubber et al. 2018; Price
et al. 2018), but are also apparent in simulations using other
methods (e.g., Krumholz et al. 2004; Tang et al. 2017).
How should one choose γ0? There are two competing

considerations. If γ0 is too small, then too little mass is
removed, obviating the reason for using mass removal in the
first place. Conversely, if γ0 is too large, we find that the disk
develops nonaxisymmetries. For example, a simulation with

Figure 1. Steady-state profiles from 1D simulations of torque-free (top) and
naive (bottom) mass removal. Three values of γ0 are shown, with values in the
inset in units of τν,0, which is the viscous time at r=r0.

Figure 2. Surface densities resulting from torque-free mass removal (top) and
naive mass removal (bottom). We plot the density of each cell in AREPO with a
dot. The fact that there is little scatter, except at very small r, indicates that the
Σ profile is very axisymmetric. The 1D profiles here differ slightly from those
in Figure 1 within the mass removal zone because of the softened potential
used here.
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g tn 800 ,0 but otherwise the same as Figure 2 develops an
m=2 pattern at r0 (see Appendix A.2). We have not identified
the origin of the instability, but note that for large γ0 the density
gradient becomes large near r0, and hence the disk can
experience Rayleigh (Chandrasekhar 1961) or Rossby wave
instabilities (Lovelace et al. 1999; Li et al. 2000).

4. Steady-state Disk Perturbed by a Planet

We apply torque-free mass removal to the situation studied
in DLL20: a planet is placed on a fixed orbit within a viscous
disk, and then the disk is evolved long enough to reach viscous
steady state beyond the planet’s orbit.

We take the planet’s mass to be 5×10−3 times that of the
star, and place it on a circular orbit at 5r0. We set the disk
parameters to be the same as in Figure 2, with g t= n400 ,0,
and work in the stellar-centric frame by including an indirect
potential. We run the simulation with AREPO, using torque-free
mass removal, to a time of ∼1100 planetary orbits, which is the
viscous time at ∼18r0.

Figure 3 shows a snapshot of the resulting surface density
and Voronoi mesh. The planet excites spiral density waves,
which torque the gas, altering the Σ profile (Goldreich &
Tremaine 1980; Lunine & Stevenson 1982; Kanagawa et al.
2017; DLL20). Note that we do not employ wave-killing in the

simulation (e.g., de Val-Borro et al. 2006). Despite that, the
waves launched by the planet do not reflect off of the inner
boundary, as evidenced by the absence of leading spiral arms in
the figure.
Figure 4 (top panel) shows the Σ profile of the disk. The

planet is massive enough to open a modest gap around its orbit.
Furthermore, Σ remains below the ZAM profile (Equation (7))
nearly to r0, due to the long reach of the spiral waves (DLL20).
For comparison, we show in the top panel of Figure 4 the

result from an Eulerian simulation, done with FARGO3D. The
setup is very similar to the simulations in DLL20. The grid is
logarithmically spaced in radius, and extends from r=[0.5,
35] r0 with Nr, Nf=(340, 502). It also includes a wave-killing
zone inside of r0. As seen in the figure, the agreement between
FARGO3D and AREPO is excellent.
We turn now to examining the torques in the AREPO

simulation. One of the key quantities in studying planet–disk
interaction is the value of the net torque ΔT (Equation (5)) far
beyond the planet’s orbit. Recall that ΔT is one of the two
constants in a steady-state planet-less disk. Therefore far
beyond the planet’s orbit ΔT should be spatially constant in
viscous steady state. The value of that constant determines both
the planet’s migration rate and the “pileup” of material outside
of its orbit (DLL20).

Figure 3. Disk surface density for a planet with mass ratio 5×10−3 after the disk has reached viscous steady state. The red circle is at r=r0. The insets around the
star and the planet show the Voronoi mesh, which is refined with mass-refinement around the planet, and cell-size-refinement around the star (see Appendix A.1).
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To set the stage for the torques in the planet simulation, we
first show in the middle panel of Figure 4 what happens
without a planet, in one of the simulations from Figure 2. We
see that ΔT vanishes at r0 and inwards, demonstrating that our
torque-free mass removal procedure is behaving as intended. In
addition, ΔT remains negligibly small out to ~r r10 0,
demonstrating that the disk is in viscous steady state out to

that radius.6 We also show in the figure the two components of
ΔT, i.e., Fν and Mℓ, and these are both equal to  µM ℓ racc

1 2

throughout the physical part of the domain that is in steady
state, as required by the planet-less viscous steady-state
solution (Section 2.1); here, Macc is the rate at which mass is
artificially removed within the inner zone of the simulation.
The torques in the AREPO planet simulation are shown in the

bottom panel of Figure 4, where they are time-averaged over 50
planetary orbits, and the 1σ deviations are shown as shaded
regions. We observe again that ΔT is negligibly small at r0, as
required, and remains small until near the planet’s orbit. One
may note that ΔT does not reach a constant value at large r,
because the simulation is not quite in viscous steady state there
(similar to the middle panel). But given that the constant’s
value is so important, we display it in a different way: we
consider Tdep(r), which is the torque deposited into the disk by
spiral waves that have been launched by the planet (DLL20). In
viscous steady state with a planet, Equation (5) is modified to
ΔT(r)=Tdep(r), i.e., the net torque in the disk must equal that
provided by the deposition of spiral wave torque. The figure
shows Tdep(r), which we measure by combining the torque
required to excite the waves with the torque transported by the
waves (as explained in e.g., Kanagawa et al. 2017; DLL20).
We see that ΔT≈Tdep within ∼10r0, as required by viscous

steady state. In addition, the total torque deposited into the disk,
i.e., Tdep at r?rpl, is very small in absolute value relative to
M ℓacc 0. Moreover, further investigation shows that it oscillates
with small amplitude over time, likely due to the disk being
slightly eccentric (A. M. Dempsey et al. 2020, in preparation).
We conclude that for this setup the planet migration rate is very
slow, and moreover there is a negligibly small pileup outside of
the planet’s orbit.

5. Summary and Discussion

Our main results are as follows:

1. The inner boundaries of accretion disks should be
designed to ensure that they are torque free (ΔT=0).
Otherwise, the density profile beyond the boundary will
be incorrect. Conversely, one may infer that boundary-
induced density depressions found in many quasi-
Lagrangian simulations are due to an artificial torquing
of the disk by the mass removal algorithm.

2. We introduced a simple method to ensure a torque-free
inner boundary in quasi-Lagrangian codes that use mass
removal schemes: the azimuthal velocity of the material
remaining after mass removal is increased to avoid
changing the angular momentum. Once the angular
momentum is properly handled, further details of mass
removal have negligible impact on the disk’s behavior.

3. We implemented this mass removal in AREPO, showing
that it produced the desired behavior both in planet-free
disks, and in a disk with a planet—allowing one to
determine the total torque of the planet on the disk, ΔT.

Our mass removal algorithm is similar to the angular
momentum-preserving sinks of Krumholz et al. (2004). But the
disks in Krumholz et al. (2004) do not achieve the ZAM
solution outside the accretion zone (see their Figures 7–8).
Instead, they exhibit an “evacuation zone” that grows in time,

Figure 4. Top panel shows the azimuthally averaged Σ profile for our planet
runs with AREPO (blue line) and FARGO3D (black line); Σ is scaled to the ZAM
profile (Equation (7)), taken at an M equal to the one measured in the
simulations (  pn= » ´M ℓ0.35 3acc 0 0). The middle panel shows the torques in
the planet-less AREPO simulation from Figure 2 (colored lines), as well as those
from the 1D code (diamonds). The bottom panel shows the torques in the
AREPO simulation from the top panel, time-averaged over 50 planet orbits. We
describe how we compute the azimuthally averaged torques and Σ profile in
Appendix A.3.

6 The rise in ΔT beyond 10r0 is caused by the outer exponential cutoff with
which we initialized the simulation.
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implying that their algorithm is not truly torque-free. We
hypothesize that this might be caused by inadequate resolution.

Bate et al. (1995) introduced a fix to correct for the
discontinuity in density across the inner boundary present in
SPH simulations. Their fix appears to alleviate at least part of
the boundary-induced density depletion (see their Figure 2).
However, it does not ensure that ΔT=0 in the inner parts of
the simulation.

Although we have focused on disks nearly in viscous steady
state, inner boundaries should almost always be torque-free,
even for time-dependent disks. That is because the viscous
timescale is shortest in the inner regions, and so even if the disk
is evolving viscously, the innermost regions should be
effectively in steady state. The only exception we see is when
one wishes to model the effect of a true inner boundary—e.g.,
due to a stellar magnetosphere. Nonetheless, we do not claim
that previous simulations with non-torque-free inner bound-
aries are invalid. Far away from such a boundary, the
boundary’s effect may indeed be ignored.

We foresee a number of applications. The planet simulation
considered here may be extended to other cases, including
binary stars and more realistic disks. For that simulation,
FARGO3D was sufficient—indeed, it is around five times as fast
as AREPO.7 But for cases where the flow becomes strongly non-
Keplerian, the orbital advection algorithm used in FARGO3D
becomes much less efficient. Additional applications include
modeling of the circumplanetary/circumsecondary disk region
and the evolution of warps. Regarding the last application, we
foresee no great difficulty in extending our 2D method to 3D
—although the requirements for our method to work in 3D
have yet to be examined.

We would like to thank the anonymous referee for helpful
comments. Y.L. acknowledges NASA grant NNX14AD21G
and NSF grant AST1352369. This work used computing
resources provided by Northwestern University and the Center
for Interdisciplinary Exploration and Research in Astrophysics
(CIERA) funded by NSF PHY-1726951, and was supported in
part through the computational resources and staff contribu-
tions provided for the Quest high performance computing
facility at Northwestern University which is jointly supported
by the Office of the Provost, the Office for Research, and
Northwestern University Information Technology.

Appendix
AREPO Simulation Details

A.1. Refinement Criteria

To ensure that there is adequate spatial resolution, we make
use of two different cell refinement/derefinement criteria. The
first, which becomes most important in the vicinity of the
planet, is the default mass-based resolution in AREPO. We
specify a target cell mass, mtarget. If a cell has a mass outside of
the range mcell=[0.5mtarget, 2mtarget], that cell is either split or
merged with surrounding cells so that the resulting mass falls
within the specified range. In our simulation with a planet, we
smoothly decrease mtarget by a factor of 300 in the Hill sphere
of the planet.
Our second refinement criteria, which becomes important in

the vicinity of the star, and is used in conjunction with the
mass-based criterion, is cell size based and enforces a minimum
number of cells in the azimuthal direction. We specify a target
cell radius, rtarget, that is equal to 2πr/Nf, where Nf is the
desired number of cells in the azimuthal direction. If a cell has
a radius outside of the range rcell=[0.5rtarget, 2rcell], it is either
split or joined with neighboring cells until the cell radius falls
within our specified range. To ensure a smooth transition in cell
size toward the star we lower the Nf from the nominal target
value as (r/r0)

3 inside r0.

A.2. Resolution Requirements

We explore different values of Nf in Figure A1 for planet-
less disks, with two different γ0 values. We conclude that
γ0=40/τν,0 and Nf=1000 (the values used in the body of
this Letter) suffice to accurately simulate the disk.

A.3. Flux Measurements

In Figure 4 we show the azimuthally averaged steady-state
torques. Computing these azimuthal averages is a nontrivial
task in AREPO as the cells are not on a cylindrical grid. During
a simulation, we add a cell’s content (be it mass, viscous flux,
M , etc.) into finely spaced radial bins. For each binned
quantity, we compute the cumulative radial integral across the
domain, and then compute the numerical derivative on a
coarser grid. This leaves us with an estimate for the azimuthal
average of each quantity. For the planet-less simulations we use

7 For this comparison AREPO was run on 28 CPU cores with ∼140,000 zones
and FARGO3D was run on one NVIDIA V100 GPU with ∼170,000 zones.
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logarithmically spaced bins with width D »rln 0.001bin and
evaluate the numerical derivatives with a radial grid with
spacing ≈0.14. For the planet simulation we evaluate the
numerical derivatives with a finer radial grid with spa-
cing ≈0.034.
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