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Abstract
We shall formulate some properties, as Phragmén-Lindelöf theorem and asymptotic behavior at
infinity, for solutions of the p-Laplacean equation
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1 Introduction
We consider the solutions to the p-Laplacean equation

(1.1)

n∑
i=1

∂

∂xi

(
∂u

∂xi

∣∣∣∣ ∂u∂xi

∣∣∣∣p−1
)

= f(x) (p > 0),

in Q ⊂ Rn.

The existence and uniqueness of solution for boundary value problem related to equation (1.1) have
been obtained by many authors, see for instance [1], and [2].

We study some properties of solutions of (1.1) at infinity supposing that Q is a cylindrical or conical
or more general unbounded domain of Rn (n ≥ 2).

In particular, we shall show that a theorem of kind Phragmén-Lindelöf it holds for solutions of
equation (1.1) in cylindrical domain

π0 = {x = (x′, xn) ∈ Rn : x′ ∈ Ω, xn > 0},

where x′ = (x1, ..., xn−1) and Ω is a bounded domain in Rn−1 with smooth boundary ∂Ω. The
analogous question, for 2m-order linear equation, was first investigated by P.D. Lax in [3]; more
precisely, Lax, considering in π0 the solution u(x) of an elliptic higher-order equation with constant
coefficients and Dirichlet-data zero on

σ0 = {x = (x′, xn) ∈ Rn : x′ ∈ ∂Ω, xn > 0},

assuming, moreover, that ∫
π0

∑
|α|=m

|Dαu|2 dx < +∞,

where α = (α1, α2, ..., αn), |α| = α1 + α2 + ... + αn, has proved that there exists a constant β > 0
such that ∫

π0

eβxn
∑

|α|=m

|Dαu|2 dx < +∞.

We also treat the Neumann problem and extend such results to the case where Q is a conical
unbounded domain of Rn. In [4], S. Agmon and L. Nirenberg have dealt analogous problems for
ordinary differential equations in Hilbert spaces.

For other discussions of Phragmén-Lindelöf principles see [5], [6] and the book of Protter and
Weinberger [7].

Finally, we shall study the asymptotic behavior of solutions of equation (1.1) in an unbounded
domain contained in

S1 =
{
x = (x′, xn) ∈ Rn : 1 < xn < +∞, |x′|2 < xm

n (0 < m < 1)
}
.

Recently, the asymptotic behavior of solutions have been exploited in a significant number of articles
(see, for instance, [8], [9], [10] and the references given there).
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2 Preliminaries
Let us denote by πa,b, σa,b (0 ≤ a < b ≤ +∞) the sets

πa,b = {x = (x′, xn) ∈ Rn : x′ ∈ Ω, a < xn < b},

σa,b = {x = (x′, xn) ∈ Rn : x′ ∈ ∂Ω, a < xn < b},
where x′ = (x1, ..., xn−1) and Ω is a bounded domain in Rn−1 with smooth boundary ∂Ω; πa = πa,∞,
σa = σa,∞.

We shall suppose that f(x) is bounded function. In the sequel, by ci (i = 1, 2, ...., 14), γj (j =
1, 2, 3, 4) we shall denote positive constants depending only on n, p and known parameters. Moreover,
for example, to indicate a dependence of α on the real parameters n, p and meas Ω we shall write
α = α(n, p,Ω).

3 New Results
Theorem (3.1). Let u(x) be a solution of (1.1) in π0, u(x) = 0 on σ0. Let us suppose that

A =

∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx < +∞ and,

f(x) = 0 in πa for some a > 0. Then there exists a positive constant α1, α1 = α1(n, p,Ω), such
that ∫

π0

(
eα1xn |u|p+1 + eα1xn

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1
)
dx < +∞.

Proof.- For any a, b such that 0 ≤ a < b ≤ +∞ set

Ia,b(u) =

∫
πa,b

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx, Ia(u) = Ia,∞(u).

For the sake of simplicity, we will assume throughout that f(x) = 0.

Let θ(xn) ∈ C1(R) be a function such that θ(xn) = 1 if xn < 1
2
, θ(xn) = 0 if xn > 1, 0 ≤ θ(xn) ≤ 1,

|θ′(xn)| ≤ Γ. For every a > 0, we consider θa(xn) = θ(xn − a).

Let a be a real non-negative numbers. Let us prove that, for all b > a,

(3.1)

∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx =

∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p−1
∂u

∂xi

∂(θb(xn)u)

∂xi
dx.

Really, (θc(xn)−θb(xn))u ∈ W̊ 1,p+1(πb+ 1
2
,c+1) if c > b > a. According to equation (1.1), this implies

∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p−1
∂u

∂xi

∂(θc(xn)u− θb(xn)u)

∂xi
dx = 0;

therefore, the right-hand side in (3.1) does not depend on b.
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At the same time, we have∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p−1
∂u

∂xi

∂(θb(xn)u)

∂xi
dx =

∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

θb(xn)dx+

(3.2)

+

∫
π0

n∑
i=1

u

∣∣∣∣ ∂u∂xi

∣∣∣∣p−1
∂u

∂xi

∂θb(xn)

∂xi
dx.

It is obvious that

(3.3) lim
b→+∞

∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

θb(xn)dx =

∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx.

Let us estimate the second summand on the right in (3.2).

By the Hölder inequality, we obtain∣∣∣∣∣
∫
π0

n∑
i=1

u

∣∣∣∣ ∂u∂xi

∣∣∣∣p−1
∂u

∂xi

∂θb(xn)

∂xi
dx

∣∣∣∣∣ ≤
(3.4)

≤

∫
π
b+1

2
,b+1

∣∣∣∣ ∂u∂xn

∣∣∣∣p+1

dx


p

p+1
∫

π
b+1

2
,b+1

|u|p+1|θ′b(xn)|p+1dx

 1
p+1

.

According to Friedrichs inequality (see, for instance,[11], [12]), the following estimate is valid:

(F )

∫
Ω

|u(x′)|p+1dx′ ≤ c(n, p,Ω)

∫
Ω

n−1∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx′.

On the other hand |θ′b(xn)| ≤ Γ for every b > 0 and xn > 0.

Consequently, we have

(3.5)

∫
π
b+1

2
,b+1

|u|p+1|θ′b(xn)|p+1dx

 ≤ Γp+1c(n, p,Ω)

∫
π
b+1

2
,b+1

n−1∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx.

From (3.4) and (3.5) we obtain∫
π0

n∑
i=1

u

∣∣∣∣ ∂u∂xi

∣∣∣∣p−1
∂u

∂xi

∂θb(xn)

∂xi
dx → 0 as b → +∞.

Thus, estimate (3.1) is proved.

Further, relations (3.1) and (3.2) imply the formula

∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx =

∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

θb(xn)dx+

+

∫
π0

n∑
i=1

u

∣∣∣∣ ∂u∂xi

∣∣∣∣p−1
∂u

∂xi

∂θb(xn)

∂xi
dx

for all b > a. At the same time, from (3.4) and (3.5), it follows that∣∣∣∣∣
∫
π0

n∑
i=1

u

∣∣∣∣ ∂u∂xi

∣∣∣∣p−1
∂u

∂xi

∂θb(xn)

∂xi
dx

∣∣∣∣∣ ≤ Γ[c(n, p,Ω)]
1

p+1

∫
π
b+1

2
,b+1

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx.
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Therefore, for all b > a,∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤
∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

θbdx+

(3.6)

+α0

∫
π
b+1

2
,b+1

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx,

where the constant α0 = Γ[c(n, p,Ω)]
1

p+1 does not depend on u and b.

If f(x) does not equal to 0 in π0 we know that f = 0 in πa for a > a∗. As is shown above, for every
b > a∗, formula (3.6) is valid. Hence, we have∫

π
b+1

2

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤ (1 + α0)

∫
π
b+1

2
,b+1

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx

for all b > a∗.

Last inequality implies
Ib+1(u) ≤

α0

α0 + 1
Ib(u), ∀b > a∗.

This formula, by induction, gives

Ib+m(u) ≤ smIb(u) ≤ Asm,

for m ∈ N, b > a∗ and s = α0
α0+1

. Now, we can write last relation in this way

Ib+m(u) ≤ Aem log s, for any b > a∗, m ∈ N ∪ {0}.

It is simple to verify that last inequality gives the following

Iλ(u) ≤ c3e
−λα̃, for all λ > 0,

where c3 = Ae(1+a∗)α̃ and α̃ = − log s > 0.

Next, fix α1: 0 < α1 < α̃. We have:∫
π0

eα1xn

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx =

+∞∑
j=0

∫
πj,j+1

eα1xn

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤

≤
+∞∑
j=0

eα1(j+1)

∫
πj,j+1

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤
+∞∑
j=0

eα1(j+1)Ij(u) ≤

≤ c3

+∞∑
j=0

eα1(j+1)e−jα̃ < +∞.

Finally, an other application of Friedrichs inequality gives us the required conclusion.
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Remark (3.2). From (3.1) it is easy to prove that there exists a constant γ1 > 1 such that

Ib(u) ≤ γ1Ib(θb(xn)u)

for b sufficiently large.

Neumann problem

Now, we will consider a weak solution u(x) of (1.1) in π0 with the boundary condition

(3.7)
n∑

i=1

∂u

∂xi

∣∣∣∣ ∂u∂xi

∣∣∣∣p cosΘi = 0 on σ0,

Θi is the angle between the axis xi and the direction of the outer normal vector on ∂Ω.

Theorem (3.3). Let u(x) be a solution of (1.1)− (3.7). Let us suppose that

A =

∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx < +∞ and,

f(x) = 0 in πa for some a > 0. Then there exist two constants α2 > 0, α2 = α2(n, p,Ω), and h
such that ∫

π0

(
eα2xn |u(x)− h|p+1 + eα2xn

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx

)
< +∞.

Proof.- Put u = (meas πb,b+1)
−1
∫
πb,b+1

udx. Arguing as Theorem (3.1) (see remark (3.2)) we can
prove that there exists a constant γ2 > 1 such that

(3.8) Ib(u) ≤ γ2Ib(θb(xn)(u− u))

for b sufficiently large. From this relation and Poincaré - Wirtinger inequality we obtain

Ib+1(u) ≤ A(1− c−1
4 ) (c4 > 1)

and, by the same procedure as in the proof of the Theorem (3.1), we prove that there exists a
positive constant α = α(n, p,Ω) such that

I(u) =

n∑
i=1

∫
π0

eαxn

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx < +∞.

Next, we define in (0,+∞) the function

v(xn) = (meas Ω)−1

∫
Ω

u(x′, xn)dx
′.

From Hölder-Riesz inequality, it follows∫ +∞

0

eαxn |v′(xn)|p+1dxn ≤ 1

meas Ω
I(u) < +∞.

Hence, if we change variables t = exn we have∫ +∞

1

tα+p|ṽ′(t)|p+1dt =

∫ +∞

0

eαxn |v′(xn)|p+1dxn < +∞,

6
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where ṽ(t) = v(log t). From the Hardy classical inequality (see, for instance [13]) we can state that
there exists a constant h such that∫ +∞

1

tα−1|ṽ(t)− h|p+1dt ≤
(
p+ 1

α

)p+1 ∫ +∞

1

|ṽ′(t)|p+1tα+pdt.

A new change of variable gives∫ +∞

0

eαxn |v(xn)− h|p+1dxn ≤
(
p+ 1

α

)p+1
1

meas Ω

∫
π0

eαxn

∣∣∣∣ ∂u∂xn

∣∣∣∣p+1

dx.

Integrating the last relation on Ω we obtain

(3.9)

∫
π0

eαxn |v(xn)− h|p+1dx ≤
(
p+ 1

α

)p+1

I(u).

Finally, the Poincaré - Wirtinger inequality implies∫
Ω

|u− v(xn)|p+1dx′ ≤ c5

∫
Ω

n−1∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx′

and so,

(3.10)

∫
π0

eαxn |u− v(xn)|p+1dx ≤ c6I(u).

Obviously inequalities (3.9) and (3.10) conclude our Theorem.

Now, we shall consider weak solutions of (1.1) in a conical unbounded domain. Let K a cone of Rn;
∀ a, b : 0 ≤ a < b ≤ +∞ we define

Ka,b = {x ∈ Rn : x ∈ K, a < |x| < b}, Ka = Ka,+∞

FKa,b = {x ∈ Rn : x ∈ ∂K, a < |x| < b}, FKa = FKa,+∞.

Theorem (3.4). Let u(x) be a weak solution of (1.1) in K1 such that u(x) = 0 on FK1. Let us

suppose that

A =

∫
K1

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx < +∞ and,

f(x) = 0 in KR for some R ≥ 1. Then there exist a constant α3 > 0, α3 = α3(n, p,K1,2), such that∫
K1

|x|α3−(p+1)|u|p+1dx+

∫
K1

|x|α3

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx < +∞.

Proof.- We assume f = 0 in KR, for R > R∗. Let θ(x) ∈ C1(R) be a function such that θ(x) = 1
if x < 1, θ(x) = 0 if x > 2, 0 ≤ θ(xn) ≤ 1, |θ′(x)| ≤ β.

For every R ≥ 1, we consider θR(x) = θR(|x|) = θ( |x|
R
). It results 0 ≤ θR(x) ≤ 1 and |∇θR(x)| ≤

β
R

∀ R ≥ 1.

Arguing as in previous theorems, since∫
K1

n∑
i=1

∂u

∂xi

∣∣∣∣ ∂u∂xi

∣∣∣∣p−1
∂ [u(θ2R − θR)]

∂xi
dx = 0, for R > R∗,

7
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we obtain a constant γ3 > 1, independent of u(x), such that

(3.11)

∫
KR

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤ γ3

∫
KR

n∑
i=1

∣∣∣∣∂θR(x)u∂xi

∣∣∣∣p+1

dx

for R > R∗. From Friedrichs inequality (u = 0 on ∂K \ {x ∈ Rn : |x| < 1}), applied in the cone
K1,2 and the change of variables Rx = x′, we have

(3.12)

∫
KR,2R

|u|p+1dx ≤ c6R
p+1

∫
KR,2R

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx.

From (3.11) and (3.12) we obtain∫
KR

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤ c7

∫
KR,2R

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx,

for R > R∗ and c7 > 1. It results∫
K2R

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx =

∫
KR

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx−

−
∫
KR,2R

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤
(
1− 1

c7

)∫
KR

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx.

Now, if we put R = 1, 2, ...., 2N , .., from last inequality we have∫
K

2N

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤ AρN

for N > N⋆ and ρ =
(
1− 1

c7

)
∈]0, 1[.

Fix α3 : 0 < α3 < − log2 ρ. It results∫
K1

|x|α3

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤ 2α3N
⋆

A+

+∞∑
N=N⋆

∫
K

2N,2N+1

|x|α3

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤

≤ 2α3N
⋆

A+

+∞∑
N=N⋆

2α3(N+1)

∫
K

2N

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤

≤ A

(
2α3N

⋆

+

+∞∑
N=0

2α3(N+1)ρN
)

< +∞.

Finally, we conclude our theorem applying the following Hardy weighted inequality (see, for instance,
[13]) ∫

K1

|x|α3−(p+1)|u|p+1dx ≤ c8

∫
K1

|x|α3

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx.

Remark (3.5). Theorem (3.4) holds for solutions of Neumann problem in the conical domain K1.
The proof is similar to theorem (3.3), it is possible to use Poincaré-Wirtinger and Hardy inequalities
instead of Friedrichs inequality.
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The constant α1 of Theorem (3.1) does not depend on u(x) but it depends on Kondratiev - Lax
constant c(n, p,Ω) present in (F), then it depends on meas Ω. It is important to note that α1 =
α1(Ω) → +∞ as meas Ω → 0. Analogous considerations for the constant α2 and α3 of Theorems
(3.3) and (3.4) respectively.

Now, we consider solutions to the equation (1.1) in unbounded domain S such that

S ⊆ S1 =

{
x = (x′, xn) ∈ Rn : 1 < xn < +∞, |x′|2 =

n−1∑
i=1

x2
i < xm

n (0 < m < 1)

}
.

Assuming that u = 0 on ∂S and A =

∫
S

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx < +∞ we shall obtain

Theorem (3.6) (Asymptotic behavior). There exists a constant δ > 0 independent of S1 and u(x)
such that ∫

{x∈S:xn>2t}

(
|u|p+1 +

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1
)
dx ≤ c11e

−δt1−m

, ∀ t large enough.

Proof.- We put u(x) = 0 in S1 \S and we introduce a function τ(xn) ∈ C1(R) such that τ(xn) = 1
if xn < 0, τ(xn) = 0 if xn > 1, 0 ≤ τ(xn) ≤ 1, |τ ′(xn)| ≤ β1.

For every λ ≥ 1, we consider θλ(xn) = τ(xn−λ
λm ). It results 0 ≤ θλ(xn) ≤ 1 and |θ′λ(xn)| ≤ β1

λm

∀ λ ≥ 1.

Moreover

θλ(xn) =

{
0 if xn > λ+ λm

1 if xn < λ

As previous theorems, we obtain a constant γ4 > 1, independent of u(x), such that∫
{x∈S1:xn>λ}

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤ γ4

{∫
{x∈S1:λ<xn<λ+λm}

n∑
i=1

|θλ(xn)|p+1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx+

+

∫
{x∈S1:λ<xn<λ+λm}

|u(x)|p+1|θ′λ(xn)|p+1dx

}
≤

≤ γ4

{∫
{x∈S1:λ<xn<λ+λm}

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

+ λ−m(p+1)|u(x)|p+1

}
dx, for λ large enough.

From this inequality and Friedrichs inequality, we obtain∫
{x∈S1:xn>λ}

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤ γ4c9

∫
{x∈S1:λ<xn<λ+λm}

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx.

Next, a simple computation gives∫
{x∈S1:xn>λ+λm}

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤

(3.13)

≤
(
1− 1

γ4c10

)∫
{x∈S1:xn>λ}

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx,

9
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for λ large enough; c10 = c9 + 1.

Then, for t large enough we have∫
{x∈S:xn>2t}

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤ A

(
1− 1

γ4c10

)t1−m

.

We conclude our theorem with another application of Friedrichs inequality.

Remark (3.7). From (3.13) it also follows that:

∫
{x∈S:xn>t}

(
|u|p+1 +

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1
)
dx ≤ c11t

−δ(1−m), ∀ t large enough.

Finally, we consider solutions of equation (1.1), in unbounded domain Q, for which the condition∫
Q

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx < +∞ cannot be verified. What happens, for instance, in the cylindrical domain

π0?

We shall show that it holds the following

Theorem (3.8) Let u(x) be a solution of (1.1) in π0 with homogeneous Dirichlet data on σ0 and,
moreover, such that ∫

π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

eβxndx < +∞,

for some β < 0. Then, there exists a positive constant ϵ(Ω) > 0 such that if |β| ≤ ϵ(Ω)∫
π0

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx < +∞.

Proof.- Let t > 2 and assume that f(x) = 0 in π0; we introduce real functions θ(xn) ∈ C∞(R),
β(xn) by

θ(xn) =

{
0 if 0 < xn < 1
1 if xn > 2

,

β(xn) =

{
βxn if xn > t
βt if xn ≤ t

Multiplying equation (1.1) by [θ(xn)e
β(xn)u − ϵ] with ϵ small enough, integrating it over π0 , we

have (letting ϵ to zero)

∫
π0

n∑
i=1

∂
[
θ(xn)e

β(xn)u
]

∂xi

∂u

∂xi

∣∣∣∣ ∂u∂xi

∣∣∣∣p−1

dx = 0.

From this, we get

(3.14)

∫
π0

n∑
i=1

θ(xn)e
β(xn)

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤
∫
π0

∣∣∣∣∣∣
∂
[
θ(xn)e

β(xn)
]

∂xn

∣∣∣∣∣∣ |u|
∣∣∣∣ ∂u∂xn

∣∣∣∣p dx.

10
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Now, the left-side term of (3.14) can be estimate in this way

∫
π0

n∑
i=1

θ(xn)e
β(xn)

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≥
n∑

i=1

∫
π2,t

eβt
∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx+

∫
πt

eβxn

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx.

On the other hand, for the right-side term of (3.14) we have

∫
π0

∣∣∣∣∣∣
∂
[
θ(xn)e

β(xn)
]

∂xn

∣∣∣∣∣∣ |u|
∣∣∣∣ ∂u∂xn

∣∣∣∣p dx ≤ eβt
∫ 2

1

∫
Ω

|θ′(xn)||u|
∣∣∣∣ ∂u∂xn

∣∣∣∣p dx+
+

∫ +∞

t

∫
Ω

|β||θ(xn)|eβxn |u|
∣∣∣∣ ∂u∂xn

∣∣∣∣p dx ≤

≤ eβt
∫
π1,2

n∑
i=1

|u|
∣∣∣∣ ∂u∂xi

∣∣∣∣p dx+

∫
πt

n∑
i=1

|β||θ(xn)|eβxn |u|
∣∣∣∣ ∂u∂xi

∣∣∣∣p dx.
From (3.14), taking into account last two inequalities, we get

n∑
i=1

∫
π2,t

eβt
∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx+

∫
πt

eβxn

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤

(3.15)

≤ Beβt +

n∑
i=1

|β|

(∫
πt

eβxn

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx

) p
p+1 (∫

πt

eβxn |u|p+1dx

) 1
p+1

,

where B =

∫
π1,2

n∑
i=1

|u|
∣∣∣∣ ∂u∂xi

∣∣∣∣p dx.

According to (F ), we have∫
πt

eβxn |u(x)|p+1dx ≤ c(n, p,Ω)

∫
πt

eβxn

n−1∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx.

This fact applied to (3.15) gives

n∑
i=1

∫
π2,t

eβt
∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx+

∫
πt

eβxn

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤

≤ Beβt + n

n∑
i=1

|β|c12
∫
πt

eβxn

n∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx.

Furthermore, if

|β| ≤ ϵ(Ω) =
1

nc12

it follows
n∑

i=1

∫
π2,t

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤ B.

An other application of Friedrichs inequality gives

B ≤ nc13I1,2(u)

11
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and so,
n∑

i=1

∫
π2,t

∣∣∣∣ ∂u∂xi

∣∣∣∣p+1

dx ≤ c14I1,2(u), for t > 2.

Letting t to infinity we have our assertion.

4 Conclusion
We finally note that it is possible to extend Theorems (3.1) and (3.4) to solutions of the following
nonlinear equation

div a(Du)− c0|u|p−1u = f(x) in Q ⊂ Rn,

where c0 is a nonnegative constant and the vector field a : Rn → Rn, assumed to be C1-regular,
satifies the following growth and ellipticity assumptions

(4.1)


|a(z)|+ |az(z)||z| ≤ L|z|p

ν|z|p−1|ξ|2 ≤
⟨
az(z)ξ, ξ

⟩
,

whenever z, ξ ∈ Rn, p ≥ 1 and, 0 < ν ≤ L are fixed parameters. In such case, it will be important
to note that (4.1)b implies the existence of a positive constant c̃ = c̃(n, p, ν) > 1 such that the
following inequality holds whenever z1, z2 ∈ Rn

c̃−1|z2 − z1|p+1 ≤
⟨
a(z2)− a(z1), z2 − z1

⟩
.

A model case for the previous situation is clearly given by considering the p-Laplacean equation
(1.1).
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