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Abstract

In this Letter we propose a practical methodology to interpret future Parker Solar Probe (PSP) turbulent time
signals even when Taylor’s hypothesis is not valid. By extending Kraichnan’s sweeping model used in
hydrodynamics we derive the Eulerian spacetime correlation function in magnetohydrodynamic (MHD)
turbulence. It is shown that in MHD, the temporal decorrelation of small-scale fluctuations arises from a
combination of hydrodynamic sweeping induced by large-scale fluid velocity du0 and by the Alfvénic propagation
along the local magnetic field. The resulting temporal part of the spacetime correlation function is used to
determine the field-perpendicular wavenumber range D =k̂ k k,min max[ ] of the turbulent fluctuations that
contribute to the power of a given frequency ω of the time signal measured in the spacecraft frame. Our analysis
also shows that the shape of frequency power spectrum Psc(ω) of the time signal will follow the same power law of
the reduced power spectrum ~ a

^ ^
-E k k( ) in the plasma frame, where α is the spectral index. The proposed

framework for the analysis of PSP time signals entirely relies on two simple dimensionless parameters that can be
empirically obtained from PSP measurements, namely, d= ^ u V20 (where V⊥ is the perpendicular velocity of
PSP seen in the plasma frame) and the spectral index α.
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1. Introduction

The recently launched Parker Solar Probe (PSP) mission is
expected to make in situ measurements of the solar wind
plasma from heliocentric distances of about r;9.5Re (where
Re is one solar radius), near the Alfvén critical point, up to
distances as high as r R200  (Fox et al. 2016). PSP will thus
become the first mission to explore the solar wind in the region
between r R9.5  and r;60Re. Beyond these distances,
Taylor’s Hypothesis (TH; Taylor 1938) is valid as the solar
wind velocity Usw is much higher than the propagation and
turbulent velocities of the fluctuations. This so-called frozen-in-
flow TH has been widely used to relate the power spectrum
measured in the spacecraft frame to the reduced power
spectrum of the turbulence expected in the plasma frame using
the standard relation between the frequency of the signal, ω,
and the wavenumber, k, of the turbulent structures in the
plasma frame w k USW· (see e.g., Horbury et al. 2008;
Alexandrova et al. 2010; Bourouaine et al. 2012; Bourouaine &
Chandran 2013; Chen et al. 2014).

As PSP will explore the plasma of the inner heliosphere,
there has been an increased and renewed interest in revisiting
the validity of the TH in the solar wind. Recently, Bourouaine
& Perez (2018, hereafter BP18), investigated the validity of TH
near r;10Re using numerical simulations of reflection-driven
magnetohydrodynamic (MHD) turbulence. The authors found
that the Eulerian spacetime structure of the turbulence allows
for the interpretation of time signals even when TH is not
applicable, which is largely consistent with similar works
(Matthaeus et al. 2010, 2016; Servidio et al. 2011; Narita et al.
2013; Weygand et al. 2013; Klein et al. 2014, 2015;
Narita 2017), but with a number of important differences. For
instance, BP18 found that the Eulerian decorrelation in
simulations is consistent with spectral broadening associated
with pure hydrodynamic sweeping by the large-scale eddies,
combined with a Doppler shift associated with Alfvénic

propagation along the background magnetic field. BP18, in
agreement with Narita (2017), also found that the temporal
dependency of the Eulerian correlation is more consistent with
a Gaussian decay than exponential decay found by Servidio
et al. (2011) and Lugones et al. (2016). Another important
difference with previous works is thatBP18 found that the
decorrelation is the same for oppositely propagating fluctua-
tions even when the turbulence is imbalanced (non-zero cross-
helicity).
In this Letter, we propose a model for the Eulerian spacetime

correlation function in the context of MHD turbulence based on
Kraichnan’s sweeping hypothesis (KSH) in hydrodynamics
(Kraichnan 1964). We also show that the proposed analytical
model can be used to interpret PSP time signals, solely relying
on two empirical parameters that can be easily measured from
observations.

2. Eulerian Spacetime Correlation

We assume statistically homogeneous and stationary mag-
netized MHD turbulence and describe the evolution of
fluctuations in terms of the Elssaser variables d d= z u vA

 ¶
¶

= - - 


 z
v z z z

t
p, 1A · · ( ) 

where pr=v B 4A 0 ( ) is the background Alfvén velocity, ρ
is the density of the fluid, dv x t,A ( ), and du x t,( ) are the
fluctuating Alfvén and fluid velocity, respectively. We define
the Eulerian spacetime correlation function t xC ,( ) for z as

t t= á + + ñ  x z x z x xC t t, , , , 20 0 0 0( ) ( ) · ( ) ( )

where á ñ denotes the ensemble average over many turbulence
realizations. In the homogeneous and stationary state, the
correlation only depends on the spacetime lags x and τ, and its
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space Fourier transform becomes

òt
p

t=  -k xh C e d x,
1

2
, , 3k xi

3
3( )

( )
( ) ( )·

which is also known as the two-time energy spectrum.
We model the Eulerian correlation by extending the KSH,

i.e., that the spacetime structure of small-scales eddies in the
Eulerian description is dominated by random sweeping by
large-scale fluctuations. In MHD, the random sweeping of
small-scale eddies by large-scale ones can occur either from the
large-scale bulk flow, which we call hydrodynamic sweeping,
as well as the wave propagation of the z along and against the
local magnetic field that results from the perturbation of the
background field by the large-scale eddies, which we call
Alfvén-wave sweeping. This can be made evident by replacing
the advecting fields d d=z u vA in Equation (1) to obtain

d ¶
¶

+ =


z
u V z

t
0, 4A( ) · ( )

where d= +V v vA A A is the local Alfvén velocity. The pressure
has been ignored as its role is only to keep the fluctuations
incompressible. In Equation (4) the Elsässer fields z undergo
random advection both by the flow du and the local Alfvén
velocity VA. We extend KSH in MHD by replacing the
advecting variables du and dvA with zero-mean random
fields d ¢u and d ¢vA with prescribed statistics, which we take to
be Gaussian for simplicity. Hereafter, primed variables indicate
the field is a random variable with prescribed statistics. We
further assume that all fluctuating fields, d ¢z u, and d ¢vA,
are perpendicular to the local mean magnetic field, namely, the
direction of d¢ º + ¢V v vA A A. The space Fourier transform of z
then follows the linear equation

d
¶
¶

+ ¢ ¢ =


^
z

k u z
t

i k V 0, 5A
˜ ( · ) ˜ ( ) 

where = z z k t,˜ ˜ ( ) is the space Fourier transform of z x t,( ).
It is important to notice that the parallel wavenumber k in this
equation represents the wave-vector with respect to the local
magnetic field (along ¢VA) and not along the background
magnetic field (along B0). Equation (5) is a stochastic linear
equation whose solution is

= d   ¢ - ¢^z k z kt e e, , 0 . 6k uik V t i tA˜ ( ) ˜ ( ) ( )·

An important additional simplification follows for strongly
magnetized turbulence, d ¢v vA A , in which case ¢ =VA

d+ ¢ »v v v v1A A
2

A
2 1 2

A( ) , and therefore

= d   - ¢^z k z kt e e, , 0 . 7k uik v t i tA˜ ( ) ˜ ( ) ( )·

This model presents a number of significant advantages over
previous approaches based on the KSH(Matthaeus et al. 2010;
Servidio et al. 2011; Narita et al. 2013; Weygand et al. 2013;
Narita 2017). The first is that because the random variation of
d ¢vA does not affect the magnitude of the local Alfvén velocity
¢VA, to first order in d ¢v vA A, the Alfvénic sweeping is not

random. The second advantage is that in the solution provided
by Equation (7) the parallel and perpendicular components of
the wave-vector k are defined with respect to the direction of
the local, fluctuating magnetic field and not with respect to the
constant background field. Lastly, as we will see in more detail

later, the spectral broadening associated with sweeping solely
arises from random advection by the velocity of large-scale
eddies, and therefore affects both Elsässer components z
equally.
Assuming that z̃ and d ¢u are statistically independent at

t=0, it is straightforward to demonstrate that the two-time
power spectrum t kh ,( ) defined by Equation (3) becomes

t t=á - + ñ

= á ñt d t

  

 ¢^

k z k z k

k

h t t

h e e

, , , ,

, 8k uik v i
0

A

( ) ˜ ( ) · ˜ ( )
( ) ( )· 

where = k kh h , 00 ( ) ( ) is the three-dimensional power spec-
trum, or the one-time (τ= 0) energy spectrum. Equation (8)
indicates that the temporal decorrelation is the result of pure
hydrodynamic sweeping, Doppler-shifted by Alfvénic propaga-
tion along the local magnetic field. For simplicity we assume that
the component d d¢ = ¢n uun ˆ · ˆ along any direction n̂ is described
by a Gaussian probability density d ¢g un( ˆ ) where

p
= -g x e

1

2
, 9x1

2
2

( ) ( )

d d d¢ º ¢u u u2n n 0ˆ , and d d= ¢uu0
2⟨∣ ∣ ⟩ is the root mean

square value of d ¢u . Equation (8) then becomes

t t= G  k k kh h, , , 100( ) ( ) ( ) ( )

where

tG º t d t - ^k e e, . 11ik v u k1
4A 0

2
( ) ( )( ) 

The function tG k,( ) describes the temporal dependency of
the two-time spectrum t kh ,( ) and determines the scale-
dependent Eulerian decorrelation time of the turbulence.
The choice of a Gaussian probability density is made for

analytical convenience. However, the results that we present
here have general validity for any other probability density,
including one empirically obtained from spacecraft data.

3. Frequency Spectrum in the Spacecraft Frame

The frozen-in-flow TH is valid in solar wind data when the
speed of the the spacecraft seen in the plasma frame = VVsc sc∣ ∣
is much higher than the propagation velocity vph and velocity
amplitudes δu0 of the turbulent fluctuations, and thus the
frequency ω of the signal can be related to turbulent fluctuation
scale 1/k as w k Vsc∣ · ∣ . However, in our analysis we will
show that there are other cases in which we can still connect ω
to k even if Vsc∼vph. The key quantity that determines this
criterion is the decorrelation function tG k,( ) defined in
Equation (11).
Following Horbury et al. (2008) and Bourouaine &

Chandran (2013), the power spectrum from single-point
measurements in the spacecraft frame wPsc( ) is related to the
three-dimensional power measured in the plasma frame by
expression

òw
p

t t= w t  +kP h e d d k
1

2
, , 12k Vi

sc
3sc( ) ( ) ( )( · )
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which upon substitution of t kh ,( ) from Equation (10) gives

ò
ò
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w
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w
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2
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2

2˜ ( ) ( )
( · ) 

Here γ=k⊥δu0/2 represents the spectral broadening around
the Doppler-shifted frequency k Vsc· , the same for both z .

Intuitively, the TH relies on the assumption that the
spacecraft is moving through the plasma (or the plasma
passing by the spacecraft) so fast that the turbulence is “frozen-
in,” or simply, the turbulence does not have sufficient time to
evolve during the observation time. The decorrelation function
contains two independent characteristic velocities, the Alfvén
speed vA, and the velocity durms 0, associated with Alfvén-
wave advection and random hydrodynamic sweeping. One can
parameterize the decorrelation function with dº u V20 sc by
normalizing all velocities to Vsc and obtain

w
w

G =
+

^ ^ 
 k

k V

k V
g

k v

k V
,

1
, 15

sc

A sc

sc

⎛
⎝⎜

⎞
⎠⎟˜ ( )

·
( )

 

which upon substitution in Equation (13) leads to

òw w= G  
k kP h d k, . 16sc 0

3( ) ( ) ˜ ( ) ( )

In the limit  0 one obtains

ò òw d wG = +


  


k k k k Vh h k vlim , ,

17
0

0 0 A sc( ) ˜ ( ) ( ) ( · )

( )

 

which for existing solar wind observations -V Usc SW , with
U vSW A one recovers the commonly used TH condition

òw d w= -  k k UP h . 18sc 0 SW( ) ( ) ( · ) ( )

In this sense, when either one of the two conditions ò=1 and
vA=Vsc no longer hold, Equation (16) should be used in lieu
of the TH. One should also note that the TH given by
Equation (18) also holds when ~v VA sc provided the
turbulence is strongly anisotropic (i.e., ^k k ).

It is worth mentioning that the resulting model for wG
 k,˜ ( )

only relies on the validity of the KSH, and it is not specific to a
turbulence model. Equation (16) allows us in general to relate
temporal signals in the spacecraft frame to the spatial properties
of the turbulence in the plasma frame, and reduce in the proper
limits to the TH. In this sense, as we show in this Letter, these
equations allow us to analyze spacecraft signals when the TH is
not valid, with the only requirement that the KSH holds. In the
following we proceed to explore the usefulness of the more
general Equation (16) in the analysis of solar wind observa-
tions, with a focus on the upcoming measurements from the
PSP mission.

Let us define the reduced perpendicular power spectrum

òp=
^


^ ^E k h k k k dk2 ,0( ) ( ) , and make the following

assumptions: (1) the three-dimensional power spectrum is
nearly isotropic in the perpendicular plane, (2) the spacecraft

velocity in the Sun’s frame, V̂ , is nearly perpendicular to the
magnetic field, and (3) the power spectrum is highly anisotropic,
that is, nearly zero for ^k k . Then Equation (16) becomes

òw w=
¥


^ ^P E k dk, , 19sc

0
sc( ) ( ) ( )

where

w w=
^

^ ^


^ ^ ^E k

k V
E k g k V,

1
20sc ( ) ( ) ¯ ( ) ( )

is the spectral density describing the energy distribution among
frequencies and perpendicular wavenumber in the spacecraft
frame, and the function

òp
f

f=
+p

 g x g
x

d
2 1 cos

, 21
0

⎜ ⎟⎛
⎝

⎞
⎠¯ ( ) ( )

is the average of wG
 k,˜ ( ) over the angle f between k̂ and V̂ .

An additional factor of two has been added to include the
contribution to Psc(ω) from negative frequencies, so we can
assume ω�0 hereafter. Equations (19)and(20) will form the
basis of our proposed methodology.
A few important aspects of the function g x¯ ( ) are worth

emphasizing: (1) its integral from x=0 to ¥ is equal to one,
(2) it is the same for both E± energy spectra, and (3) it is
smooth for finite ò but becomes singular at x=1 in the limit
 0. This last property leads to a spectral density highly

localized along ω=k⊥V⊥ corresponding to the frozen-in-flow
TH, which means that the energy in a small frequency band dω
around ω entirely arises from fluctuations with wavenumbers in
the range dk⊥ around k⊥, with k⊥=ω/V⊥.
For finite ò, the function g x¯ ( ) broadens around x;1 and as

a result, the energy in the frequency range dω around ω results
from a broader range of wavenumbers, and therefore a one-to-
one association between frequency and wavenumber no longer
seems possible. In fact, Equation (19) shows that the
fluctuation energy in the range dω around ω results from a
non-trivial integral over a broad range of wavenumbers
weighted by w ^ ^g k V¯ ( ).
Let us now determine the power spectrum Psc(ω) when the

spatial power spectrum in the plasma frame follows a power
law of the form = a

^ ^
-E k Ck( ) . Note that we no longer

distinguish between E± as the following analysis is identical
for both spectra. After changing the k⊥ integration in terms of
the new variable x=ω/k⊥V⊥ Equation (19) becomes

òw
w

a=
a

^ ^

- ¥

P
C

V V
f x dx, , 22sc

0

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

where

a º a-
 f x x g x, . 231( ) ¯ ( ) ( )

One must note that(22) is valid if the power law for ^E k( )
extends from k⊥=0 to ¥. From this result we infer the
following conclusions: (1) wPsc( ) is also a power law with the
same spectral index of the spectrum E(k⊥), which is consistent
with the findings of Narita (2017) and Bourouaine & Perez
(2018); (2) the overall frequency power spectrum is scaled,
compared with the case when the TH is valid, by a factor that
solely depends on the distribution of large-scale eddies and the
spectral index α.
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Equation (22) relating the power spectrum wPsc( ) in the
spacecraft frame to the reduced energy spectrum can be used to
define the range of wavenumbers D =k̂ k k,min max[ ] that
provide most of the energy at a given frequency ω. The
mapping between a given frequency and the range of
wavenumbers providing most of its energy, w  Dk̂ , solely
depends on the function fò(α, x), determined from parameters ò
and α, whose values can be obtained from spacecraft
observations.

For a fixed set of values ò, α, let us define xmin and xmax so
that

ò òa h a=
¥

 f x dx f x dx, , 24
x

x

0min

max

( ) ( ) ( )

where η is a dimensionless number smaller than one,
representing the desired fraction of the total energy contained
between xmin and xmax. For instance, one can choose h  0.9 to
capture 90% of the total energy. We can then use xmin and xmax

to determine the wavenumber range D =k̂ k k,min max[ ] with
the largest contribution to a given frequency ω, as =kmin

w ^x Vmax and w= ^k x Vmax min , providing most of the power
Psc(ω) at frequency ω.

In the next section we will estimate the frequency-dependent
broadening Δk⊥ for two different sets of ò, α that are
representative of the regions that the PSP spacecraft is expected
to explore.

4. Application to PSP Data

At PSPʼs smallest perihelion, approximately at 9.86Re, the
spacecraft velocity in the Sun’s frame will be approximately
V⊥∼200km s−1 and nearly perpendicular to the nearly radial
magnetic field. In the plasma frame, the spacecraft velocity is

= -^V V Usc SW, where USW is the radial solar wind velocity.
PSPʼs perihelion occurs near the Alfvén critical point where
USW∼vA, therefore, based on our strong anisotropy assump-
tion ^ ^k V k Vsc· · . We assume that the rmsof velocity
fluctuations at this heliocentric radius is d -u 250 km s0

1 ,
which should decrease above the Alfvén critical point
r R10  according to turbulence models (Cranmer & van
Ballegooijen 2012; Perez & Chandran 2013). As a conse-
quence, the parameter d= ^ u V20 is expected to decrease
with increasing heliocentric distance r, where its highest value
is ò;0.9 at r=10Re and its lowest value is about 0.03
near 1au.

Assuming a spectral index α=5/3, we can construct the
function fò(α, x) versus x for representative values ò;0.03

near 1au and 0.9 near PSP perihelion (left panel of Figure 1).
It can be seen that fò(α, x) is relatively narrow around x;1 for
the small value of ò, while for ò;0.9 significant broadening
occurs for fò(α, x) around its peak value, which is close but not
equal to one. Therefore, we anticipate that fò(α, x) will be much
broader near the Alfvén critical point than around 1au. The
right panel of Figure 1 shows a hypothetical power-law
spectrum (on the left vertical axis) versus k⊥/k0 spanning two
decades, where k0 is some characteristic wavenumber. Just
below the power-law spectrum, the function fò(α, ω/k⊥V⊥) is
shown (on the right vertical axis) versus k̂ k0 for a selected
frequency w = ^k V5 0 . The two plots corresponding to the
same values of ò in the left panel show the contrast in the
interpretation of the same power law at a given frequency.
The vertical bars indicate the range of wavenumbers that
contribute to about 90% of the energy. Near Earth’s orbit, most
of the energy at each frequency is sharply localized around
w ^ ^k V , whereas the same amount of energy is spread over a
wider range of wavenumbers near the Sun.

5. Conclusions

In this Letter we introduced an analytical model for the two-
time energy spectrum given by Equation (10) based on two
minimal assumptions that apply to a wide range of solar wind
conditions: (1) the temporal decorrelation for the Eulerian fields
z x t,( ) is a consequence of random sweeping of the small-
scale eddies by large-scale ones; and (2) the turbulence is
strongly magnetized d ¢v vA A . It then follows that the
decorrelation in time of the turbulent eddies is controlled by
random sweeping due to large-scale fluid velocities and by pure
Alfvénic propagation. This seems to be consistent with earlier
obtained results using numerical simulations of strongly MHD
turbulence (Lugones et al. 2016, Bourouaine & Perez 2018).
The analytical model for the two-time energy spectrum was

used to develop a methodology to connect time signals to the
spatial properties of the underlying solar wind turbulence under
typical conditions that PSP might encounter. The proposed
method solely depends on the two measurable parameters, ò
and α, from where one can determine xmin and xmax to estimate
the broadening in k̂ as D =k̂ k k,min max[ ] for a given
frequency ω where w= ^k x Vmin max and w= ^k x Vmax min .
For example, the right panel of Figure 1 shows a hypothetical
Kolmogorov power-law spectrum ^ ^

-E k k 5 3( )  together with
the range of wavenumbers that contribute to 90% of the energy
at a given frequency for two different values of ò. These
parameters were chosen to represent typical values expected
near PSP perihelion and near 1au.

Figure 1. Left panel: function f (x) vs. x for ò=0.9 close to the Sun (solid red curve) and ò=0.03 near 1au (dashed blue curve). f (x) is normalized to its local
maximum fmax. Right panel: hypothetical power-law energy spectrum µ a

^ ^
-E k k( ) (left vertical axis) and fò vs. k⊥ for the same values of ò.
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The model we proposed for the two-time energy spectrum
and the resulting methodology differs from previous works in
that it requires no assumptions about the turbulence dynamics
and is based on just two parameters that can be easily
calculated from data. A key physical difference of our model
with Narita (2017) is that the spectral broadening is the same
for both Elsässer fluctuations, as it only results from
hydrodynamic sweeping. The random variation of the magnetic
field associated with the large-scale eddies only plays a role in
defining the direction of the local magnetic field along which
small eddies propagate, but it does not enter in the sweeping to
first order in δvA/vA. The proposed methodology also applies
to any spacecraft, including those flying in the magnetosheath
(like the Magnetospheric Multiscale Mission). Although our
model was obtained for Alfvénic fluctuations, we conjecture
that the KSH may in principle be extended to turbulence in
kinetic scales whenever large-scale sweeping dominates any
kinetic decorrelation timescales. More intuitively, the KSH can
be seen as the TH applied to an ensemble of systems in which
frozen small-scale structures are swept by a constant but
random flow. However, because this regime requires a kinetic
description of the turbulence dynamics, it requires further
investigation.
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