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ABSTRACT 
 
A simple and green room temperature Na2CO3-catalysed three-component reaction of 
benzaldehydes, malononitrile and phloroglucinol in water to give 2-amino-4H-benzopyrans in 70-
96% yields is described. The reaction was tolerated by electron-donating and electron-withdrawing 
substituents on the benzaldehydes. Operational simplicity, use of readily available and safe 
reagents, easy work-up and high yields are some of the positive attributes of this method. The 
prepared compounds showed very good to promising activities against both gram negative and 
gram positive bacteria with minimum inhibitory concentrations of 0.25 to 25.0 mg/ml as compared to 
that of ciproflaxin at 0.25 mg/ml. 

Short Research Article 
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1. INTRODUCTION 
 

Water plays an essential role in life processes 
but its use as a solvent in organic synthesis has 
been limited. Despite the fact that it is the 
cheapest, safest and most nontoxic solvent in the 
world, its presence is generally avoided through 
the dehydrative drying of substrates and 
solvents. The use of water as a medium for 
organic reactions is therefore one of the latest 
challenges for modern organic chemists. 
 
2-aminobenzopyrans or 2-aminochromenes are 
a class of compounds that have generated 
interest recently due to their biological activities 
[1-5]. These compounds are usually prepared by 
a base-catalysed three-component reaction of 
benzaldehydes, malononitrile and activated 
phenols. The basic catalysts that have been 
employed in these and related reactions include, 
NaOH [6], K2CO3 [5],

 
Na2CaP2O7 [7], Et3N [8] and 

piperidine [9-11]. Most of these reported 
procedures for the synthesis of 2-
aminochromenes required purification of the 
products, long reaction times, organic solvents 
and elevated temperatures.    
 
As part of our interest in the synthesis of 
heterocyclic compounds [12-14] and green 
chemistry [15] we report a simple Na2CO3-
catalysed one-pot reaction of benzaldehydes, 
malononitrile and phloroglucinol in water to give 
4-phenyl-2-amino-4H-benzopyrans. Na2CO3 is 
produced in large quantities in Sua, Botswana 
and has extensive domestic use therefore 
relatively safe. The activities of the prepared 2-
aminopyrans against gram positive and gram 
negative bacteria were assessed. 
 

2. EXPERIMENTAL 
 
2.1 General Reaction Conditions 
 
Melting points were determined on a Stuart 
melting point apparatus SMP1 (UK) and are 
uncorrected. Infrared spectra were recorded neat 
on a Perkin Elmer FT-IR spectrophotometer 
1000. 

1
H, 

13
C and 2D-NMR spectra were 

recorded on a Bruker Avance DPX 300 MHz 
NMR spectrometer in CDCl3 (or acetone-d6) with 
TMS as an internal standard at room 
temperature. Electron impact (EI) High resolution 
mass spectra (HR-MS) were carried out on GCT 
Premier Mass Spectrometer (Waters) ionisation 

energy 70 eV, at the Chemistry Department, 
University of Botswana. All reactions were 
monitored by TLC, which was carried out on 0.25 
mm layer of Merck silica gel 60 F254 pre-coated 
on aluminium sheets. Laboratory grade 
chemicals and solvents available commercially in 
high purity were used. All the prepared 
compounds were identified by physical 
properties, IR, HRMS and NMR data. Yields 
reported are isolated yields unless indicated 
otherwise. 
 

2.2 Typical Procedure 
 
A mixture of benzaldehyde (0.30 g, 2.8 mmol), 
malononitrile (0.19 g, 2.8 mmol) and 
phloroglucinol (0.36 g, 2.8 mmol) was dissolved 
in methanol (1.0 cm

3
) in a round bottom flask. A 

solution of Na2CO3 (0.09 g, 0.8 mmol) in water 
(19.0 cm3) was then added to the round bottom 
flask and the resulting suspension was stirred at 
room temperature for 10 hrs. The solid formed 
was filtered off, washed with water followed by 
cold methanol and dried in an oven at 100 

o
C to 

give 2-amino-3-cyano-5,7-dihydroxy-4-phenyl-
4H-chromene in 65% yield.  
 
2.2.1 2-Amino-3-cyano-5,7-dihydroxy-4-henyl-

4H-chromene (4)  
 
White solid, 65%;  mp 162-164 

o
C; IR (neat) ν: 

3331, 3203, 2188, 1654, 1618, 1468 cm-1; 1H 
NMR (300 MHz, DMSO-d6) δ 4.48 (1H, s, H-4), 
5.98 (1H, d, J = 1.5 Hz, H-6), 6.06 (1H, d, J = 1.5 
Hz, H-8), 6.78 (2H, s, 2OH), 7.20 (5H, m, ArH), 
9.57 (2H, br, NH2); 

13
C NMR (75 MHz, DMSO-d6) 

δ 36.8 (C-4), 58.0 (C-3), 94.2 (C-8), 99.3 (C-6), 
102.8 (C-4a), 121.3 (CN), 126.6 (C-4’), 127.5 (C-
2’ and 6’), 128.6 (C-3’ and 5’), 146.8 (C-1’), 150.9 
(C-8a), 155.8 (C-7), 157.9 (C-5), 160.9 (C-2); 
HRMS-EI (m/z) calcd for C16H12N2O3: 280.2848; 
found, 280.2853. 
 
2.2.2 2-Amino-3-cyano-5,7-dihydroxy-4-(4’-

methoxyphenyl)-4H-chromene (4a)  
 
Yellow solid, 75%; mp 211-212°C; IR (neat) νmax: 
3460, 3226, 2994, 2191, 1648, 1602, 1583, 1409 
cm-1; 1H NMR (300 MHz, DMSO-d6) δ 3.71 (3H, 
s, OCH3), 4.42 (1H, s, H-4), 5.96 (1H, d, J = 2.4 
Hz, H-6), 6.06 (1H, d, J = 2.4 Hz, H-8), 6.80 (2H, 
dd, J = 8.8 and 2.3 Hz, H-3’ and 5’), 7.07 (2H, 
dd, J = 8.8 and 2.3 Hz, H-2’ and 6’), 9.55 (2H, br, 
NH2); 

13C NMR (75 MHz, DMSO-d6) δ 35.8 (C-4), 
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54.3 (OCH3), 58.5 (C-3), 93.9 (C-8), 98.6 (C-6), 
103.3 (C-4a), 113.2 (C-3’ and 5’), 120.9 (CN), 
128.0 (C-2’ and 6’), 138.3 (C-1’), 150.7 (C-8a), 
155.5 (C-4’), 157.3 (C-7), 158.2 (C-5), 161.3 (C-
2); HRMS-EI (m/z) calcd for C17H14N2O4: 
310.3012; found, 310.3009. 
 

2.2.3 2-Amino-3-cyano-5,7-dihydroxy-4-(4’-
hydroxyphenyl)-4H-chromene (4b) 

 

Yellow solid, 79%; mp 215-216 oC; IR (neat) νmax: 
3457, 3448, 2187, 1641, 1609, 1590, 1506, 1413 
cm

-1
; 

1
H NMR (300 MHz, (CD3)2CO) δ 4.61 (1H, 

s, H-4), 6.05 (2H, br, 2OH), 6.13 (1H, d, J = 2.1 
Hz, H-6), 6.21 (1H, d, J = 2.1 Hz, H-8), 6.75 (2H, 
dd, J = 9.3 and 2.7 Hz, H-3’ and 5’), 7.06 (2H, 
dd, J = 9.3 and 2.7 Hz, H-2’ and 6’), 8.60 (2H, br, 
NH2); 

13
C NMR (75 MHz, (CD3)2CO) δ 35.9 (C-

4), 60.1 (C-3), 94.4 (C-8), 99.1 (C-6), 103.7 (C-
4a), 114.9 (C-3’ and 5’), 120.2 (CN), 128.4 (C-2’ 
and 6’), 137.2 (C-1’), 150.8 (C-4’), 155.4 (C-8a), 
155.8 (C-7), 157.8 (C-5), 160.5 (C-2); HRMS-EI 
(m/z) calcd for C16H12N2O4: 296.2837; found, 
296.2841. 

 
2.2.4 2-Amino-3-cyano-5,7-dihydroxy-4-(4-

hydroxy-3-methoxyphenyl)-4H-
chromene (4c) 

 

Yellow solid, 70%; mp 239-240 
o
C; IR (neat) νmax: 

3447, 3354, 2194, 1657, 1906, 1506, 1480 cm-1; 
1
H NMR (300 MHz, (CD3)2CO) δ 3.76 (3H, s, 

OCH3), 4.61 (1H, s, H-4), 6.02 (2H, s, 2OH), 6.11 
(1H, d, J = 2.1 Hz, H-6), 6.21 (1H, J = 2.1 Hz, H-
8), 6.64 (1H, dd, J = 8.1 and 1.8 Hz, H-6’), 6.73 
(1H, d, J = 8.1 Hz, H-5’), 6.86 (1H, d, J = 2.1 Hz, 
H-2’), 8.56 (2H, br, NH2); 

13
C NMR (75 MHz, 

(CD3)2CO) δ 36.3 (C-4), 55.4 (OCH3), 60.1 (C-3), 
94.5 (C-8), 99.1 (C-5), 103.6 (C-2’), 111.2 (C-4a), 
114.7 (C-5’), 119.7 (CN), 120.1 (C-6’), 137.7 (C-
1’), 145.1 (C-4’), 147.1 (C-3’), 150.9 (C-8a), 
155.4 (C-5), 157.4 (C-7) 160.4 (C-2); HRMS-EI 
(m/z) calcd for C17H14N2O5: 326.3003; found, 
326.3299. 

 
2.2.5 2-Amino-4-(benzo[d][1,3]dioxol-5-yl)-3-

cyano-5,7-dihydroxy-4H-chromene (4d) 

 

Yellow solid, 72%; mp 231-232 
o
C; IR (neat) νmax: 

3463, 3361, 2191, 1657, 1631, 1593, 1487 cm-1; 
1
H NMR (300 MHz, DMSO-d6) δ 4.49 (1H, s, H-

4), 5.95 (2H, s, OCH2O), 5.97 (1H, d, J = 2.2 Hz, 
H-6), 6.08 (1H, d, J = 2.2 Hz, H-8), 6.59 (1H, dd, 
J = 7.8  and 2.1 Hz, H-6’), 6.77 (1H, d, J = 7.8 
Hz, H-5’), 6.82 (1H, d, J = 2.1 Hz, H-2’), 9.58 
(2H, br, NH2); 

13
C NMR (75 MHz, DMSO-d6) δ 

36.5 (C-4), 58.1 (C-3), 94.2 (C-8), 99.3 (C-5), 
101.2 (OCH2O), 107.9 (C-5’), 108.4 (C-2’), 120.4 
(C-4a), 121.3 (CN), 140.9 (C-6’), 146.0 (C-1’), 
147.5 (C-4’), 150.8 (C-3’), 155.7 (C-8a), 157.9 
(C-5 and 7), 160.9 (C-2); HRMS-EI (m/z) calcd 
for C17H12N2O5: 324.2946; found, 324.2948. 

 

2.2.6 2-Amino-3-cyano-5,7-dihydroxy-4-(o-
tolyl)-4H-chromene (4e) 

 

Yellow solid, 78%; mp 220-221 oC; IR (neat) νmax: 
3454, 3332, 2194, 1661, 1622, 1596, 1465 cm

-1
; 

1
H NMR (300 MHz, CD3OD) δ 2.53 (3H, s, CH3), 

4.95 (1H, s, H-4), 6.02 (1H, d, J = 2.1 Hz, H-6), 
6.18 (1H, d, J = 2.1 Hz, H-8), 6.94-7.12 (4H, m, 
ArH); 13C NMR (75 MHz, CD3OD) δ 18.4 (CH3), 
32.3 (C-4), 58.2 (C-3), 93.9 (C-8), 98.6 (C-6), 
103.4 (C-4a), 121.1 (CN), 125.7 (C-6’), 125.9 (C-
4’), 128.0 (C-5’), 129.6 (C-3’), 134.8 (C-2’), 144.7 
(C-1’), 150.9 (C-8a), 155.6 (C-7), 157.3 (C-5) 
160.8 (C-2); HMRS-EI (m/z) calcd for 
C17H14N2O3: 294.3004; found, 294.3011. 

 

2.2.7 2-Amino-3-cyano-5,7-dihydroxy-4-(m-
tolyl)-4H-chromene (4f)  

 

Yellow solid, 83%; mp 181-182 
o
C; IR (neat) νmax: 

3452, 3329, 2192, 1659, 1601, 1459 cm-1; 1H 
NMR (300 MHz, CD3OD) δ 229 (3H, s, CH3), 
4.56 (H-4), 6.09 (2H, s, H-6 and 8),  6.95 (3H, m, 
H-2’, 4’ and 6’), 7.16 (1H, dd, J = 7.5 and 6.9 Hz, 
H-5’); 

13
C NMR (75 MHz, CD3OD) δ 20.2 (CH3), 

36.5 (C-4), 58.3 (C-3), 93.9 (C-8), 98.6 (C-6), 
103.0 (C-4a), 121.0 (CN), 124.1 (C-6’), 126.6 (C-
4’), 127.6 (C-5’), 127.7 (C-2’), 137.3 (C-3’), 145.9 
(C-1’), 150.8 (C-8a), 155.5 (C-7), 157.5 (C-5), 
161.1 (C-2);  HRMS-EI (m/z) calcd for 
C17H14N2O3: 294.3004; found, 294.2998. 

 

2.2.8 2-Amino-3-cyano-5,7-dihydroxy-4-(p-
tolyl)-4H-chromene (4g) 

 

Yellow solid, 79%; mp 132-124 oC; IR (neat) νmax: 
3449, 3338, 2193, 1660, 1599, 1452 cm

-1
; 

1
H 

NMR (300 MHz, (CD3)2CO) δ 2.27 (3H, s, CH3), 
4.64 (1H, s, H-4), 6.04 (2H, s, 2OH), 6.14 (1H, d, 
J = 2.1 Hz, H-8), 6.22 (1H, d, J = 2.1 Hz, H-6), 
7.08 (4H, m, ArH), 8.64 (2H, br, NH2); 

13
C NMR 

(75 MHz, (CD3)2CO) δ 20.2 (CH3), 36.4 (C-4), 
60.0 (C-3), 94.4 (C-8), 99.1 (C-6), 103.4 (C-4a), 
120.0 (CN), 127.3 (C-3’ and 5’), 128.7 (C-2’ and 
6’), 135.5 (C-4’), 143.2 (C-1’), 150.9 (C-8a), 
155.5 (C-7) 157.6 (C-5), 160.4 (C-2); HRMS-EI 
(m/z) calcd for C17H14N2O3: 294.3004; found, 
294.3010. 



 
 
 
 

Masesane and Mihigo; IRJPAC, 9(3): 1-8, 2015; Article no.IRJPAC.20066 
 
 

 
4 
 

2.2.9 2-Amino-3-cyano-5,7-dihydroxy-4-(4-
nitrophenyl)-4H-chromene (4h)  

 
Yellow solid, 96%; mp 268-270 

o
C; IR (neat) νmax: 

3399, 3180, 2206, 1651, 1587, 1512, 1409 cm-1; 
1
H NMR (300 MHz, (CD3)2CO) δ 4.82 (1H, s, H-

4), 6.16 (1H, d, J = 2.1 Hz, H-8), 6.22 (1H, d, J = 
2.1 Hz, H-6), 6.25 (2H, s, 2OH), 7.48 (2H, d, J = 
8.7 Hz, H-2’ and 6’), 8.18 (2H, d, J = 8.7 Hz, H-3’ 
and 5’), 8.85 (2H, br, NH2); 

13C NMR (75 MHz, 
(CD3)2CO) δ 36.9 (C-4), 58.3 (C-3), 94.6 (C-8), 
99.1 (C-6), 101.6 (C-4a), 119.4 (CN), 123.4 (C-3’ 
and 5’), 128.5 (C-2’ and 6’), 146.6 (C-4’), 150.7 
(C-1’), 153.7 (C-8a), 155.6 (C-7), 158.3 (C-5), 
160.5 (C-2); HRMS-EI (m/z) calcd for 
C16H11N3O5: 325.2799; found, 325.2802. 
 
2.2.10 2-Amino-4-(4-chlorophenyl)-3-cyano-

5,7-dihydroxy-4H-chromene (4i)  
 
Yellow solid, 73%; mp 142-144 

o
C, IR (neat) νmax: 

3606, 3460, 3301, 2994, 2192, 1649, 1608, 1579 
cm

-1
; 

1
H NMR (300 MHz, (CD3)2CO) δ 4.65 (1H, 

s, H-4), 6.11 (3H, m, H-8 and 2OH), 6.19 (1H, d, 
J = 3.6 Hz, H-6), 7.22 (2H, d, J = 8.7 Hz, H-2’ 
and 6’), 7.32 (2H, d, J = 8.7 Hz, H-3’ and 5’), 
8.95 (2H, br, NH2); 

13C NMR (75 MHz, (CD3)2CO) 
δ 36.3 (C-4), 59.2 (C-3), 94.4 (C-8), 99.1 (C-6), 
119.4 (C-4a), 128.1 (C-3’ and 5’), 129.1 (C-2’ 
and 6’), 130.9 (C-4’), 145.2 (C-1’), 151.2 (C-8a), 
155.5 (C-7), 157.9 (C-5), 160.4 (C-2); HRMS-EI 
(m/z) calcd for C16H11ClN2O3: 314.7214; found, 
314.7220. 
 
2.3 Antibacterial Activity  
 
Antibacterial activities of the prepared 
compounds were assessed using the broth 
macro dilution method [16,17]. Preparation of the 
stock solutions of the prepared compounds 
involved dissolving each of the compounds (250 
mg) in DMSO (1.0 ml). This solution was then 
transferred to a 10 ml volumetric flask and filled 
to the mark with DMSO to make the 25 mg/ml 
stock solutions. Serial dilution was then 
employed to come with solutions of 
concentrations 12.5, 2.5, 1.25 and 0.25 mg/ml. 
These concentrations were then tested against 
two gram negative bacteria S. aureus (ATCC 
9144) and E. coli (ATCC 11229) and two gram 
positive bacteria B. subtilis (ATCC 6633) and P. 
aeruginosa (NCTC 10332) obtained from the 
Department of Biological Science, University of 
Botswana. All the tests were done in triplicates. 
Ciprofloxacin was used as a positive standard 
while DMSO was used as a negative standard. 
The antibacterial activity was recorded as the 

minimum inhibitory concentration (MIC) of the 
test compound that inhibited an observable 
growth of the bacteria. 
 

3. RESULTS AND DISCUSSION 
 
Our initial experiments were focused on the 
Na2CO3-catalysed reaction of benzaldehyde 1, 
malononitrile 2 and phloroglucinol 3. Thus, 
reaction of equimolar mixture of these three 
reagents in a mixture of H2O and MeOH (95:5; 
v/v) at room temperature for 10 h afforded 2-
aminobenzopyran 4 as a white solid in 65% yield, 
Scheme 1. This product was found to be pure 
enough to allow characterization without further 
purification. The structure of 4 was confirmed by 
mass spectrometry, IR, 

1
H and 

13
C NMR 

spectroscopy. For example, the 1H NMR 
spectrum of 4 (Fig. 1) exhibited a characteristic 
singlet at δ 4.48 due to H-4, two doublets at δ 
5.98 and 6.06 due to H-6 and H-8 and a broad 
signal at δ 9.57 integrating for two protons due to 
-NH2. The IR spectrum spectrum of 4 showed the 
presence of the OH and NH2 functionalities at 
3331-3203 cm-1 and the cyano group at 2188   
cm

-1
. 

 
The mechanism of the reaction is thought to 
involve an aldol reaction of benzaldehyde 1 and 
malononitrile 2 to give 5. Subsequent Michael 
addition of 3 to the aldol product 5 gives 
intermediate 6. Cyclisation of intermediate 6 
proceed to give imine 7 followed by imine-
enamine tautomerism to afford the desired 
product 4, Scheme 1. 
 
To explore the scope and generality of the 
reaction, our research work was extended to 
various substituted benzaldehydes. Thus, the 
reaction of benzaldehyde 1a with an electron-
donating methoxy group, malonitrile 2 and 
phloroglucinol 3 proceeded smoothly to afford 
aminobenzopyran 4a in 75% yield. 4-
hydroxybenzaldehyde 1b also participated in this 
three-component reaction to give benzopyran 4b 
in 79% yield, Scheme 2. This result suggests that 
free hydroxyl groups on the benzaldehyde have 
no significant effect on this reaction. In addition, 
disubstituted benzaldehyde derivatives 1c and 
1d also participated in the three-component 
reaction to give the corresponding 2-
aminobenzopyrans 4c and 4d in 72 and 70% 
yield respectively. The reactions described thus 
far involved benzaldehyde derivatives with 
substituents that donating electron to the 
aromatic ring by resonance and these were well 
tolerated by the three-component reaction. To 
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investigate the tolerance of the procedure to 
groups that donate electrons by inductive effect, 
methylbenzaldehydes 1e-g were used in the 
three-component reaction and this afforded the 

corresponding benzopyrans 4e-g in 78-83% 
yields, Scheme 2. In almost all of the studied 
examples, no considerable effects of electron-
donating groups on the reaction were observed. 

 

 
 

Fig. 1. 1H spectrum of compound 4 in DMSO-d6 
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Electron-withdrawing groups on the 
benzaldehyde were also well tolerated by the 
three-component reaction. Benzaldehyde 1h with 
the electron withdrawing nitro group reacted with 
malononitrile 2 and phloroglucinol 3 under the 
conditions described above to give benzopyrans 
4h in 96%. Likewise, Chlorobenzaldehyde 1i 
participated in the reaction to afford the 
corresponding benzopyran 4i in 73% yields, 
Scheme 2. 
 
The antibacterial activities of the prepared 
compounds are presented in Table 1. 
Benzopyran 4h with a nitro group showed activity 

comparable to that of the standard positive 
control against all four test organisms while 
benzopyran 4i showed that kind of activity 
against gram negative bacteria. Compound 4b 
showed activities comparable for that of the 
ciprofloxacin against E. coli, B. subtilis and P. 
aeruginosa while 4d showed comparable 
activities against E. coli and B. subtilis. It is 
important to note that both benzopyrans 4b and 
4d have a free hydroxyl group on the 4-phenyl 
group. The rest of the compounds showed 
promising activity against all the test bacteria 
with minimum inhibitory concentrations ranging 
mostly from 12.5 to 1.25 mg/ml. 

 

 
 

Table 1. Antibacterial activities of compounds 4-4i 
 

Minimum inhibitory concentration (MIC; mg/ml) 
Compound No. S. aureus E. coli B. subtilis P. aeruginosa 
4 12.5 1.25 25.0 25.0 
4a 12.5 2.50 2.50 2.50 
4b 1.25 0.25 0.25 0.25 
4c 12.5 2.50 2.50 2.50 
4d 1.25 0.25 0.25 1.25 
4e 12.5 2.50 2.50 12.5 
4f 12.5 2.50 2.50 2.50 
4g 12.5 2.50 12.5 12.5 
4h 0.25 0.25 0.25 0.25 
4i 0.25 0.25 2.50 2.50 
Ciprofloxacin 0.25 0.25 0.25 0.25 
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4. CONCLUSION 
 

A one-pot Na2CO3-catalysed reaction of 
benzaldehydes, malononitrile and phloroglucinol 
to give 2-amino-4H-benzopyran derivatives that 
avoid the use of hazardous organic solvents has 
been described. The advantage of this procedure 
is that the products are isolated from the reaction 
mixture in pure form and therefore eliminates the 
need for chromatographic purification. Arrays of 
substituents on benzaldehyde were well tolerated 
by the reaction. The prepared 2-
aminobenzopyrans showed very good to good 
antibacterial activities. 
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