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ABSTRACT 
 
The reliability of a microgrid power system is an important aspect to analyze so as to ascertain that 
the system can provide electricity reliably over a specified period of time. This paper analyzes a 
home-scale model of a microgrid system by using the threshold system model (inadvertently labeled 
as the weighted k-out-of-n:G system model), which is a system whose success is treated as a 
threshold switching function. To analyze the reliability of the system, we first proved that its success 
is a coherent threshold function, and then identified possible (non-unique) values for its weights and 
threshold.  Two methods are employed for this. The first method is called the unity-gap method and 
the second is called the fair-power method. In the unity-gap method, we utilize certain dominations 
and symmetries to reduce the number of pertinent inequalities (turned into equations) to be solved. 
In the fair-power method, the Banzhaf index is calculated to express the weight of each component 
as its relative power or importance. Finally, a recursive algorithm for computing system reliability is 
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presented. The threshold success function is verified to be shellable, and the non-uniqueness of the 
set of weights and thresholds is demonstrated to be of no detrimental consequence, as different 
correct sets of weights and threshold produce equivalent expressions of system reliability.  
 

 

Keywords: Micro grid; k-out-of-n G system; threshold system; Banzhaf index; unity-gap; fair-power; 
shell ability; probability map. 

 

1. INTRODUCTION  
 

The renewable energy paradigm gained an 
increasing interest all over the world in the past 
few years due to the economic, depletion and 
environmental concerns about fossil fuels.  Many 
renewable forms of energy such as energies 
produced by wind turbines, airborne wind-energy 
systems and photovoltaic cells can be 
considered collectively a viable option for future 
electricity generation that reduces the impact of 
the environmental problem of global warming 
and also mitigates the inevitably forthcoming 
depletion of the resources of conventional fossil 
fuels. Moreover, the afore-mentioned types of 
renewable energy allow the installation of small-
capacity generating stations near geographically-
sparse consumers, a fact that results in the 
introduction of the concept of a microgrid [1,2]. 
 

The International Electro-technical Commission 
defines a microgrid in an electric power system 
as a group of interconnected loads and 
distributed energy resources with defined 
electrical boundaries forming a local electric 
power system at distribution voltage levels, that 
acts as a single controllable entity and is able to 
operate in either grid-connected or island mode 
[3,4]. This definition covers both (utility) 
distribution microgrids and (customer owned) 
facility microgrids. It stresses that a microgrid is a 
decentralized group of electricity sources and 
loads, in contrast to a macrogrid (a traditional 
wide area synchronous grid). The definition also 
indicates that a microgrid normally operates 
connected to and synchronous with a macrogrid, 
but it can also be disconnected from the 
macrogrid to function as an autonomous, stand-
alone, off-grid, or isolated microgrid, i.e., in a 
mode of operation usually referred to as ‘island 
mode.’  
 

The main challenges for the supply of renewable 
energy through the sources of a microgrid are 
blackouts and power quality problems. A 
microgrid based on renewable energy sources, 
such as wind and solar power, is not stable due 
to the intermittent generation of power by such 
sources, due to their critical dependence on the 
weather conditions, which are typically subject to 
dramatic variations. This means that these 

sources are not reliable as continuous or 
baseline power supply systems. Therefore, there 
is a need to assess the reliability of 
configurations of sources in a migrogrid as a 
means to produce a reliable electric power 
supply. 
 

There are many methods to analyze the reliability 
of a microgrid [5–11]. Some authors use fault-
tree analysis, Monte Carlo simulation, and 
Bayesian simulation to evaluate the various 
types of configurations of a microgrid system. A 
few methods for system reliability calculation use 
deterministic rather than probabilistic techniques, 
thereby suffering from grave lack of accuracy 
that is due to the inherent stochastic nature of 
many system components [12].  
 

This paper focuses on the analysis of the 
reliability of a home-scale (also known as 
residential-scale, small-scale, or household-
scale) microgrid system that is fed by a 
photovoltaic panel with a diesel generator and a 
battery as redundant sources. A threshold 
system (also known as a weighted k-out-of-n:G 
system) is used as a model to analyze the effect 
of the given redundancy on the total reliability 
performance. The rest of the paper has the 
following organization. Section 2 is a brief 
introduction to the threshold (weighted k-out-of-
n:G) system.  Section 3 presents the system 
modeling of a home-scale microgrid. Section 4 
presents the reliability analysis based on the 
threshold system model. The analysis uses two 
methods to obtain the (non-unique) threshold 
and weights of the system success and to find 
the Banzhaf indexes that fairly represent the 
importance of each component, Section 5 
describes a recursive algorithm for computing 
system reliability, and verifies that a threshold 
function is shellable. Though the weights and 
threshold for the threshold system are not 
unique, they are found to yield the same 
expression for system reliability. Section 6 
concludes the paper.  
 

2. THRESHOLD (WEIGHTED k-out-of-n:G) 
SYSTEM  

     
The k-out-of-n:G system is a coherent symmetric 
reliability system, which works properly if at least 
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k out of  its n components function properly. We 
note that the probability of exactly k successes 
out of n is given by [12–15]   
 

�(�, �, �) =  ��
�

� �� (1 − �)���                   (1a) 

 
where p is the probability of success of a single 
component. Hence, the reliability of a  k-out-of-
n:G system with independent identically-
distributed components is [14] 
 

�(�, �, �) =  ∑   �(�, �, �)�
���                       (1b) 

 

The k-out-of-n G system is the special coherent 
symmetric case of a threshold system which is a 
system that is composed of n statistically 
independent 2-state components whose success 
is a threshold switching function [16-21]. A 
switching function is a threshold function 
(denoted by � (� ;  � ;  � ; �)) if there exists a set 
of real numbers  W1, W2, …, and Wn, called 
weights and T called a threshold. such that 
 

�(�) = 1    ���    ∑ ���� ≥ ��
���                    (2) 

 
If all the weights are positive and equal,  the 
system is called a k-out-of-n: G system. 
Otherwise, if the weights are different, it is 
(sometimes) called a weighted k-out-of-n: G 
system.  A normalization (unity-gap) criterion is 
usually employed in the selection of the weights 
of a coherent threshold function.  This condition 
involves the weight input summation [16]  
 

�(�) =  ∑ ����
�
���                                        (3) 

 

This criterion necessitates that �(�)  has its 
minimum value for true vectors of the function 
(� ���ℎ �ℎ�� �(�) = 1) exactly equal to one plus 
its maximum value for false vectors of the 
functio (� ���ℎ �ℎ�� �(�) = 0) . This criterion 
serves as a basis of the unit-gap method in 
Section 4. 
 

The threshold (weighted k-out-of-n: G system) 

has been successfully applied as a system 
model in many  situations.  Lu and Liu [15] used 
the 8-out-of-10: G system to analyze STATCOM 
devices in electric power systems.  Erylmaz [22] 
used  a weighted k-out-of-n: F system to analyze 
the processing and controlling of a modern 
engineering system that consists of independent 
and non-identical components. Zhuang et al. [23] 
used a weighted k-out-of-n: G system to analyze 
a combined heat and power system. The system 
consists of four combined heat and power units 
where each unit can produce both electrical 
power and thermal power to the consumer.  
Song et al. [24] applied the weighted k-out-of-n: 
G system into transmission line analysis. In their 
paper, a stochastic multiple-valued (SMV) 
approach is proposed to predict the reliability of 
two models of the system with non-repairable 
components and dynamically repairable 
components. The threshold-system model seems 
to be a very convenient model for exploring the 
reliability of renewable energy sources employing 
air-borne wind-energy vehicles [25-28]. 
 
2.1 System Modeling 
 
The microgrid system is designed to supply a 
home-scaled load. The system consists of solar 
energy sources as the main power sources. A 
battery is used as an alternative power supply 
and a diesel generator is utilized as a backup 
power supply. The load is primarily supplied by 
the photovoltaic source at and around noon time 
through an inverter to convert dc power, which is 
produced by the solar power, to ac power that 
supplies the load. Whenever solar power is too 
weak (e.g., immediately after sunrise or few 
hours before sunset, as well as during a cloudy 
day), or totally missing (e.g., at  night),  the 
battery is expected to take over. The secondary 
energy source (the diesel generator)  is used as 
a back up to supply the load and also charge the 
battery through a rectifier. The schematic of the 
system is shown in Fig. 1. 

 

 
 

Fig. 1. Block diagram of a Home-scale microgrid system
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2.2 Reliability Analysis 
 

In this section, the analysis will proceed by using 
two methods, borrowed from Rushdi and Alturki 
[17] to derive the weights and threshold of the 
microgrid system (assuming they exist). The first 
method is called the unit-gap method and the 
second method is called the fair-power method. 
The unit gap method will be used to find the 
pseudo-Boolean function of the microgrid 
system, while the fair power method is used to 
find the relative importance of each unit of the 
systems. 
 

a) The Unit-gap Method 
 
The Boolean function of success for the system 
depicted by the block diagram of Fig. 1 is given 
by   
 

� (��, ��, ��, ��, ��) = ���� ∨ ������ ∨  ������ =
��(�� ∨ ��(�� ∨  ��))                                                    (4) 
 

Correspondingly, its complement, the Boolean 
function of failure is given by [12, 29-32] 
 

� (��, ��, ��, ��, ��) = �� ∨ �� �� ∨ ��  ��   �� (4a) 
 

Note that each of the success and failure 
functions is partially symmetric in �� and ��, and 
hence we set �� = ��. The Karnaugh maps of 
� (��, ��, ��, ��, ��)  in Fig. 2  display the true and 
false cells (vectors) of this function. This figure 
also highlights in yellow the all-1 cell 

(����������) and the all-0 cell (��  �� ��   ��   ��). 
Thanks to coherency, these two cells are a true 
cell and a false cell, respectively. The figure also 
locates the cells 

{  �� ���� �� ��,  �� �� �� �� ��,   �� �� ������ }  
that are farthest from the all-1 cell within the 
prime implicants of system success 
{����, ������, ������} , and the cells 

{������ ����, ��   �� ������,  �� ��   ��  ��   ��} that 
are farthest from the all-0 cell within the prime 

implicants of system failure {��, ��   ��,   ��   ��   

��}. Rushdi and Alturki [17] have shown that the 
inequality associated with each of these cells 
dominates the inequalities within the 
encompassing prime implicant. Therefore, it 
suffices to retain only the six dominating 
inequalities (See Fig. 3 and Table 1). Due to the 
equality (�� = ��), we are left with 5 unknowns 
to determine. 
 

The calculation process for the five unknowns 
W1, W2 ,W3 , W4  and T  goes as follows.  First, 
we note that the inequality W1 + W3 + W4 ≥ T 

appears twice, which means that we have five 
inequalities only. These five inequalities are 
turned into five independent equations in the 
remaining five unknowns as follows. The 
remaining non-strict inequalities (≥) are satisfied 
as equations. 

 
W2 + W3 = W1 + W3 + W4 = T 

 
while each of  the strict inequalities ( < )  is 
satisfied as an equation by subtracting a unity 
gap from the right-hand side 

 
W3 + 2W4 = W1 + W2 + 2W4 = W1 + W3  = T – 1 
 
To solve the resulting system of equations, we 
might use any method for solving a matrix 
equation. Here, we employ a detailed elimination 
process. First we note that 
 

T = W1 + W3 + W4 = W1 + W3  + 1 , so W4 = 1 
 
The five equations reduce to 

 
W2 + W3 = W1 + W3 + 1 = T 
W3 + 2 = W1 + W2 + 2 = W1 + W3  = T – 1 

 
and hence 
 
T = W2 + W3 = W3 + 3, so W2 = 3 

 
Now, the equations reduce to 
 
3 + W3 = W1 + W3 + 1 = T 
W3 + 2 = W1 + 5 = W1 + W3  = T – 1 
 
and hence 

 
T = W1 + W3 + 1 = W3 + 3, so W1 = 2 

 
Finally, the equations reduce to a consistent 
system of 5 equations in the remaining 2 
unknowns 

 
3 + W3 = 2 + W3 + 1 = T 
 
W3 + 2 = 7 = 2 + W3  = T – 1 

 
So, W3 = 5 , T = 8 

 
Finally, the threshold T = 8  and a possible set of 
weights is {2 3 5 1 1}. An offshoot of this 
calculation is the proof that our system is 
threshold, indeed. 
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Fig. 2. True and false cells of the success function of the system represented by the block 
diagram of Fig. 1. The figure identifies the all-1 cell and all true cells farthest from it (to be 

called critical true cells), and the all-0 cell and all false cells farthest from it (to be called critical 
false cells) 

 

 
 

Fig. 3. The 32 inequalities for the weights and threshold for the running example. These 
inequalities are written with the (≥) operator for true vectors and with the (<) operator for false 

vectors. We retain only the 6 highlighted inequalities since they dominate the rest 
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Table 1. The six dominating inequalities for the running example 
 
Dominating inequality Exhausts Symmetry of X4  and X5 

True (on) Cells   
W2 + W3 ≥  T Success Prime Implicant ���� W2 + W3 ≥  T 
W1 + W3 + W4 ≥ T Success Prime Implicant ������ W1 + W3 + W4 ≥ T 
W1 + W3 + W5 ≥ T Success Prime Implicant ������   W1 + W3 + W4 ≥ T 
False (Off) Cells   
W3 + W4 + W5 <  T Failure Prime Implicant  �1  �2 W3 + 2W4 <  T 

W1 + W2 + W4 + W5  < T Failure Prime Implicant  �3 W1 + W2 + 2 W4 < T 

W1 + W3 < T Failure Prime Implicant  �2  �4  �5 W1 + W3  < T 

 
b) The Fair Power Method 
 
This sub-section calculates the Banzhaf  index 
for each of the components, which is a measure 
of the relative importance of the component. The 
calculation follows the map method shown in Fig. 
4 [33-35]. This method uses map folding to 
‘differentiate’ the switching function of success 
[30] and then calculates the weight (the number 
of true vectors) of the obtained ‘derivative’ [31]. 
This method discovers the symmetry in ��  and 
�� , instead of pre-supposing it. It assigns the 
Banzhaf indexes as weights to the components 
whether the system is threshold or not. Then it 
checks if the system is ‘linearly separable’ or not 
by computing the following pseudo-Boolean 
function, which employs the weights deduced in 
Fig. 4. 
 
�(�) = 3�� + 5�� + 11 �� +  �� +  ��           (5) 
 

The values of �(�)  at the critical true cells 

{  �� ���� �� ��,  �� �� �� �� ��,   �� �� ������ }  
are {16, 15, 15}, which indicates that the 
minimum value of �(�) for a true vector is 15. 
The values of �(�)  at the critical false cells 

{������ ����, ��   �� ������,  �� ��   ��  ��   ��} are 
{10, 13, 14}, which indicates that the maximum 
value of �(��) for a false vector is 14 (strictly less 
than 15). This means that true vectors (cells) of 
the function are linearly-separable from false 
ones, and there is a gap or range (14, 15] in 
which a threshold T might be situated. We can 
take T=15 together with a set of weights {3, 5, 
11, 1, 1}. Our calculations demonstrate the well-
known fact that the weights and threshold of a 
threshold function are not necessarily unique 
[16]. 
 

c) Reliability Calculation 
 

Consider the Coherent threshold system H (5 ; p 
; 2, 3, 5, 1, 1 ; 8). The reliability of the system can 
be obtained by the recursive relation shown in 

equation (6) subject to the boundary conditions in 
equation (7). The best policy to decompose the 
system is by arranging the weights in a 
descending order starting from the largest weight 
[17].   
 
� (� ;  �;  � ; �) =  �� � (� − 1 ; �/��;  �/ ��; �) +
  �� � (� − 1 ; �/��;  �/ �� ; � − ��)                  (6) 
 
� (� ;  �;  � ; �) =  1           �� 0 ≥ �                  (7a) 
  
� (� ;  �;  � ; �) =  0        �� ∑ �� < ��

���            (7b)  
 
 
The reliability for our running example with 
� (5 ;  � ; 2 , 3 , 5 , 1 , 1 ; 8)  (using our first set of 
weights and threshold) can be obtained by the 
recursive relation (6) together with the boundary 
conditions (7). We make decomposition first w.r.t. 
a component with the largest weight. Therefore, 
we make the decomposition w.r.t. the ordered 
elements 3, 2, 1, 4, and 5. The following 
computations mimic the growth and then 
shrinkage of a recursion stack for a computer 
implementation. 
 
� (5 ;  ��, ��, ��, ��, �� ;  2 , 3 , � , 1 , 1 ; 8) =
 �� � (4 ;  ��, ��, ��, �� ;  2 , 3 , 1 , 1 ; 8) +
  �� � (4 ;  ��, ��, ��, �� ;  2 , 3 , 1 , 1 ; 3), 
 
� (4 ;  ��, ��, ��, �� ;  2 , 3 , 1 , 1 ; 8) = 0, 
 
� (4 ;  ��, ��, ��, �� ;  2 , � , 1 , 1 ; 3) =
  �� � (3 ;  ��, ��, �� ;  2, 1 , 1 ; 3) +
  �� � (3 ;  ��, ��, �� ;  2, 1 , 1 ; 0), 
 
� (3 ;  ��, ��, �� ;  �, 1 , 1 ; 3) =
  �� � (2 ; ��, �� ;  1 , 1 ; 3) +
  �� � (2 ;  ��, �� ;  1 , 1 ; 1), 
 
� (3 ;  ��, ��, �� ;  2, 1 , 1 ; 0) =   1, 
 
� (2 ; ��, �� ;  1 , 1 ; 3) = 0, 
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� (2 ; ��, �� ;  � , 1 ; 1)  =   �� � (1 ; �� ;  1 ; 1) +  �� � (1 ;  �� ;  1 ; 0), 
� (1 ;  �� ;  1 ; 0) = 1, 
� (1 ; �� ;  � ; 1)  =   �� � (1 ;  ;   ; 1) +   �� � (1 ;  ;   ; 0) =   ��  (0) +   �� (1) = ��, 
� (2 ;  ��, �� ;  1 , 1 ; 1) =   �� �� +   �� , 
� (3 ;  ��, ��, �� ;  2, 1 , 1 ; 3) = ��(�� �� +  ��), 
� (4 ;  ��, ��, ��, �� ;  2 , 3 , 1 , 1 ; 3)  =   ��  (��(�� �� +  ��))  +   �� , 
� (5 ;  ��, ��, ��, ��, �� ;  2 , 3 , 5 , 1 , 1 ; 8) = ��  (�� (��(�� �� +  ��))  +   ��).                            (8a) 

 
The reliability for our running example with � (5 ;  � ; 3 , 5 , 11 , 1 , 1 ; 15)  (using our second set of 
weights and threshold) can be obtained by the recursive relation (6) together with the boundary 
conditions (7). We again make the decomposition w.r.t. the ordered elements 3, 2, 1, 4, and 5. 
 

� (5 ;  ��, ��, ��, ��, �� ; 3 , 5 , �� , 1 , 1 ; 15) =  �� � (4 ;  ��, ��, ��, �� ;  3 , 5 , 1 , 1 ; 15) +
  �� � (4 ;  ��, ��, ��, �� ; 3 , 5 , 1 , 1 ; 4), 
 
� (4 ;  ��, ��, ��, �� ;  3 , 5 , 1 , 1 ; 11) = 0, 
� (4 ;  ��, ��, ��, �� ;  3 , � , 1 , 1 ; 4) =
  �� � (3 ;  ��, ��, �� ;  3, 1 , 1 ; 4) +   �� � (3 ;  ��, ��, �� ;  3, 1 , 1 ; −1), 
� (3 ;  ��, ��, �� ;  �, 1 , 1 ; 4) =   �� � (2 ; ��, �� ;  1 , 1 ; 4) +   �� � (2 ;  ��, �� ;  1 , 1 ; 1), 
� (3 ;  ��, ��, �� ;  3, 1 , 1 ; −1) =   1, 
� (2 ; ��, �� ;  1 , 1 ; 4) = 0, 
� (2 ;  ��, �� ;  � , 1 ; 1) =   �� � (1 ; �� ;  1 ; 1) +   �� � (1 ;  �� ;  1 ; 0), 
� (1 ;  �� ;  1 ; 0) = 1, 
� (1 ; �� ;  � ; 1)  =   �� � (1 ;  ;   ; 1) +   �� � (1 ;  ;   ; 0) =   ��  (0) +   �� (1) = ��, 
� (2 ;  ��, �� ;  1 , 1 ; 1) =   �� �� +   �� , 
� (3 ;  ��, ��, �� ;  3, 1 , 1 ; 4) = ��(�� �� +  ��), 
� (4 ;  ��, ��, ��, �� ;  3 , 5 , 1 , 1 ; 4)  =   ��  (��(�� �� +  ��))  +   �� , 
� (5 ;  ��, ��, ��, ��, �� ;  3 , 5 , 11 , 1 , 1 ; 15) = ��  (�� (��(�� �� +  ��))  +   ��).   (8b) 

 

 
 
Fig. 4.  Calculation of the Banzhaf indexes by using map folding to ‘differentiate’ the switching 

function of success and then calculating the weight of the obtained ‘derivative 
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We obtain the same expression of system 
reliability in (8a) and (8b), irrespective of the 
differences in the set of weights and threshold 
used. This expression consists of three terms, 
exactly the same number of terms in the Boolean 
domain in (4), a manifestation of the fact that a 
threshold function is shellable [17,19]. In fact, we 
could have applied the Reflection Law twice (or 
any more elaborate disjointing procedure [12]) to 
(4) to obtain the following probability-ready 
expression (PRE) [12]. 
 

� (��, ��, ��, ��, ��) = �� ��� ∨ ���� ��� �� ∨

 �4.                                                                                (4b) 

 
The procedure for applying (6) and (7) to derive 
(8a) or (8b) could be pictorially visualized via a 
Mason signal flow graph that has the form of a 
reduced ordered binary decision diagram 
(ROBDD) [12,16-21]. Such a visualization is 
accomplished via a sequence of four figures (Fig. 
5 to Fig. 8). The result in (8a), (8b), or (4a) could 
be visualized also on a Karnaugh map with 
disjoint loops (called a probability map, if the 
input switching variables are replaced by their 
expectations) as the one in Fig. 9 [36,37]. 
 
In passing, we note that any recursive function 
should not recur indefinitely (in an endless infinite 
loop) but must terminate in some non-recursive 

cases. To the best of our knowledge, Rushdi [14] 
was the first to take this into consideration in the 
context of two-dimensional recursive formulation 
of reliability problems, through the use of what he 
termed ‘boundary conditions’ to mimic the 
somewhat similar situation in problems of 
electromagnetics. These boundary conditions did 
not only terminate recursion in a finite number of 
steps, but they also served as markers or 
borders for the region of validity of the recursive 
relations. Following the seminal work in [14], 
many authors followed suite to establish the 
concept of boundary conditions for many 
reliability systems [12,16-21,38-53]. 
Subsequently, this concept was extended even 
to higher dimensions [54,55]. 
 
The reliability algorithm used herein is 
demonstrated for a very small example of five 
components only. It can be readily used to 
handle a threshold system of any size. Its result 
is validated via the PRE in equation (4b), and 
also through each of the Karnaugh-map 
representation and the SFG visualization. This 
result can also be hand-checked via the fact that 
it is a multi-affine expression of component 
reliabilities that has a correct ‘truth table’ [56]. 
This correctness might be proved by showing 
that � = 1 for each of the three minimal paths in 
(4), and � = 0 for each of the minimal cutsets in 
(4a).

 

 
 

Fig. 5. Distribution of nodes in the two-dimensional plane of threshold versus weights for the 
first solution of the running example. A yellow cell should contain a non-source node 

expressed recursively via (6), and hence should have two arrows incident on it that emanate 
from nodes in the column to its left. Other cells represent source nodes. These are green cells 

containing nodes of unity values according to the condition { 0 ≥ �} in (7a), and pink cells 
containing nodes of zero values according to the condition { ∑ �� < ��

��� } in (7b) 



Fig. 6. Locations of all nodes in the two
are involved in the computations of the first solution for the running example. A yellow cell in 

a certain column is replaced by exactly two nodes in the column to its left, one at the same 
horizontal level, and another at a level higher by an amount equal

component w.r.t. which expansion is performed. Processing terminates at a green cell of unity 
value or a pink cell of zero value. These locations guide the construction of a signal flow graph 

(SFG) in  the forthcoming Fig. 7, and with

 

Fig. 7. A Mason signal flow graph (SFG) for computing the reliability for our running example 
with � (5 ;  � ; 2 , 3 , 5 , 1 , 1 ; 8) (using our first set of weights and threshold) can
the recursive relation (6) together with the boundary conditions (7). The graph encompasses 
all equations leading to (8a) as node
formula amounts to enumerating the three paths from the b

sink node, computing a non-factored version of (8a) by adding the gains of these paths.
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6. Locations of all nodes in the two-dimensional plane of threshold versus weights, which 

are involved in the computations of the first solution for the running example. A yellow cell in 
a certain column is replaced by exactly two nodes in the column to its left, one at the same 

horizontal level, and another at a level higher by an amount equal to the weight of the 
component w.r.t. which expansion is performed. Processing terminates at a green cell of unity 
value or a pink cell of zero value. These locations guide the construction of a signal flow graph 

(SFG) in  the forthcoming Fig. 7, and with appropriate differences, guide the construction of 
the SFG in Fig. 8. 

 
7. A Mason signal flow graph (SFG) for computing the reliability for our running example 

(using our first set of weights and threshold) can be obtained by 
the recursive relation (6) together with the boundary conditions (7). The graph encompasses 
all equations leading to (8a) as node-defining equations. Simple application of Mason gain 
formula amounts to enumerating the three paths from the black source nodes to the single 

factored version of (8a) by adding the gains of these paths.

 
 
 
 

; Article no.JENRR.67300 
 
 

 

dimensional plane of threshold versus weights, which 
are involved in the computations of the first solution for the running example. A yellow cell in 

a certain column is replaced by exactly two nodes in the column to its left, one at the same 
to the weight of the 

component w.r.t. which expansion is performed. Processing terminates at a green cell of unity 
value or a pink cell of zero value. These locations guide the construction of a signal flow graph 

appropriate differences, guide the construction of 

 

7. A Mason signal flow graph (SFG) for computing the reliability for our running example 
be obtained by 

the recursive relation (6) together with the boundary conditions (7). The graph encompasses 
defining equations. Simple application of Mason gain 

lack source nodes to the single 
factored version of (8a) by adding the gains of these paths. 



 
Fig. 8. A Mason signal flow graph (SFG) for computing the reliability for our running example 

with � (5 ;  � ; 3 , 5 , 11 , 1 , 1 ; 15
obtained by the recursive relation (6) together with the boundary conditions (7). The graph 

encompasses all equations leading to (8b) as node
Mason gain formula  amounts to enumerating the three paths from the black source nodes to 
the single sink node, computing a non

paths. Despite the minor differences between the SFGs in Figs. 7 and 8, they yield exactly 

 

Fig. 9. System reliability obtained on 
loops are disjoint or non-overlapping. The loop 

though it is split into two visually separated areas. The switching variables of the input domain 
are replaced by their expectations in the loop expressions.
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8. A Mason signal flow graph (SFG) for computing the reliability for our running example 
15) (using our second set of weights and threshold) can be 

obtained by the recursive relation (6) together with the boundary conditions (7). The graph 
encompasses all equations leading to (8b) as node-defining equations. Simple application of 

a  amounts to enumerating the three paths from the black source nodes to 
the single sink node, computing a non-factored version of (8b) by adding the gains of these 

paths. Despite the minor differences between the SFGs in Figs. 7 and 8, they yield exactly 
same reliability expression. 

 
System reliability obtained on a Karnaugh map treated as a probability map.  The map 

overlapping. The loop ���� covers eight logically contiguous cells 
though it is split into two visually separated areas. The switching variables of the input domain 

are replaced by their expectations in the loop expressions. 
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8. A Mason signal flow graph (SFG) for computing the reliability for our running example 
(using our second set of weights and threshold) can be 

obtained by the recursive relation (6) together with the boundary conditions (7). The graph 
defining equations. Simple application of 

a  amounts to enumerating the three paths from the black source nodes to 
factored version of (8b) by adding the gains of these 

paths. Despite the minor differences between the SFGs in Figs. 7 and 8, they yield exactly the 

 

a Karnaugh map treated as a probability map.  The map 
covers eight logically contiguous cells 

though it is split into two visually separated areas. The switching variables of the input domain 
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3. CONCLUSIONS 
 
The threshold system model (also called the 
weighted k-out-of-n:G system model) is used 
herein to analyze the reliability of a home-scale 
microgrid system. The system success is 
expressed as a threshold switching (Boolean) 
function, whose expectation (expected value) is 
the probability that the system works well, i.e., 
the system reliability. The present analysis aims 
to find the symbolic reliability and hence the 
relative importance of each component of the 
system.   
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