SCIENCEDOMAIN international
www.sciencedomain.org

Synthesis of New 4-(dimethylamino)benzhydrazide Derivatives and Their Cyclization to 1,3-benzothiazin-4-one Moiety

Łukasz Popiołek ${ }^{1^{*}}$
${ }^{1}$ Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.

Author's contribution
Author $Ł P$ design the study, performed the synthesis of new 2,3-disubstituted derivatives of 1,3-benzothiazin-4-one, analyzed the spectral data of obtained compounds and wrote the manuscript. Author read and approved the final manuscript.

Article Information
DOI: 10.9734/ACSj/2015/16728
Editor(s):
(1) Lajos Novak, Department of Organic Chemistry and Technology, Budapest University of Technology and Economics,

Hungary.
(2) Sang Hak Lee, Department of Chemistry, Kyungpook National University Daegu, 702-701, Korea.

Reviewers:
(1) F. M. A. El-Taweel, Department of Chemistry, Damiatta University, A.R., Egypt.
(2) P. Krishnamoorthy, Department of Chemistry, Madras University, India.
(3) Anonymous, India.
(4) Anonymous, India

Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=902\&id=16\&aid=8631

Abstract

The reaction of hydrazides of carboxylic acids with aldehydes is an efficient synthetic method to produce N-substituted hydrazone derivatives. The resulting hydrazone compounds are considered as convenient intermediates and can be used to obtain new interesting heterocyclic systems e.g. 1,3-thiazolidin-4-one or 1,3-benzothiazin-4-one derivatives. In the present work such pathway was used for the synthesis of new 1,3-benzothiazin-4-one derivatives (16-30). New compounds were obtained by the cyclization reaction of N-substituted 4-(dimethylamino)benzhydrazides (1-15) with thiosalicylic acid. The spectral (IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR) and elemental analysis confirmed the structure of synthesized compounds.

[^0]Keywords: Benzhydrazide derivatives; 1,3-benzothiazine derivatives; condensation reaction, cyclization reaction.

1. INTRODUCTION

The 1,3-benzothiazin-4-ones derivatives, in recent years, have gained substantial interest in the scientific community not only due to their meaningful biological activity, but also as reactive intermediates to lots of new synthetic transformations [1,2]. Many 1,3-benzothiazin-4one derivatives exhibit a broad spectrum of biological activities, so that the purposeful of their synthesis and modification of their structure attracts great interest in pharmacology and other related fields [1,2].

Some compounds having the 1,3-benzothiazin-4one structure have been reported to exhibit biological activities, like antiproliferative [2,3], antibacterial [4-8], antifungal [9,10], antimalarial [11], anti-inflammatory [12] and antiviral activity, mainly against HIV virus [13] and several efficient routes to synthesis of such compounds have been published $[2,12]$.

Generally, methods for preparing these compounds rely on the simultaneous reaction of three components or on a two-step synthesis (Scheme 1). During the first stage of synthesis the following starting materials are used: compound with primary amine group and an aldehyde. Next, in the second step the resulting intermediate undergoes cyclization reaction with thiosalicylic acid. The anhydrous 1,4-dioxane or toluene [2,12] with the addition of anhydrous sodium sulfate [2] are used as reaction medium.

Basing on the above facts, in this paper I wish to report the synthesis and spectral analysis of a
new class of 1,3-benzothiazin-4-ones obtained by cyclization reaction of N -substituted 4(dimethylamino)benzhydrazides.

2. EXPERIMENTAL DETAILS

2.1 General

All reagents were purchased from Sigma-Aldrich (Munich, Germany) and Merck Co. (Darmstadt, Germany) and used without further purification. Melting points were determined in Fisher-Johns blocks (Fisher Scientific, Germany) and presented without any corrections. The IR spectra ($\mathrm{v}, \mathrm{cm}^{-1}$) were recorded in KBr tablets using a Specord IR-75 spectrophotometer (VEB Carl Zeiss, Jena, Germany). The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker Avance DPX 250 MHz apparatus (Bruker BioSpin GmbH, Germany) in DMSO- d_{6} with TMS as internal standard. The ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance DPX 250 MHz apparatus. Chemical shifts are given in ppm (δ-scale). The MS spectra were recorded on a Thermo-Finnigan Trace DSQ GC MS apparatus (Waltham, Massachusetts, USA).The purity of obtained compounds was checked by TLC on aluminium oxide 60 F254 plates (Merck Co. USA), in a $\mathrm{CHCl}_{3} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (10:1, v/v) solvent system. The spots were detected by exposure to a UV lamp at 254 nm . Elemental analyses of the obtained compounds was performed for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ on AMZ 851 CHX analyser (PG, Gdańsk, Poland). The maximum percentage differences between calculated and found values for each element were within the error and amounted to $\pm 0.4 \%$.

$$
\mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}=\text { Alkyl or Aryl }
$$

Scheme 1. Classical two step synthesis of 2,3-disubstituted 1,3-benzothiazin-4-one derivatives

2.2 Synthesis of N-substituted derivatives of 4 -(dimethylamino)benzhydrazide (1-15)

To the solution of 10 mmol of 4-(dimethylamino) benzhydrazide (1.79 g) in ethanol (10 mL) 10 mmol of appropriate aromatic aldehyde and a few drops of glacial acetic acid were added. The solution was heated under reflux for 3 hrs. After the completion of the reaction, the solution was cooled to room temperature and left at room temperature for 24 hrs . The obtained precipitate was filtered off and crystallized from ethanol.
N-[(2-chlorophenyl)methylidene]-4-
(dimethylamino)benzhydrazide
CAS Number: 199791-09-8, Yield: 28\%, M.p.: $226-228^{\circ} \mathrm{C}$, IR (KBr), v (cm^{-1}): $3050 \quad(\mathrm{CH}$ aromatic), 3010, 1451 (CH aliphatic), 1703 (C=O), 1618 (C=N), 1598 (NH), 1398 (C-N). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm})=3.01\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$, 6.75-6.79 (dd, 2H, ArH, J = 10Hz), 7.40-7.47 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.50-7.55 (m, 2H, ArH), 7.82-7.86 (dd, $2 \mathrm{H}, \mathrm{ArH}, \mathrm{J}=10 \mathrm{~Hz}$), $7.99(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 11.82(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9$ $\left(2 \mathrm{xCH}_{3}\right), 110.4,121.9,127.4,127.5,128.7$, 130.3, 130.9, 131.31, 132.8 ($11 \mathrm{C}_{\mathrm{ar}}$), 149.9 (=CH), $152.9\left(\mathrm{C}_{\mathrm{ar}}\right), 164.3(\mathrm{C}=\mathrm{O})$. Analysis for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{CIN}_{3} \mathrm{O}$ (301.77) Calculated: C: $63.68 \%, \mathrm{H}$: $5.34 \%, \mathrm{~N}: 13.92 \%$, Found: C: 63.72%, H: 5.32\%, $\mathrm{N}: 13.96 \%$.

N-[(3-chlorophenyl)methylidene]-4(dimethylamino)benzhydrazide

CAS Number: 401638-22-0, Yield: 76\%, M.p.: $238-244^{\circ} \mathrm{C}$, IR (KBr), v (cm^{-1}): $3040 \quad(\mathrm{CH}$ aromatic), 3015, $1455(\mathrm{CH}$ aliphatic), 1708 (C=O), 1614 (C=N), 1595 (N-H), 1403 (C-N). ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm})=3.00\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$, 6.75-6.78 (dd, 2H, ArH, J = 7.5Hz), 7.47-7.53 (m, 2H, ArH), 7.65-7.68 (m, 1H, ArH), 7.74-7.84 (m, $1 \mathrm{H}, \mathrm{ArH}), 7.81-7.84(\mathrm{dd}, 2 \mathrm{H}, \mathrm{ArH}, J=7.5 \mathrm{~Hz}$), 8.40 (s, 1H, =CH), 11.70 (s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 110.3,121.9$, 125.1, 127.6, 128.0, 130.2, 130.3, 134.1, 135.3 $\left(11 \mathrm{C}_{\mathrm{ar}}\right), 148.7(=\mathrm{CH}), 152.9\left(\mathrm{C}_{\mathrm{ar}}\right), 164.3(\mathrm{C}=\mathrm{O})$. Analysis for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{CIN}_{3} \mathrm{O}$ (301.77) Calculated: C: $63.68 \%, \mathrm{H}: 5.34 \%, \mathrm{~N}: 13.92 \%$, Found: C: 63.74\%, H: 5.31\%, N: 13.91\%.

N-[(4-chlorophenyl)methylidene]-4-

 (dimethylamino)benzhydrazideCAS Number: 401638-18-4, Yield: 65\%, M.p.: $212-214^{\circ} \mathrm{C}$, IR (KBr), v (cm^{-1}): $3058(\mathrm{CH}$
aromatic), 3035, 1447 (CH aliphatic), 1710 (C=O), 1622 (C=N), 1604 (N-H), 1406 (C-N). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm})=3.00\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$, 6.70-6.74 (dd, 2H, ArH, $J=10 \mathrm{~Hz}$), 7.50-7.53 (dd, $2 \mathrm{H}, \mathrm{ArH}, J=7.5 \mathrm{~Hz}$), 7.71-7.75 (dd, 2H, ArH, $J=$ 10 Hz), 7.81-7.84 (dd, $2 \mathrm{H}, \mathrm{ArH}, J=7.5 \mathrm{~Hz}$), 8.41 (s, 1H, =CH), $11.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 110.4,121.9$, 129.1, 129.4, 130.3, 134.11, 135.13 ($11 \mathrm{C}_{\mathrm{ar}}$), 149.3 (=CH), 152.9 (C_{ar}), 164.3 (C=O). Analysis for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{CIN}_{3} \mathrm{O}$ (301.77): Calculated: C : $63.68 \%, \mathrm{H}: 5.34 \%, \mathrm{~N}: 13.92 \%$, Found: C: 63.65\%, H: 5.36\%, N: 13.95\%.
$N-[(2-b r o m o p h e n y l) m e t h y l i d e n e]-4-$
(dimethylamino)benzhydrazide

Yield: 72%, M.p.: $215-218^{\circ} \mathrm{C}$, $\mathrm{IR}(\mathrm{KBr}), \mathrm{v}\left(\mathrm{cm}^{-1}\right)$: 3035 (CH aromatic), 3010, 1459 (CH aliphatic), 1715 (C=O), 1615 (C=N), 1605 (N-H), 1395 (C$\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm})=2.00(\mathrm{~s}, 6 \mathrm{H}$, $2 x \mathrm{CH}_{3}$), $5.75-5.78$ (dd, $2 \mathrm{H}, \mathrm{ArH}, J=7.5 \mathrm{~Hz}$), $6.31-$ 6.38 (m, 1H, ArH), 6.44-6.50 (m, 1H, ArH), 6.686.71 (m, 1H, ArH), 6.84-6.87 (dd, 2H, ArH, J = $7.5 \mathrm{~Hz}), 6.98-7.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.79(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CH}), 10.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) δ $(\mathrm{ppm})=41,9\left(2 \mathrm{xCH}_{3}\right), 110.4,121.9,124.6$, 127.1, 127.8, 128.0, 130.3, 132.6, 133.4 ($11 \mathrm{C}_{\text {ar }}$), 146.1 (=CH), 152.9 (C_{ar}), 164.2 ($\mathrm{C}=\mathrm{O}$). Analysis for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}$ (346.22) Calculated: C: 55.51%, H: $4.66 \%, \mathrm{~N}: 12.14 \%$, Found: C: $55.47 \%, \mathrm{H}$: 4.68\%, N: 12.11\%.

N-[(3-bromophenyl)methylidene]-4(dimethylamino)benzhydrazide

CAS Number: 525564-95-8, Yield: 77\%, M.p.: $236-238^{\circ} \mathrm{C}$, IR (KBr), v (cm^{-1}): $3041 \quad(\mathrm{CH}$ aromatic), 3022, 1449 (CH aliphatic), 1709 (C=O), 1610 (C=N), 1601 (N-H), 1401 (C-N). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm})=2.00\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$, $5.75-5.78$ (dd, 2H, ArH, J = 7.5Hz), 6.39-6.45 (m, 1H, ArH), 6.59-6.63 (m, 1H, ArH), 6.68-6.71 (m, $1 \mathrm{H}, \mathrm{ArH}$), $6.81-6.84$ (dd, $2 \mathrm{H}, \mathrm{ArH}, J=7.5 \mathrm{~Hz}$), 6.89-6.91 (m, 1H, ArH), 7.38 (s, 1H, =CH), 10.70 (s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9$ $\left(2 x \mathrm{CH}_{3}\right), 110.4,121.9,123.9,125.7,129.7$, $129.9,130.3,130.6,137.1\left(11 \mathrm{C}_{\mathrm{ar}}\right), 148.7(=\mathrm{CH})$, $152.9\left(\mathrm{C}_{\mathrm{ar}}\right)$, $164.3 \quad(\mathrm{C}=\mathrm{O})$. Analysis for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}$ (346.22) Calculated: C: $55.51 \%, \mathrm{H}:$ $4.66 \%, \mathrm{~N}: 12.14 \%$, Found: C: $55.47 \%, \mathrm{H}: 4.68 \%$, $\mathrm{N}: 12.16 \%$.
N-[(4-bromophenyl)methylidene]-4(dimethylamino)benzhydrazide

CAS Number: 330640-38-5, Yield: 77\%, M.p.: $208-210^{\circ} \mathrm{C}$, IR (KBr), v (cm^{-1}): $3052(\mathrm{CH}$
aromatic), 3015, 1454 (CH aliphatic), 1710 (C=O), 1618 (C=N), 1608 (N-H), 1408 (C-N). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm})=2.00\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$, 5.74-5.78 (dd, 2H, ArH, $J=10 \mathrm{~Hz}$), 6.23-6.26 (dd, $2 \mathrm{H}, \mathrm{ArH}, \mathrm{J}=7.5 \mathrm{~Hz}$), 6.64-6.68 (dd, 2H, ArH, J = 10 Hz), 6.81-6.84 (dd, 2H, ArH, J = 7.5 Hz), 7.40 (s, 1H, $=\mathrm{CH}$), $10.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 110.4,121.9$. 123.9, 129.3, 130.3, 132.4, 132.5 ($11 \mathrm{C}_{\mathrm{ar}}$), 149.3 (=CH), $152.6\left(\mathrm{C}_{\mathrm{ar}}\right), 164.3(\mathrm{C}=\mathrm{O})$. Analysis for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}$ (346.22): Calculated: C: $55.51 \%, \mathrm{H}:$ $4.66 \%, \mathrm{~N}: 12.14 \%$, Found: C: $55.58 \%, \mathrm{H}: 4.68 \%$, $\mathrm{N}: 12.16 \%$.

N-[(2-fluorometylidene]-4-
 (dimethylamino)benzhydrazide

CAS Number: 525565-89-3, Yield: 78\%, M.p.: $210-212^{\circ} \mathrm{C}$, IR (KBr), v (cm^{-1}): $3055(\mathrm{CH}$ aromatic), 3030, $1460(\mathrm{CH}$ aliphatic), 1715 (C=O), 1590 (C=N), 1602 (N-H), 1401 (C-N). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm})=2.00\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$, 5.75-5.78 (dd, 2H, ArH, J = 7.5Hz), 6.22-6.33 (m, 2H, ArH), 6.44-6.52 (m, 1H, ArH), 6.83-6.97 (dd, $2 \mathrm{H}, \mathrm{ArH}, J=7.5 \mathrm{~Hz}$), 6.91-6.97 (m, 1H, ArH), 7.67 (s, 1H, $=\mathrm{CH}$), $10.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 110.4,117.4$, 121.9, 124.5, 125.3, 129.4, 130.3, 130.8 ($10 \mathrm{C}_{\mathrm{ar}}$), 149.3 (=CH), 152.9, 160.4 ($2 \mathrm{C}_{\mathrm{ar}}$), 164.3 ($\mathrm{C}=\mathrm{O}$). Analysis for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}$ (285.32) Calculated C: $67.35 \%, \mathrm{H}: 5.65 \%, \mathrm{~N}: 14.73 \%$, Found: C: 67.38\%, H: 5.63\%, N: 14.76\%.

N-[(3-fluorometylidene]-4(dimethylamino)benzhydrazide

CAS Number: 525565-82-6, Yield: 84\%, M.p.: $252-254^{\circ} \mathrm{C}$, IR (KBr), v (cm^{-1}): $3068(\mathrm{CH}$ aromatic), 3024, 1451 (CH aliphatic), 1705 (C=O), 1604 (C=N), 1598 (N-H), 1393 (C-N). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm})=2.00\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$, 5.75-5.78 (dd, 2H, ArH, J = 7.5Hz), 6.22-6.30 (m, 1H, ArH), 6.46-6.56 (m, 3H, ArH), 6.81-6.84 (dd, $2 \mathrm{H}, \mathrm{ArH}, J=7.5 \mathrm{~Hz}), 7.43(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 10.67(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9$ $\left(2 \mathrm{xCH}_{3}\right), 110.4,114.2,116.9,121.9,138.6$ $\left(10 \mathrm{C}_{\mathrm{ar}}\right), 148.7$ (=CH), 152.9, $162.7\left(2 \mathrm{C}_{\mathrm{ar}}\right), 164.3$ (C=O). Analysis for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O} \quad$ (285.32) Calculated: C: 67.35% H: $5.65 \%, \mathrm{~N}: 14.73 \%$, Found: C: $67.41 \%, \mathrm{H}: 5.67 \%, \mathrm{~N}: 14.70 \%$.

> N -[(4-fluorometylidene]-4-
> (dimethylamino)benzhydrazide

CAS Number: 525561-74-4, Yield: 72\%, M.p.: $210-212^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right): 3045(\mathrm{CH}$ aromatic), 3022, $1455(\mathrm{CH}$ aliphatic), 1711 (C=O), 1612 (C=N), 1591 (N-H), 1395 (C-N). ${ }^{1} \mathrm{H}$

NMR (DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm})=2.00\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$, 5.74-5.78 (dd, 2H, ArH, J = 10Hz), 6.26-6.32 (m, 2H, ArH), 6.74-6.79 (m, 2H, ArH), 6.80-6.84 (dd, $2 \mathrm{H}, \mathrm{ArH}, J=10 \mathrm{~Hz}), 7.42(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 10.57(\mathrm{~s}$, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9$ $\left(2 \mathrm{xCH}_{3}\right), 110.4,115.5,121.9,130.3,130.4$, $130.8\left(10 \mathrm{C}_{\mathrm{ar}}\right)$, $149.4(=\mathrm{CH}), 152.9,161.3\left(2 \mathrm{C}_{\mathrm{ar}}\right)$, 164.3 ($\mathrm{C}=\mathrm{O}$). Analysis for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}$ (285.32) Calculated: C: $67.35 \%, \mathrm{H}: 5.65 \%, \mathrm{~N}: 14.73 \%$, Found: C: 67.39\%, H: 5.62\%, N: 14.76\%.
N-[(2-chloro-6-fluorophenyl)methylidene]-4-
(dimethylamino)benzhydrazide

CAS Number: 419554-24-8, Yield: 68\%, M.p.: $230-233^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right): 3090(\mathrm{CH}$ aromatic), 3052, 1451 (CH aliphatic), 1703 (C=O), 1639 (C=N), 1612 (N-H), 1405 (C-N). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta(\mathrm{ppm})=2.00\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$, 5.74-5.78 (dd, $2 \mathrm{H}, \mathrm{ArH}, J=10 \mathrm{~Hz}$), 6.29-6.37 (m, 1H, ArH), 6.43-6.51 (m, 2H, ArH), 6.83-6.87 (dd, $2 \mathrm{H}, \mathrm{ArH}, J=10 \mathrm{~Hz}$), 7.66 (s, 1H, $=\mathrm{CH}$), 10.78 (s, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9$ $\left(2 \mathrm{xCH}_{3}\right), 110.4,116.5,121.9,125.9,126.8$, 130.3, 131.2, 135.3 ($10 \mathrm{C}_{\mathrm{ar}}$), 139.9 (=CH), 152.9, $160.1\left(2 \mathrm{C}_{\mathrm{ar}}\right)$, $164.3 \quad(\mathrm{C}=\mathrm{O})$. Analysis for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{CIFN}_{3} \mathrm{O}$ (319.76) Calculated: C: 60.10%, H: $4.73 \%, \mathrm{~N}: 13.14 \%$, Found: C: $60.14 \%, \mathrm{H}$: 4.70\%, N: 13.16\%.
N-[(3-bromo-4-methoxyphenyl)methylidene]-4(dimethylamino)benzhydrazide

Yield: 81%, M.p.: $222-224^{\circ} \mathrm{C}$, $\mathrm{IR}(\mathrm{KBr}), \mathrm{v}\left(\mathrm{cm}^{-1}\right)$: 3085 (CH aromatic), 3066, 1457 (CH aliphatic), 1709 (C=O), 1638 (C=N), 1618 (N-H), 1411 (C$\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm})=2.00(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{xCH}_{3}$), 2.90 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 5.74-5.78 (dd, 2 H , ArH, $J=10 \mathrm{~Hz}$), 6.18-6.21 (m, 1H, ArH), 6.65$6.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.79-6.83$ (dd, $2 \mathrm{H}, \mathrm{ArH}, \mathrm{J}=$ 10 Hz), 6.91-6.94 (m, 1H, ArH), 7.34 (s, 1H, $=\mathrm{CH}), 10.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) δ $(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 56.8\left(\mathrm{CH}_{3}\right), 110.4,114.3$, 121.9, 126.9, 129.1, 130.3, 132.3 ($10 \mathrm{C}_{\mathrm{ar}}$), 148.7 $(=\mathrm{CH}), \quad 152.9, \quad 157.2 \quad\left(2 \mathrm{C}_{\mathrm{ar}}\right), \quad 164.2 \quad(\mathrm{C}=\mathrm{O})$. Analysis for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{2}$ (376.25) Calculated: C: $54.27 \%, \mathrm{H}: 4.82 \%, \mathrm{~N}: 11.17 \%$, Found: C: $54.31 \%, \mathrm{H}: 4.80 \%, \mathrm{~N}: 11.19 \%$.

$$
\begin{aligned}
& N \text {-[(3-bromo-4-hydroxyphenyl)methylidene]-4- } \\
& \text { (dimethylamino)benzhydrazide }
\end{aligned}
$$

Yield: 74%, M.p.: $252-254^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right)$: 3590 (O-H), 3038 (CH aromatic), 3011, 1456 (CH aliphatic), 1703 ($\mathrm{C}=\mathrm{O}$), 1629 ($\mathrm{C}=\mathrm{N}$), 1601 ($\mathrm{N}-\mathrm{H}$), 1398 (C-N). ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm})$ $=1.99\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right), 5.73-5.77(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}, \mathrm{J}=$ $10 \mathrm{~Hz})$, 6.00-6.03 (m, 1H, ArH), 6.52-6.55 (m, 1H,

ArH), 6.79-6.83 (m, 3H, ArH), 7.29 (s, 1H, =CH), 9.76 (s, 1H, OH), 10.49 (s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 109.9,110.4$, 116.3, 121.9, 127.2, 128.4, 130.3, 130.4 (10C $\mathrm{ara}^{\text {) }}$, 148.7 (=CH), 152.9, 153.7 ($2 \mathrm{C}_{\mathrm{ar}}$), 164.3 ($\mathrm{C}=\mathrm{O}$). Analysis for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{2}$ (362.22) Calculated: C: $53.05 \%, \mathrm{H}: 4.45 \%, \mathrm{~N}: 11.60 \%$, Found: C: $53.09 \%, \mathrm{H}: 4.43 \%, \mathrm{~N}: 11.61 \%$.

N-[(5-bromo-2-hydroxyphenyl)methylidene]-4(dimethylamino)benzhydrazide

CAS Number: 360057-88-1, Yield: 83\%, M.p.: $246-248^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right): 3602(\mathrm{O}-\mathrm{H}), 3070$ CH aromatic), 3026, 1458 (CH aliphatic), 1722 (C=O), 1611 (C=N), 1606 (N-H), 1407 (C-N). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta(\mathrm{ppm})=2.00\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$, $5.75-5.78$ (dd, 2H, ArH, J = 7.5Hz), 5.88-5.92 (m, 1H, ArH), 6.39-6.43 (m, 1H, ArH), 6.74-6.77 (m, $1 \mathrm{H}, \mathrm{ArH}), 6.82-6.85(\mathrm{dd}, 2 \mathrm{H}, \mathrm{ArH}, J=7.5 \mathrm{~Hz})$, $7.56(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 10.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 10.94(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9$ $\left(2 x_{C H}^{3}\right), 110.4, ~ 114.6, ~ 118.9, ~ 119.3, ~ 121.9, ~$ $130.3,130.4\left(10 \mathrm{C}_{\mathrm{ar}}\right), 149.6$ (=CH), 152.9, 156.3 $\left(2 \mathrm{C}_{\mathrm{ar}}\right), 164.3$ (C=O). Analysis for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{2}$ (362.22) Calculated: C: $53.05 \%, \mathrm{H}: 4.45 \%, \mathrm{~N}$: 11.60\%, Found: C: 53.09\%, H: 4.47\%, N: 11.64\%.

N -[(2-bromo-3-fluorophenyl)methylidene]-4-
(dimethylamino)benzhydrazide (14)
Yield: 65%, M.p.: $216-218^{\circ} \mathrm{C}$, $\mathrm{IR}(\mathrm{KBr})$, v $\left(\mathrm{cm}^{-1}\right)$: 3079 (CH aromatic), 3050, 1448 (CH aliphatic), 1714 (C=O), 1625 (C=N), 1593 (N-H), 1403 (C$\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm})=2.01(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{xCH}_{3}$), 5.75-5.79 (dd, $2 \mathrm{H}, \mathrm{ArH}, J=10 \mathrm{~Hz}$), 6.236.31 (m, 1H, ArH), 6.66-6.78 (m, 2H, ArH), 6.836.87 (dd, 2H, ArH, J=10Hz), 7.75 (s, 1H, =CH), $10.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=$ $41.9\left(2 \mathrm{xCH}_{3}\right), 110.4,113.8,116.2,121.9,122.3$, $127.8,130.3,137.6$ ($10 \mathrm{C}_{\text {ar }}$), 144.9 (=CH), 152.9, $160.8\left(2 \mathrm{C}_{\mathrm{ar}}\right)$, $164.1 \quad(\mathrm{C}=\mathrm{O})$. Analysis for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrFN}_{3} \mathrm{O}$ (364.21) Calculated: C: 52.76%, H: 4.15%, N: 11.54%, Found: C: $52.78 \%, \mathrm{H}$: 4.11\%, N: 11.57\%.
N-[(3-chloro-4-methoxyphenyl)methylidene]-4-(dimethylamino)benzhydrazide

Yield: 71%, M.p.: $224-226^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right)$: 3015 (CH aromatic), 2995, 1455 (CH aliphatic), 1711 (C=O), 1615 (C=N), 1606 (N-H), 1398 (C$\mathrm{N})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm})=2.00(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{xCH}_{3}$), 2.91 (s, 3H, CH3), 5.74-5.77 (d, 2H, ArH , $J=7.5 \mathrm{~Hz}), 6.22-6.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.63-6.66(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ArH}), 6.78-6.83(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.34(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CH}$), 10.56 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}$ NMR (DMSO) δ
$(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 56.8\left(\mathrm{CH}_{3}\right), 110.4,115.5$, 121.9, 123.3, 125.5, 127.45, 130.3, 130.7 $\left(10 \mathrm{C}_{\mathrm{ar}}\right), 148.7$ (=CH), 152.9, $156.2\left(2 \mathrm{C}_{\mathrm{ar}}\right), 164.3$ (C=O). Analysis for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{2} \quad$ (331.80) Calculated: C: 61.54\%, H: $5.47 \%, \mathrm{~N}: 12.66 \%$, Found: C: 61.57\%, H: 5.49\%, N: 12.64\%.

2.3 Synthesis of 2,3-disubstituted 1,3-benzothiazin-4-one derivatives (16-30)

To a solution of N-substituted derivatives of 4(dimethylamino)benzhydrazide 1-15 (10 mmol) in 15 mL of 1,4 -dioxane, thiosalicylic acid (1.54g, 10 mmol) was added. The mixture was stirred under reflux for 6 hrs at $130^{\circ} \mathrm{C}$. After the completion of the reaction, the solution was cooled to room temperature and left at room temperature for 24 hrs. Then the solvent was removed under reduced pressure. After that 15 mL of 10% water solution of sodium bicarbonate was added. The precipitate was filtered off and purified by recrystallization from ethanol.

> N -[2-(2-chlorophenyl)-4-oxo-2H-1,3benzothiazin-3(4H)-yl]-4(dimethylamino)benzamide

Yield: 31%, M.p.: $172-174^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right)$: 3080 (CH aromatic), 3055, 1452 (CH aliphatic), 1715 (C=O), 1595 (N-H), 1390 (C-N), 654 (C-S). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm})=2.88(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{xCH}_{3}$), 6.27 (s, 1H, CH), 6.75-6.79 (dd, 2H, ArH, $J=10 \mathrm{~Hz}$), 7.12-7.15 (m, 3H, ArH), 7.187.21 (m, 1H, ArH), 7.32-7.37 (m, 3H, ArH), 7.687.72 (dd, 2H, ArH, $J=10 \mathrm{~Hz}$), 7.82-7.83 (m, 1H, ArH), 9.81 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}$ NMR (DMSO) δ $(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 53.2(\mathrm{CH}), 110.4,121.9$, 127.1, 127.7, 127.9, 129.2, 129.4, 129.9, 130.3, 130.4, 131.7, 132.6, 134.8, 136.8, 139.7152 .9 ($18 \mathrm{C}_{\mathrm{ar}}$), 162.3 (C=O), 163.9 (C=O). Analysis for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{CIN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (437.94) Calculated: C: 63.08\%, H: $4.60 \%, \mathrm{~N}: 9.59 \%$, Found: C: $63.11 \%, \mathrm{H}:$ 4.62\%, N: 9.54\%.

N -[2-(3-chlorophenyl)-4-oxo-2H-1,3-
benzothiazin-3(4H)-yl]-4-
(dimethylamino)benzamide
(17)

Yield: 28%, M.p.: $164-166^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right)$: 3065 (CH aromatic), 3048, 1445 (CH aliphatic), 1718 (C=O), 1602 (N-H), 1408 (C-N), 648 (C-S). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm})=2.89(\mathrm{~s}, 6 \mathrm{H}$, $2 x \mathrm{CH}_{3}$), 6.28 (s, 1H, CH), 6.76-6.80 (dd, 2 H , ArH, $J=10 \mathrm{~Hz}$), 7.12-7.23 (m, 4H, ArH), 7.357.37 (m, 2H, ArH), 7.46-7.47 (m, 1H, ArH), 7.677.71 (dd, 2H, ArH, $J=10 \mathrm{~Hz}$), 7.80-7.81 (m, 1H, ArH), $9.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) δ $(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 56.1(\mathrm{CH}), 110.4,121.9$,
128.6, 128.7, 129.4, 130.3, 130.4, 134.3, 134.8, 136.8, 141.7, 152.9 ($18 \mathrm{C}_{\mathrm{ar}}$), 162.3 (C=O), 163.9 (C=O). Analysis for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (437.94) Calculated: C: $63.08 \%, \mathrm{H}: 4.60 \%, \mathrm{~N}: 9.59 \%$, Found: C: 63.07\%, H: 4.58\%, N: 9.62\%.

> N -[2-(4-chlorophenyl)-4-oxo-2H-1,3benzothiazin-3(4H)-yl]-4(dimethylamino)benzamide

Yield: 42%, M.p.: $175-177^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right)$: 3056 (CH aromatic), 3039, 1458 (CH aliphatic), 1709 (C=O), 1611 (N-H), 1410 (C-N), 651 (C-S). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm})=2.90(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{xCH}_{3}$), 6.27 (s, 1H, CH), 6.74-6.78 (dd, 2 H , ArH, $J=10 \mathrm{~Hz}$), 7.18-7.19 (m, 1H, ArH), 7.247.27 (dd, $2 \mathrm{H}, \mathrm{ArH}, J=7.5 \mathrm{~Hz}$), 7.30-7.33 (dd, 2 H , ArH, $J=10 \mathrm{~Hz}$), 7.38-7.40 (m, 2H, ArH), 7.687.72 (dd, 2H, ArH, $J=10 \mathrm{~Hz}$), 7.82-7.84 (m, 1H, ArH), 9.61 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}$ NMR (DMSO) δ $(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 54.9(\mathrm{CH}), 110.4,121.9$, 127.1, 129.2, 129.4, 129.5, 129.6, 130.3, 130.4, 133.7, 134.8, 136.8, 138.9, $152.9\left(18 \mathrm{C}_{\mathrm{ar}}\right), 162.3$ (C=O), $163.9(\mathrm{C}=\mathrm{O})$. Analysis for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (437.94) Calculated: C: 63.08\%, H: 4.60\%, N: 9.59\%, Found: C: $63.11 \%, \mathrm{H}: 4.63 \%, \mathrm{~N}: 9.57 \%$.

N -[2-(2-bromophenyl)-4-oxo-2H-1,3-benzothiazin-3(4H)-yl]-4-
(dimethylamino)benzamide
Yield: 26%, M.p.: $188-190^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right)$: 3076 (CH aromatic), 3042, 1448 (CH aliphatic), 1718 (C=O), 1620 (N-H), 1401 (C-N), 656 (C-S). ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}\right) \delta(\mathrm{ppm})=2.90(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 x \mathrm{CH}_{3}\right), 6.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.74-6.78$ (dd, 2H, ArH, $J=10 \mathrm{~Hz}$), 7.10-7.11 (m, 2H, ArH), 7.18$7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.37-7.39$ (m, 2H, ArH), 7.487.49 (m, 1H, ArH), 7.67-7.71 (dd, 2H, ArH, J = $10 \mathrm{~Hz}), 7.81-7.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 9.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 53.5$ $(\mathrm{CH}), 110.4,121.9,124.3,127.1,127.7,129.2$, 129.4, 130.1, 130.3, 130.4, 131.4, 134.8, 136.8, 138.7, 152.9 ($18 \mathrm{C}_{\mathrm{ar}}$), 162.3 ($\mathrm{C}=\mathrm{O}$), 163.9 ($\mathrm{C}=\mathrm{O}$). Analysis for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (482.39) Calculated: C: $57.27 \%, \mathrm{H}: 4.18 \%, \mathrm{~N}: 8.71 \%$, Found: C: $57.29 \%, \mathrm{H}: 4.20 \%, \mathrm{~N}: 8.74 \%$.

N-[2-(3-bromophenyl)-4-oxo-2H-1,3-benzothiazin-3(4H)-yl]-4-
(dimethylamino)benzamide
(20)

Yield: 54%, M.p.: $155-157^{\circ} \mathrm{C}, \mathrm{IR}(\mathrm{KBr}), \mathrm{v}\left(\mathrm{cm}^{-1}\right)$: 3052 (CH aromatic), 3038, 1455 (CH aliphatic), 1711 (C=O), 1615 (N-H), 1406 (C-N), 645 (C-S). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm})=2.88(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{XCH}_{3}$), 6.28 (s, $1 \mathrm{H}, \mathrm{CH}$), 6.73-6.77 (dd, 2 H ,

ArH, $J=10 H z$), 7.16-7.19 (m, 3H, ArH), 7.357.38 (m, 3H, ArH), 7.62-7.63 (m, 1H, ArH), 7.667.70 (dd, 2H, ArH, J = 10Hz), 7.80-7.81 (m, 1H, $\mathrm{ArH}), 9.61$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}$ NMR (DMSO) δ $(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 56.1(\mathrm{CH}), 110.4,121.9$, 123.4, 127.4, 129.4, 129.7, 130.3, 130.4, 130.9, 132.8, 141.9, 152.9 ($18 \mathrm{C}_{\mathrm{ar}}$), 162.3 ($\mathrm{C}=\mathrm{O}$), 163.9 (C=O). Analysis for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (482.39) Calculated: C: $57.27 \%, \mathrm{H}: 4.18 \%, \mathrm{~N}: 8.71 \%$, Found: C: 57.26\%, H: 4.16\%, N: 8.74\%.

> N -[2-(4-bromophenyl)-4-oxo-2H-1,3benzothiazin-3(4H)-yl]-4(dimethylamino)benzamide

Yield: 63%, M.p.: $156-158^{\circ} \mathrm{C}$, $\mathrm{IR}(\mathrm{KBr}), \mathrm{v}\left(\mathrm{cm}^{-1}\right)$: 3078 (CH aromatic), 3042, 1457 (CH aliphatic), 1709 (C=O), 1608 (N-H), 1412 (C-N), 651 (C-S). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm})=2.90(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{xCH}_{3}$), 6.29 (s, 1H, CH), 6.72-6.76 (dd, 2H, ArH, $J=10 \mathrm{~Hz}$), 7.18-7.21 (m, 3H, ArH), 7.357.37 (m, 2H, ArH), 7.46-7.48 (m, 2H, ArH), 7.677.71 (dd, $2 \mathrm{H}, \mathrm{ArH}, J=10 \mathrm{~Hz}$), 7.80-7.81 (m, 1H, ArH), $9.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) δ $(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 54.9(\mathrm{CH}), 110.4,121.9$, 122.3, 127.1, 129.2, 129.4, 130.3, 130.4, 130.9, 132.5, 134.8, 136.8, 139.5, 152.9 (18Car), 162.3 (C=O), 163.9 ($\mathrm{C}=\mathrm{O}$). MS m/z (\%): 482 ($\mathrm{M}^{+}, 0.55$). Analysis for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (482.39) Calculated: C: $57.27 \%, \mathrm{H}: 4.18 \%, \mathrm{~N}: 8.71 \%$, Found: C: $57.31 \%, \mathrm{H}: 4.16 \%, \mathrm{~N}: 8.73 \%$.

N -[2-(2-fluorophenyl)-4-oxo-2H-1,3-benzothiazin-3(4H)-yl]-4-(dimethylamino)benzamide

Yield: 32%, M.p.: $122-124^{\circ} \mathrm{C}$, $\mathrm{IR}(\mathrm{KBr}), \mathrm{v}\left(\mathrm{cm}^{-1}\right)$: 3068 (CH aromatic), 3042, 1458 (CH aliphatic), 1710 ($\mathrm{C}=\mathrm{O}$), 1605 ($\mathrm{N}-\mathrm{H}$), 1402 (C-N), 642 (C-S). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm})=2.87(\mathrm{~s}, 6 \mathrm{H}$, $2 x \mathrm{CH}_{3}$), 6.27 (s, 1H, CH), 6.75-6.79 (dd, 2H, ArH, $J=10 \mathrm{~Hz}$), 7.01-7.04 (m, 2H, ArH), 7.137.15 (m, 1H, ArH), 7.18-7.20 (m, 2H, ArH), 7.367.39 (m, 2H, ArH), 7.68-7.72 (dd, 2H, ArH, J = 10 Hz), 7.81-7.82 (m, 1H, ArH), 9.58 (s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 53.3$ (CH), 110.4, 117.7, 121.9, 127.1, 129.1, 129.2, 129.4, 130.3, 130.4, 134.8, 136.8, 152.9, 150.2 ($18 \mathrm{C}_{\mathrm{ar}}$), 162.3 (C=O), 163.9 (C=O). Analysis for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (421.49) Calculated: C: 65.54\%, H: $4.78 \%, \mathrm{~N}: 9.97 \%$, Found: C: $65.57 \%, \mathrm{H}$: 4.75\%, N: 9.98\%.

N -[2-(3-fluorophenyl)-4-oxo-2H-1,3-benzothiazin-3(4H)-yl]-4-(dimethylamino)benzamide (23)

Yield: 41%, M.p.: $120-122^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right)$: 3055 (CH aromatic), 3032, 1456 (CH aliphatic),

1714 (C=O), 1611 (N-H), 1395 (C-N), 651 (C-S). ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}\right) \delta(\mathrm{ppm})=2.88(\mathrm{~s}, 6 \mathrm{H}$, $2 x \mathrm{CH}_{3}$), $6.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.74-6.78$ (dd, 2H, ArH $J=10 \mathrm{~Hz})$, 6.95-6.99 (m, 2H, ArH), 7.17-7.18 (m, 2H, ArH), 7.25-7.27 (m, 1H, ArH), 7.37-7.30 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.67-7.71 (dd, 2H, ArH, J = 10Hz), 7.82-7.83 (m, 1H, ArH), 9.67 (s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 56.1$ (CH), 110.4, 111.4, 115.7, 121.9, 123.4, 127.1, 129.4, 130.3, 130.4, 134.8, 136.8, 140.5, 152.9 $\left(17 \mathrm{C}_{\mathrm{ar}}\right), 162.3(\mathrm{C}=\mathrm{O}), 162.7\left(\mathrm{C}_{\mathrm{ar}}\right), 163.9(\mathrm{C}=\mathrm{O})$. Analysis for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (421.49) Calculated: C: 65.54\%, H: 4.78\%, N: 9.97\%, Found: C: 65.58\%, H: 4.81\%, N: 9.95\%.

N -[2-(4-fluorophenyl)-4-oxo-2H-1,3-benzothiazin$3(4 \mathrm{H})$-yll-4-(dimethylamino)benzamide

Yield: 47%, M.p.: $114-116^{\circ} \mathrm{C}, \mathrm{IR}(\mathrm{KBr})$, v $\left(\mathrm{cm}^{-1}\right)$: 3048 (CH aromatic), 3040, 1451 (CH aliphatic), 1719 (C=O), 1620 (N-H), 1390 (C-N), 656 (C-S). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm})=2.89(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{xCH}_{3}$), 6.31 (s, $1 \mathrm{H}, \mathrm{CH}$), 6.73-6.77 (dd, 2 H , ArH, $J=10 \mathrm{~Hz}$), 7.02-7.04 (m, 2H, ArH), 7.187.20 (m, 2H, ArH), 7.28-7.29 (m, 1H, ArH), 7.37$7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.67-7.71$ (dd, $2 \mathrm{H}, \mathrm{ArH}, \mathrm{J}=$ $10 \mathrm{~Hz}), 7.81-7.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 9.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 54.9$ (CH), 110.4, 115.9, 121.9, 127.1, 129.2, 129.4, $130.3,130.4,134.8,136.2,136.8,152.9$ ($17 \mathrm{C}_{\mathrm{ar}}$), 162.3 ($\mathrm{C}=\mathrm{O}$), 163.9 (C_{ar}), 166.5 ($\mathrm{C}=\mathrm{O}$). $\mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%): $421\left(\mathrm{M}^{+}, 0.74\right)$. Analysis for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (421.49) Calculated: C: $65.54 \%, \mathrm{H}: 4.78 \%, \mathrm{~N}$: 9.97\%, Found: C: 65.57%, H: 4.76%, N: 9.96%.

N -[2-(2-chloro-6-fluorophenyl)-4-oxo-2H-1,3-benzothiazin-3(4H)-yl]-4-(dimethylamino) benzamide

Yield: 24%, M.p.: $150-152^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right)$: $3089(\mathrm{CH}$ aromatic), 3065, 1456 (CH aliphatic), 1713 (C=O), 1605 (N-H), 1412 (C-N), 653 (C-S). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm})=2.90(\mathrm{~s}, 6 \mathrm{H}$, $2 x \mathrm{CH}_{3}$), 6.27 (s, 1H, CH), 6.75-6.79 (dd, 2H, ArH, $J=10 \mathrm{~Hz}$), 6.94-6.95 (m, 1H, ArH), 7.057.07 (m, 1H, ArH), 7.14-7.16 (m, 1H, ArH), 7.187.19 (m, 1H, ArH), 7.37-7.40 (m, 2H, ArH), 7.667.70 (dd, 2H, ArH, J = 10Hz), 7.80-7.82 (m, 1H, $\mathrm{ArH}), 9.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) δ $(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 49.0(\mathrm{CH}), 110.4,117.2$, 121.9, 127.1, 129.2, 129.4, 130.3, 130.4, 134.8, 135.22, 136.8, 152.93, 159.64 ($18 \mathrm{C}_{\mathrm{ar}}$), 162.3 ($\mathrm{C}=\mathrm{O}$), $163.9 \quad(\mathrm{C}=\mathrm{O})$. Analysis for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{CIFN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (455.93) Calculated: C: 60.59%, H: 4.20\%, N: 9.22\%, Found: C: 60.64\%, H: 4.22\%, N: 9.24\%.

N -[2-(3-bromo-4-methoxyphenyl)-4-oxo-2H-1,3-benzothiazin-3(4H)-yl]-4(dimethylamino)benzamide
Yield: 43%, M.p.: $186-188^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right)$: 3038 (CH aromatic), 3010, 1459 (CH aliphatic), 1719 (C=O), 1613 (NH), 1411 (C-N), 654 (C-S). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm})=2.90(\mathrm{~s}, 6 \mathrm{H}$, $2 x^{2} \mathrm{CH}_{3}$), 3.77 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 6.30 (s, $1 \mathrm{H}, \mathrm{CH}$), 6.74-6.78 (dd, $2 \mathrm{H}, \mathrm{ArH}, J=10 \mathrm{~Hz}$), 6.82-6.84 (m, 1H, ArH), 7.18-7.20 (m, 1H, ArH), 7.29-7.31 (m, 2H, ArH), 7.37-7.43 (m, 2H, ArH), 7.67-7.71 (dd, $2 \mathrm{H}, \mathrm{ArH}, J=10 \mathrm{~Hz}$), 7.81-7.83 (m, 1H, ArH), 9.62 $(\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9$ $\left(2 \mathrm{xCH}_{3}\right), 56.1(\mathrm{CH}), 56.8\left(\mathrm{CH}_{3}\right), 110.4,111.6$, 114.8, 121.9, 126.8, 127.1, 129.2, 129.4, 130.3, $130.4,134.8,138.5,152.9,160.2$ ($18 \mathrm{C}_{\mathrm{ar}}$), 162.3 (C=O), 163.9 (C=O). Analysis for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}$ (512.42) Calculated: C: $56.25 \%, \mathrm{H}: 4.33 \%, \mathrm{~N}$: 8.20\%, Found: C: 56.27%, H: 4.31%, N: 8.22\%.

N-[2-(3-bromo-4-hydroxyphenyl)-4-oxo-2H-1,3-benzothiazin-3(4H)-yl]-4(dimethylamino)benzamide

Yield: 48%, M.p.: $136-138^{\circ} \mathrm{C}$, IR $(\mathrm{KBr}), \mathrm{v}\left(\mathrm{cm}^{-1}\right)$: 3611 (O-H), 3058 (CH aromatic), 3015, 1462 (CH aliphatic), 1719 (C=O), 1614 (NH), 1409 (C-N), 649 (C-S). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm})=2.91$ (s, $6 \mathrm{H}, 2 \mathrm{xCH}_{3}$), $6.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.69-6.70(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ArH}$), 6.74-6.78 (dd, $2 \mathrm{H}, \mathrm{ArH}, \mathrm{J}=10 \mathrm{~Hz}$), 7.15-7.18 (m, 2H, ArH), 7.30-7.32 (m, 1H, ArH), 7.37-7.39 (m, 2H, ArH), 7.67-7.71 (dd, 2H, ArH, J $=10 \mathrm{~Hz}), 7.81-7.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.16(\mathrm{~s}, 1 \mathrm{H}$, OH), $9.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})$ $=41.9\left(2 \mathrm{xCH}_{3}\right), 56.1(\mathrm{CH}), 110.1,110.4,116.2$, 121.9, 127.6, 129.4, 130.3, 130.4, 133.9, 134.8, 136.8, 137.5, 152.9, 155.2 ($18 \mathrm{C}_{\mathrm{ar}}$), 162.3 ($\mathrm{C}=\mathrm{O}$), 163.9 (C=O). Analysis for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}$ (498.39) Calculated: C: $55.43 \%, \mathrm{H}: 4.04 \%, \mathrm{~N}$: 8.43\%, Found: C: $55.46 \%, \mathrm{H}: 4.03 \%$, N: 8.46%.

N -[2-(5-bromo-2-hydroxyphenyl)-4-oxo-2H-1,3-benzothiazin-3(4H)-yl]-4-(dimethylamino) benzamide

Yield: 34%, M.p.: $110-112^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right)$: 3608 (O-H), 3089 (CH aromatic), 3014, 1456 (CH aliphatic), 1711 (C=O), 1614 ($\mathrm{N}-\mathrm{H}$), 1403 (C$\mathrm{N}), 645$ (C-S). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm})=$ 2.92 (s, 6H, $2 \mathrm{xCH}_{3}$), 6.29 (s, 1H, CH), 6.67-6.68 (m, 1H, ArH), 6.75-6.79 (dd, 2H, ArH, $J=10 \mathrm{~Hz}$), 7.18-7.20 (m, 1H, ArH), 7.23-7.24 (m, 1H, ArH), 7.27-7.29 (m, 1H, ArH), 7.36-7.39 (m, 2H, ArH), 7.64-7.68 (dd, 2H, ArH), 7.81-7.83 (m, 1H, ArH), 8.26 (s, 1H, OH), 9.80 (s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR $(\mathrm{DMSO}) \delta(\mathrm{ppm})=41.9\left(2 \times \mathrm{CH}_{3}\right), 51.2(\mathrm{CH})$, 110.4, 112.4, 120.0, 121.9, 127.1, 127.7, 129.2,
129.4, 130.3, 130.4, 130.8. 131.6, 134.8, 136.8, 149.5, 152.9 ($18 \mathrm{C}_{\mathrm{ar}}$), 162.3 ($\mathrm{C}=\mathrm{O}$), 163.9 ($\mathrm{C}=\mathrm{O}$). Analysis for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}$ (498.39) Calculated: $\mathrm{C}: 55.43 \%, \mathrm{H}: 4.04 \%, \mathrm{~N}: 8.43 \%$, Found: C: $55.42 \%, \mathrm{H}: 4.05 \%, \mathrm{~N}: 8.45 \%$.
N-[2-(2-bromo-3-fluorophenyl)-4-oxo-2H-1,3-
benzothiazin-3(4H)-yl]-4-
(dimethylamino)benzamide
Yield: 39%, M.p.: $176-178^{\circ} \mathrm{C}$, IR (KBr), v $\left(\mathrm{cm}^{-1}\right)$: 3085 (CH aromatic), 3055, 1458 (CH aliphatic), 1714 (C=O), 1602 (N-H), 1413 (C-N), 654 (C-S). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm})=2.88(\mathrm{~s}, 6 \mathrm{H}$, $2 x \mathrm{CH}_{3}$), 6.32 (s, 1H, CH), 6.75-6.79 (dd, 2H, ArH, $J=10 \mathrm{~Hz}$), 6.85-6.88 (m, 2H, ArH), 7.177.19 (m, 2H, ArH), 7.36-7.37 (m, 2H, ArH), 7.687.72 (dd, 2H, ArH, J = 10Hz), 7.82-7.84 (m, 1H, ArH), 9.61 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}$ NMR (DMSO) δ $(\mathrm{ppm})=41.9\left(2 \mathrm{xCH}_{3}\right), 54.8(\mathrm{CH}), 108.4,110.4$, 119.6, 121.9, 127.1, 129.2, 129.4, 130.3, 130.4, 134.8, 135.9, 136.8, 152.9 ($17 \mathrm{C}_{\text {ar }}$), 162.3 (C=O), $162.8\left(\mathrm{C}_{\mathrm{ar}}\right)$, $163.9 \quad(\mathrm{C}=\mathrm{O})$. Analysis for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrFN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (500.38) Calculated: C: 55.21%, H: 3.83\%, N: 8.40\%, Found: C: 55.23\%, H: 3.85\%, N: 8.41\%.

N -[2-(3-chloro-4-methoxyphenyl)-4-oxo-2H-1,3-benzothiazine-3(4H)-yl]-4-(dimethylamino) benzamide

Yield: 54%, M.p.: $105-107^{\circ} \mathrm{C}, \mathrm{IR}(\mathrm{KBr}), \mathrm{v}\left(\mathrm{cm}^{-1}\right)$: 3078 (CH aromatic), 3038, 1448 (CH aliphatic), 1721 (C=O), 1613 (N-H), 1415 (C-N), 649 (C-S). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm})=2.90(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{xCH}_{3}$), 3.68 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 6.34 (s, $1 \mathrm{H}, \mathrm{CH}$), 6.74-6.78 (dd, 2H, ArH, $J=10 \mathrm{~Hz}$), 6.86-6.89 (m, 1H, ArH), 7.18-7.20 (m, 1H, ArH), 7.24-7.27 (m, 2H, ArH), 7.37-7.40 (m, 2H, ArH), 7.67-7.71 (dd, $2 \mathrm{H}, \mathrm{ArH}, J=10 \mathrm{~Hz}$), 7.81-7.82 (m, 1H, ArH), 9.63 (s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO) $\delta(\mathrm{ppm})=41.9$ $\left(2 \mathrm{xCH}_{3}\right), 56.1(\mathrm{CH}), 56.8\left(\mathrm{CH}_{3}\right), 110.4,111.4$, 121.9, 123.22, 126.2, 127.1, 129.2, 129.4, 130.3, 134.4, 134.6, 134.8, 136.8, 152.9, 156.3 (18C C_{ar}), 162.3 (C=O), 163.9 (C=O). MS m/z (\%): 467 (M ${ }^{+}$, 0.95). Analysis for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{CIN}_{3} \mathrm{O}_{3} \mathrm{~S}$ (467.94) Calculated: C: 61.60\%, H: 4.74\%, N: 8.98\%, Found: C: 61.62\%, H: 4.76\%, N: 8.96\%.

3. RESULTS AND DISCUSSION

The aim of this study was the synthesis and spectral analysis of new 2,3-disubstituted-1,3-benzothiazin-4-one derivatives. In the first step of synthesis hydrazones of 4(dimethylamino)benzoic acid (1-15) were synthesized by the condensation reaction of 4-
(dimethylamino)benzhydrazide with appropriate aromatic aldehydes. New desired 2,3-disubstituted-1,3-benzothiazin-4-one derivatives (16-30) were obtained by the cyclization reaction of N -substituted derivatives of 4(dimethylamino)benzhydrazide (1-15) with thiosalicylic acid in the presence of 1,4-dioxane. The obtained yields of final products (16-30), when 1,4-dioxane was used as a solvent, are rather low. After completion of this work, I am aware to publish a report on the influence of the different solvent on the synthesis and yields of obtained 1,3-benzothiazin-4-ones.

All the spectral (IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR) data confirmed the successful formation of new compounds (16-30). All synthesized compounds are stable solids and dissolve in DMSO in room temperature.

The IR spectra of synthesized compounds 1-30 confirmed the presence of appropriate functional groups in obtained derivatives. The MS spectra of compounds $(21,24,30)$ confirmed the mass of final products.

In the ${ }^{1} \mathrm{H}$ NMR spectra of synthesized hydrazones of 4-(dimethylamino)benzoic acid (115) one typical proton singlet signal for $=\mathrm{CH}$ group was observed in the range of $\delta 7.29-8.41$ ppm and for the NH group at $\delta 10.49-11.82$ ppm. Where as in the ${ }^{13} \mathrm{C}$ NMR of compounds 115 two signals for $=\mathrm{CH}$ and $\mathrm{C}=\mathrm{O}$ were observed at $\delta 144.9$ - 144.9 ppm and $\delta 164.1$ - 164.3 ppm, respectively what successfully confirmed the formation of expected products. All other aliphatic and aromatic signals were found at usual regions.

In the ${ }^{1} \mathrm{H}$ NMR spectra of 1,3-benzothiazin-4-one derivatives (16-30) the signals for CH and NH groups appeared in the range of $\delta 6.27-6.34$ ppm and $\delta 9.57-9.81 \mathrm{ppm}$, respectively. In the ${ }^{13} \mathrm{C}$ NMR spectra of these target compounds 1630 the typical signals for CH group at about $\delta 54$ ppm and two $\mathrm{C}=\mathrm{O}$ groups at about $\delta 163 \mathrm{ppm}$ were observed. All other aliphatic and aromatic signals were reported at expected regions.

The plausible mechanism of the formation of new 1,3-benzothiazin-4-one derivatives is presented on the Scheme 2. and it was based on the mechanism of the formation of 1,3-thiazolidin-4ones [14]. The target 1,3-benzothiazin-4-one derivatives (16-30) were synthesized via the route outlined in Scheme 2.

Compound no	\mathbf{R}	Compound no	\mathbf{R}
1,16	$2-\mathrm{Cl}$	9,24	$4-\mathrm{F}$
2,17	$3-\mathrm{Cl}$	10,25	$2-\mathrm{Cl}-6 \mathrm{~F}$
3,18	$4-\mathrm{Cl}$	11,26	$3-\mathrm{Br}-4-\mathrm{OCH}_{3}$
4,19	$2-\mathrm{Br}$	12,27	$3-\mathrm{Br}-4-\mathrm{OH}$
5,20	$3-\mathrm{Br}$	13,28	$5-\mathrm{Br}-2-\mathrm{OH}$
6,21	$4-\mathrm{Br}$	14,29	$3-\mathrm{Br}-3-\mathrm{F}$
7,22	$2-\mathrm{F}$	15,30	$3-\mathrm{Cl}-4-\mathrm{OCH}_{3}$
8,23	$3-\mathrm{F}$		

Scheme 2. Reactions with plausible mechanism leading to new 1,3-benzothiazin-4-one derivatives (16-30)

4. CONCLUSION

In this paper 15 new 2,3-disubstituted derivatives of 1,3-benzothiazin-4-one (16-30) were synthesized via cyclization reaction of N substituted derivatives of 4-(dimethylamino) benzhydrazide (1-15) with thiosalicylic acid. The chemical structure of all synthesized compounds was confirmed by spectral analysis.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

1. de Guarda VL, Perrissin M, Thomasson F, Ximenes EA, Galdino L, Pitta IR, Luu-Duc C, Barbe J. Synthesis of 4-octyl-2H-1,4-
benzo-thiazin-3-ones. Eur J Med Chem. 2003;38:769-773.
2. Kamel MM, Ali IH, Anwar MM, Mohamed NA, Soliman AM. Synthesis, antitumor activity and molecular docking study of novel Sulfonamide-Schiff's bases, thiazolidinones, benzothiazinones and their C-nucleoside derivatives. Eur J Med Chem. 2010;45:572-580.
3. Yu CH, Wu J, Su YF, Ho PY, Liang YC, Sheu MT, Lee WS. Anti-proliferation effect of 3-amino-2-imino-3,4-dihydro-2H-1,3-benzothiazin-4-one (BJ-601) on human vascular endothelial cells: G0/G1 p21asscociated cell cycle arrest. Biochem Pharm. 2004;67:1907-1916.
4. Gao C, Ye TH, Wang NY, Zeng XX, Zhang LD, Xiong Y, You XY, Xia Y, Xu Y, Peng CT, Zuo WQ, Wei Y, You LT. Synthesis and structure-activity relationship
evaluation of benzothiazinone derivatives as potential anti-tubercular agents. Bioorg Med Chem Lett. 2013;23:4919-4922.
5. Besson T, Rees ChW, Cottenceau G, Pons AM. Antimicrobial Evaluation of 3,1-Benzoxazine-4-ones, 3,1-Benzothiazin-4ones, 4-Alkoxyquinazolin-2-carbonitriles and N-Arylimino-1,2,3-dithiazoles. Bioorg Med Chem Lett. 1996;19:2343-2348.
6. Vijay VD, Rahul PG. Synthesis and antimicrobial activities of novel 1,4benzothiazine derivates. Arab J Chem; 2011; DOI: 10.1016/j.arabjc.2011.03.009.
7. Ahmad M, Siddiqui HL, Zia-ur-Rehman M, Parvez M. Anti-oxidant and anti-bacterial activities of novel N '-arylmethylidene-2-(3,4-dimethyl-5,5-dioxidipyrazolo[4,3-c][1,2]benzothiazin-2(4H)yl)acetohydrazides. Eur J Med Chem. 2010;45:698-704.
8. Vi VL de M, Perrissin M, Thomasson F, Ximenes EA, Galdino SL, Pitta IR, LuuDuc C. Synthesis and microbiological activity of some 4-butyl-2H-benzo[1,4]thiazin-3-one derivatives. Farmaco. 2001;56:689-693.
9. Borate HB, Maujan SR, Sawargave SP, Chandavarkar MA, Vaiude SR, Joshi VA, Wakharkar RD, Iyer R, Kelkar RG, Chavan SP, Kunte SS. Fluconazole analogues
containing $2 H-1,4$-benzoxazin- $3(4 H)$-one moieties, a novel class of anti-Candida agents. Bioorg Med Chem Lett. 2010; 20:722-725.
10. Matysiak J. Synthesis, antiproliferative and antifungal activities of some 2-(2,4-dihydroxyphenyl)-4H-3,1-benzothiazines. Bioorg Med Chem. 2006;14:2613-2619.
11. Solomon VR, Haq W, Srivstava K, Puri SK, Kattl SB. Synthesis and antimalarial activity of side chain modified 4aminoquinoline derivatives. J Med Chem. 2007;50:394-398.
12. Zarghi A, Zebardast T, Daraie B, Hedayati M. Design and synthesis of new 1,3-benzthiazin-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg Med Chem. 2009;17:5369-5373.
13. Mizuhara T, Oishi S, Ohno H, Shimura K, Matsuoka M, Fujii N. Structure-activity relationship study of pyrimido[1,2-c][1,3]benzothiazin-6-imine derivatives for potent anti-HIV agents. Bioorg Med Chem. 2012;20:6434-6441.
14. Chen H, Jiao I, Guo Z, Li X, Ba C, Zhang J. synthesis and biological activity of novel thiazolidin-4-ones with a carbohydrate moiety. carbohydr res. 2008;343:30153020.
© 2015 Popiołek; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

> Peer-review history:
> The peer review history for this paper can be accessed here:
> http://www.sciencedomain.org/review-history.php?iid=902\&id=16\&aid=8631

[^0]: *Corresponding author: E-mail: Iukasz.popiolek@umlub.pl;

