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Predicting Plasma Vitamin C Using Machine Learning
Daniel Kirk a, Cagatay Catal b, and Bedir Tekinerdogan a
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bDepartment of Computer Science and Engineering, Qatar University, Doha, Qatar

ABSTRACT
Precision Nutrition makes use of personal information about 
individuals to produce nutritional recommendations that have 
more utility than general population level recommendations. In 
many cases, being able to predict current status is a necessary 
first step in offering tailored nutritional advice. The objective of 
this study is to predict plasma vitamin C using machine learning. 
The NHANES dataset was used to predict plasma vitamin C in 
a cohort of 2952 American adults using regression algorithms 
and clustering in a way that a hypothetical health application 
might. Variables were selected based on a known or hypothe
sized relationship with plasma vitamin C, and variables that are 
expensive or difficult to obtain were excluded in order to more 
closely replicate the situation of a real health application. The 
best performance was seen with the XGBoost regressor, with 
random forest performing almost identically. Clustering was 
also investigated as a means of improving regression accuracy 
by splitting the data up into smaller yet more homogeneous 
groups, however, this was not successful. The low R-squared 
scores obtained by the models are likely to be due to the low 
resolution of the NHANES data, particularly the dietary data. This 
emphasizes the need for high-quality data sets in Precision 
Nutrition research.
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Introduction

Precision Nutrition (PN) is centered around the idea that nutritional require
ments are not the same throughout the population, and that personal factors 
govern requirements for dietary components such as vitamins, minerals, 
calories, etc. These personal factors can include biological components such 
as genetics, nutrigenomics, and the microbiome, but also lifestyle factors such 
as diet, activity, sleep, stress, and more (de Toro-martín et al. 2017; Kirk, Catal, 
and Tekinerdogan 2021; Ordovas et al. 2018). The collection of such data – 
and likely, the integration of this data into a model – will then ultimately lead 
to the generation of dietary recommendations that have more utility and 
relevance to the individual than recommendations on the whole population 
level. However, given the many areas of health and disease that nutrition 
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relates to, it is uncertain whether something will be designed that can make 
nutritional recommendations to optimize health as a whole, especially given 
that nutritional recommendations may be conflicting based on different areas 
of health. Instead, research so far has focused on specific areas of health, such 
as postprandial blood-glucose response (Zeevi et al. 2015), postprandial lipid 
response (Berry et al. 2020), bodyweight (Ramyaa et al. 2019), chronic disease 
management (Baek et al. 2019; Kim and Chung 2020), and cancer (Shiao et al. 
2018).

For many dietary components, being able to estimate the nutritional status 
of an individual with regards to a dietary component is a necessary first step in 
providing tailored dietary recommendations. That is, for some nutritional 
recommendations to have value, they must first take into account the current 
status of an individual. This represents a prediction task whereby personal 
information is used to predict the nutritional status of an individual with 
regard to a given dietary component. After predicting current nutritional 
status, nutritional recommendations can be made with more certainty. One 
such dietary component that is suitable for PN is vitamin C. Vitamin C is an 
essential vitamin and thus must be consumed through the diet or supplemen
tation (NIH 2020). However, diet is not the only contributor to vitamin 
C status, since smoking, gender, age, genetics, and more all impact the vitamin 
C status of an individual (Carr and Rowe 2020). Thus, following a national 
guideline is arbitrary and cannot be expected to lead to adequate nutritional 
status in many individuals. Instead, combining personal information that 
considers multiple relevant factors could lead to accurate prediction of vitamin 
C status, which can then be used to make nutritional recommendations 
suitable for the needs of the individual. For example, if status was predicted 
as low in one individual, then recommendations would focus on suggesting 
vitamin C rich foods for consumption. Otherwise, the suggestion may be that 
the individual does not have to invest too much energy in obtaining vitamin 
C and can instead focus on other dietary components.

Machine learning (ML) is a sub-branch of artificial intelligence and has 
enabled processing of data to support smart decision making. By learning 
patterns in training data, an algorithm is able to predict an outcome in 
classification, regression, prediction, and clustering tasks (Rowe 2019). 
However, this can be done in a way that facilitates the integration of data in 
large amounts and to a high degree of complexity, facilitating analyses that 
would not otherwise be possible. ML can be applied in a supervised setting, 
where algorithms are trained on known labels, or in an unsupervised manner, 
where similarities between data points form the basis of the output of ML 
algorithms; both have utility in PN. Thus, developments in ML are making 
headway in previously inaccessible problems. In the realm of PN specifically, 
ML has great applicability. Data required for generating PN-related outcomes 
can be complex and large, however, using ML to generate predictions based on 

APPLIED ARTIFICIAL INTELLIGENCE e2042924-2455



patterns in the data means nutritional recommendations can be made with 
more accuracy than has ever been previously possible. Not all work in the field 
of PN has made use of ML, and whilst at times promising results have been 
found (Celis-Morales et al. 2017), approaches that cannot handle a large 
number of complex variables; data which contains variables that have had 
their dimensionality reduced; and datasets of a large volume, are naturally 
limited. Indeed, these advantages of ML also explain why it frequently out
performs traditional statistical methods such as basic linear regression or 
Bayesian inference on datasets of larger complexity (Bzdok, Altman, and 
Krzywinski 2018; Kirk, Catal, and Tekinerdogan 2021).

To investigate the applicability of ML in PN, the present study set out to use 
various models to predict plasma vitamin C based on dietary and lifestyle 
variables. Data was collected from the National Health and Nutrition 
Examination Survey (NHANES) of America because of its public availability 
and ease of access, the large and nationally representative sample size, and the 
fact that it contains a vast array of personal and dietary information, as well as 
actual laboratory-measured plasma values for a variety of compounds. The 
2017–2018 NHANES cycle contains plasma vitamin C measurements for 
participants, and thus this cycle was selected. Various regression algorithms 
were used, with XGBoost proving to be most effective. Clustering – alone and 
in combination with principal component analysis (PCA) – was used in order 
to attempt to improve regression performance.

The following sections are organized as follows: The next section describes 
the methodology. Section 3 presents the results, Section 4 the discussion 
andSection 5 the conclusion.

Methods

The goal of the current work was to use personal information from a publicly 
available dataset in order to predict plasma vitamin C, as may be performed on 
a digital health application service. Hence, in order to be representative of the 
true working nature of such an application, only information that is likely to 
be readily available from the user is used. Information obtainable through 
expensive or impractical methods of assessment are excluded. All analyses 
were performed in Python 3.7.6.

The Dataset

The NHANES 2017–2018 cycle was selected as the dataset for the current work 
(NHANES 2017). NHANES uses an anonymized nationally representative 
selection of the non-institutionalized American population to collect 
a wealth of data used to obtain information about the health status of the 
American population. The data is composed of information obtained from 
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physical examination and interviews. The physical examination is composed 
of both physical assessment and laboratory assessment. Information obtained 
from the interview includes demographic, socioeconomic and health-related 
questions. Within the interview section is an abundance of nutrition-related 
information such as information on food intake via two 24-hour dietary recall 
assessments and supplement use (NHANES 2017).

Although not a precision nutrition dataset, NHANES does contain personal 
information on every individual. Furthermore, corresponding laboratory data 
is available to provide ground truth labels for prediction, something which is 
not common in publicly available datasets. Hence, the NHANES data can be 
suitable for some work in the precision nutrition field by predicting health 
status or parameters related to health by using personal and lifestyle data. In 
this case, personal and dietary information is used to predict the level of 
plasma vitamin C, which is available in the 2017–2018 NHANES data cycle. 
The prediction of plasma vitamin C was chosen due to its established relation
ship with information available through NHANES such as dietary and lifestyle 
information and socioeconomic data (Carr and Rowe 2020).

Data Processing

The cohort of the NHANES 2017–2018 cycle that underwent plasma vitamin 
C investigation contains 6740 data points, which represents the maximum 
number of possible entries for the current study. As more variables are added 
the number of missing data also accumulates, causing this number to drop. 
Furthermore, in some of the questionnaire data, answers such as “Don’t know” 
or “Refused” made up a very minor portion of the response; these participants, 
too, were removed. Finally, outliers in the target variable were removed based 
on a z-score of more than 3.25. This was decided not only from a statistical 
standpoint but also on plasma vitamin C ranges described in the literature 
(Hagel et al. 2018; Travica et al. 2019; NIH 2020; Kraemer, 2020). Of course, in 
such a large dataset, it is possible that these results do not represent anomalies 
and are possible plasma vitamin C readings, however by the same token such 
a large dataset increases the chances of reading or handling errors that could 
taint the results. For example, three individuals demonstrated plasma vitamin 
C levels of between 200–300 μmol/L. Indeed, this level appears extraordinarily 
high. Since model performance decreased if the outliers were included, the 
decision was made to exclude them. Future work could investigate if such 
results are to be expected, and, if so, how they can be incorporated into 
a model.

After all variables for the final models were added, a total of 2952 
participants aged 18 years or older were used for analysis. The authors 
have no reason to believe that the missing data follows any pattern and 
that exclusion of these individuals would create a bias in the remaining 
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data. The selection of variables was based on relationships to plasma 
vitamin C established in the literature or hypothesized relationships 
based on prior knowledge. These variables are presented in Table 1, 
where relevant processing notes are also mentioned. The only variable in 
Table 1 that does not exist in the NHANES data is the final variable, 
Average daily dietary vitamin C intake. The NHANES data offers total 
vitamin intake calculated from the 24 h dietary recall for each participant 
by corresponding the foods with vitamin levels in the USDA database. 
Because there are two 24 h recalls, there are two values for each vitamin. 
Hence, in order to attempt to provide a more reasonable estimate of 
dietary vitamin C intake, the average of the two values was taken and 
used as the total average vitamin C intake. In this way, the influence of one 
single day is halved.

Table 1. The variables used in the model are shown, with their corresponding NHANES code.

Variable name
NHANES 

code

Categorical 
or 

Continuous Notes

Gender RIAGENDR Categorical
Race/Hispanic origin with 

non-Hispanic Asian
RIDRETH3 Categorical

Annual Family Income INDFMIN2 Categorical
Vigorous work activity PAQ605 Categorical
Vigorous recreational 

activities
PAQ650 Categorical

Smoked at least 100 
cigarettes in life

SMQ020 Categorical

Do you now smoke 
cigarettes?

SMQ040 Categorical All missing values were assumed to be not currently 
smoking. This is because all those who answered “No” 
to the SMQ020 skipped question SMQ040.

Vitamin C (mg) (average 
daily 
supplementation)

DSQTVC Continuous To minimize data loss, all missing values were assumed to 
represent the absence of supplementation and thus 
were converted to 0 mg.

[Number] of people who 
live here smoke 
tobacco?

SMD460 Categorical

Systolic: Blood pressure 
(first reading) mm Hg

BPXSY1 Continuous

Diastolic: Blood pressure 
(first reading) mm Hg

BPXDI1 Continuous

Which type of arthritis 
was it?

MCQ195 Categorical As an inflammatory condition, information was obtained 
on participants rheumatoid arthritis. Other types of 
arthritis were excluded, and missing values were all 
assumed to be free of any arthritis (coded as 0).

Ever told had congestive 
heart failure

MCQ160B Categorical

Ever told you had 
coronary heart disease

MCQ160C Categorical

Ever told you had heart 
attack

MCQ160E Categorical

Ever told you had 
a stroke

MCQ160F Categorical

Ever told you had cancer 
or malignancy

MCQ220 Categorical

Average daily dietary 
vitamin C intake

N/A (see 
Notes 
column)

Continuous Average of two calculated dietary vitamin C intakes taken 
to provide average daily intake. This value is denoted 
“TVC” in the following figures.
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Regression
A wide range of regression algorithms exists, each with different modes of 
operation and parameters that mean performance can vary across different 
conditions and datasets. Thus, it is common practice to use multiple algorithms 
and select the best performer. The data was a mix of continuous and categorical 
variables. Continuous variables can be used directly in the regression models, 
but categorical variables must first be processed. One-hot encoding was used to 
achieve this. One-hot encoding alters the data so that each entry of a categorical 
variable now becomes a new column entry, and ones and zeros represent the 
presence or absence of said categorical variables for each sample. R-squared 
(R-sq) was used as the principal criterion for regression model grading. The 
same input data and random state value of 7 were used across algorithms.

XGBoost
The first algorithm chosen for regression was XGBoost, whose name is short 
for “Extreme Gradient Boosting.” As the name implies, XGBoost uses gra
dient boosting to provide more accurate predictions in classification and 
regression models. Gradient boosting is an ensemble method wherein the 
machine begins with weak learners that, with each iteration, are gradually 
improved upon. This process repeats until a given number of iterations are 
complete, at which point the model is finalized. In the case of XGBoost, the 
learners are decision trees, allowing competency in both classification and 
regression.

In addition to gradient boosting, XGBoost also has other features that 
improve its performance such as penalization of more complex models 
through regularization; internally dealing with sparse and missing data; 
hyperparameter tuning capabilities; built-in cross-fold validation; and tree 
pruning to prevent overfitting (Chen and Guestrin 2016). It is also extre
mely fast compared to other boosting and ensemble algorithms. Feature 
selection occurs internally to some degree but feature importance analysis 
is also readily available. Finally, it is easily deployed on many interfaces, 
and easy to use. For example, in comparison with other regression algo
rithms, fewer data processing steps are required. Collinearity need not be 
dealt with, since tree methods do not suffer from issues due to collinearity, 
and, besides, XGBoost also utilizes regularization which mitigates the issue 
of collinearity. Furthermore, other processing steps like normalization are 
not required, further reducing the workload for users of the algorithm. 
Given these advantages, it is unsurprising that XGBoost has boomed in 
popularity in recent years, demonstrated by its overwhelming use in online 
data science competitions and the fact it is generally regarded as a go-to 
algorithm in the data science world of today.
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The model of the current work had hyperparameters tuned via grid search 
for performance optimization, resulting in 100 estimators, a learning rate of 
0.1, a max depth of 2, an alpha regularization of 100, and a subsample of 0.8.

Random Forest
RF is an ensemble of decision trees that use bagging and then taking the mode 
(in the case of classification) or the mean (in the case of regression) of the 
collection of trees (i.e., the forest). Bagging is an abbreviation of the two words 
bootstrap aggregating, which describes this procedure: bootstrapping consists 
of taking many random subsamples of the dataset (with replacement) and 
aggregation refers to combining the predictions of many learning algorithms 
to allow better prediction than any single algorithm alone. Bootstrapping 
occurs first, after which a subset of variables is randomly selected for splitting 
root node, and then again, each node after that. The number of variables 
selected in this case represents one of the hyperparameters that can be 
modified in an RF model. With each bootstrapped sample, a portion is omitted 
from being used for training in order to estimate the performance – this is 
known as the out-of-bag sample. Furthermore, variables of importance are 
identified by observing the drop in error when a variable is randomly selected. 
Note, this drop in error is also averaged out across all trees in the forest. These 
properties make RF a top-performing predictive algorithm and, unlike deci
sion trees upon which it is based, it is robust to overfitting. However, this 
added complexity increases computational demands and therefore processing 
time substantially (Breiman 2001).

In the current study, sklearn’s RF regressor was utilized. Hyperparameters 
were tuned to give the following values: a max depth of 6, minimum samples at 
each leaf of 27, 1000 estimators, and a minimum number of samples required 
to split a node of 3.

Linear Regression
Linear regression from sklearn represents the simplest model used in the 
current study. Unlike the other algorithms used here, there are no hyperpara
meters available for modification. Linear regression takes a single variable (in 
the case of simple linear regression) or multiple (in the case of multiple 
regression) variables to predict the numerical value of a dependent variable. 
Each of the variables has a coefficient value, which maps their relationship with 
the dependent variable. In addition, there is an intercept value that maps the 
point on the Y-axis that the regression line crosses. Thus, multiple linear 
regression is defined as 

Y ¼ β0 þ β1X1 þ β2X2 þ . . . βiXi 
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where Y represents the dependent variable, β0 the value of the intercept on the 
Y-axis and βiXi the beta coefficient of the ith feature in the model. To enable 
such simplicity, some assumptions are made in linear regression. First, the 
relationship between the coefficients and the outcome variable is assumed to 
be linear. Second, errors between the residuals (the observed values) and the 
predicted values are normally distributed. Thirdly, there is no multicollinearity 
between the variables used in the model. Finally, homoscedasticity is assumed. 
That is, there is no pattern in the distribution of the residuals versus the 
predicted. Violation of some of these assumptions may mean processing 
steps such as normalization or log transformation are required to be applied 
to the data before being used. Alternatively, violations of these assumptions 
may suggest a different model that does not have such prerequisites would be 
more fruitful. Typically, the quality of the model is measured by various 
methods that check the distance of the residuals from their predicted value. 
Larger values indicate the model is predicting the values more poorly (Olive 
2017).

Lasso Regression
Lasso stands for “least absolute shrinkage and selection operator” regression, 
where “shrinkage” refers to shrinking data points around a central value, such 
as the mean. Lasso is a regularization technique, which means it makes use of 
a penalty that limits the strength of coefficients on the variables. This is L1 
regularization, and coefficients can even be shrunk to 0, meaning they are 
effectively removed from the model. The term used to signify the strength of 
penalization in the model is λ, and thus with higher λ the greater the magni
tude of the features is dampened, whereas with lower λ values the opposite is 
true, to the point where λ = 0 is the same as standard linear regression. The 
regression penalty λ is then multiplied by the absolute of the coefficient of the 
variables and this is added to the sum of the squared residuals (Tibshirani 
1996). Hence, Lasso has the advantage of reducing the effects of multicolli
nearity as correlated variables are dropped by having their coefficients shrunk 
to 0. Reducing coefficients to zero also acts as an internal feature selection 
mechanism for Lasso, which makes it attractive to apply on datasets with many 
features. These characteristics of Lasso means it simplifies models, prevents 
overfitting, and potentially improves model performance over ordinary linear 
regression. Hyperparameter tuning in the current study was performed by 
testing model performance across a range of λ (denoted as “alpha” in sklearn) 
values. An optimal alpha value of 0.262 was found.

Ridge Regression
Lasso and Ridge regression are very similar in that they both penalize 
model complexity, reduce multicollinearity, and reduce overfitting, whilst 
potentially improving model accuracy. They have a key difference, 
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however. The regularization approach employed by Ridge regression is L2 
regularization. Here, the penalty term of Ridge regression is λ multiplied by 
the squared magnitude of the coefficient, rather than the absolute magni
tude (as with Lasso). The result of this is that coefficients can be shrunk 
ever closer to 0, but never quite reach (unlike with Lasso) (McDonald 
2009). The optimal λ value for sklearn’s Ridge regression used in the 
present study was found at 100, but a broad range of alpha values produced 
the same outcome.

Support Vector Regression
Support Vector Regression (SVR) is a regression option based on the algo
rithm support vector machines (SVM). SVM is most often used as 
a classification algorithm. In this instance, the machine attempts to classify 
data into groups by aiming to find an optimal split. The algorithm has an 
infinite number of possibilities in which to separate the data via decision 
boundaries but should choose the optimal one of these many possibilities. 
To achieve this, the algorithm focuses on the points in the classes closest to the 
decision boundary, allowing an optimal boundary to be chosen based on the 
distance of the points to the decision boundary. These points are known as the 
support vectors. To find support vector classifiers, kernels are used which can 
transform the data to a higher dimensional, allowing for better classification 
accuracy and application on non-linear data. These kernels exist in the form of 
linear, polynomial, or radial basis functions. In the case of SVR, the concept is 
similar but slightly different. Since there are no points to be classified, the 
decision boundary instead contains an accepted level of error known as 
epsilon (ϵ), which will extend ϵ and -ϵ above and below the decision boundary, 
respectively, forming a hyperplane. Points outside these margins are penalized, 
whereas points inside are not, and as with SVM for classification, the points on 
the decision boundary are the support vectors and have the most influence on 
the shape of the hyperplane. The function is then optimized to find the 
narrowest hyperplane (as determined by the support vectors on each side) 
and – like with other regression techniques – the line that minimizes the errors 
(Awad et al. 2015). These characteristics make SVM and SVR attractive for 
multiple reasons. For example, the ability to map non-linear problems is 
convenient because linearity is often not guaranteed in real-world datasets. 
Furthermore, only the subset of the data closest to the decision boundary is 
relevant for constructing the model, which greatly decreases processing time. 
Finally, the algorithm is flexible and highly effective in prediction using unseen 
data.

Optimization for SVR is less complicated than other algorithms but still has 
various hyperparameters available for manipulation. In the current study, the 
optimal performance was achieved with the following settings: a radial basis 
function kernel, with a C value of 10 and a gamma of 0.01.
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Clustering

In order to attempt to improve prediction accuracy, we set out to find clusters 
in the data. Unlike the other algorithms described thus far, clustering is an 
unsupervised approach that groups together individual data points based on 
similar characteristics. In this way, data is broken down into k number of 
clusters, each of which is more homogenous than the data as a whole. As such, 
if machine learning algorithms are trained and applied within each cluster, 
they learn their function better and prediction accuracy may be improved over 
using the data as a whole, as was seen by (Ramyaa et al. 2019). Two clustering 
algorithms were used – k-means and k-prototypes.

k-means
k-means begins with k number of randomly placed starting centroids in the 
data and each data point is assigned to the cluster nearest to it. The centroids 
then relocate based on the mean of the points in each of the k clusters, and 
this process of assignment and relocation repeats iteratively until a stopping 
point is reached (Kanungo et al. 2002; Mannor et al. 2011). Euclidean 
distance is used to measure the distance between points (Kanungo et al. 
2002).

scikit-learn’s k-means was used and the data input was the same as the 
data used in the regression algorithms, i.e., continuous variables were log- 
transformed and categorical variables one-hot encoded. Silhouette score was 
used to identify both optimal number of clusters and quantify cluster purity. 
For each sample, the silhouette score calculates the average distance from 
one point to all other points in the same cluster, and then calculates the 
average distance from one point to all other points in the next nearest 
cluster. The distance between these values is then divided by the largest of 
the two values, providing a number between 0 and 1, with high numbers 
signifying clearly demarcated clusters and lower values indicating poorly 
differentiated clusters.

k-prototypes
Unlike k-means, k-prototypes permits the use of categorical variables as well as 
continuous variables. Thus, one-hot encoding was not required following log 
transformation of continuous variables. k-prototypes uses a mixture of 
Euclidean distance for continuous variables (like k-means) and a matching 
dissimilarity measure for categorical variables. The latter is the concept of 
k-modes, a clustering algorithm for categorical only data which used modes 
instead of means. Thus, k-prototypes is somewhat of a hybrid of the two, 
adding these distances to provide a value for similarity between sample points 
(Huang 1998). As with k-means, silhouette score across a range of cluster 
numbers was obtained to identify the optimal k value.
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Principal Component Analysis
PCA was used experimentally with clustering in an attempt to improve results. 
PCA is a dimensionality reduction technique. In a dataset with n number of 
features, a maximum of n number of principal components are created and the 
variance captured by each principal component is known. First, the data is 
standardized, and a covariance matrix is made that provides information on 
how the variables differ from the mean to see if there are relationships between 
the variables. From this covariance matrix, eigenvectors, which provide direc
tions of the axes containing the most information, and eigenvalues, which are 
the corresponding values on this new diagonal line, are calculated. In this way, 
new variables made in the previous steps are linear combinations of old 
variables. Ranking the eigenvectors in descending order of magnitude means 
the first eigenvector captures the largest possible variance; the second, 
the second most variance; and so on. These eigenvectors correspond to the 
principal components. In this way, PCA is designed so that the first principal 
component contains the most variance, and every principal component after 
that increasingly less until 100% of the variance is captured at the nth principal 
component (Jollife and Cadima 2016). This process allows a large amount of 
variance to be captured with less total information by selecting a small number 
of principal components that capture most of the variance.

There are a few advantages to treating the data in this way. First, because the 
amount of information is reduced (sometimes substantially), processing time on 
proceeding operations using the new PCA dataset is reduced. Next, issues 
relating to collinearity are reduced. Since variables correlated together are 
captured in each principal component (because they convey information in 
a similar direction), principal components are uncorrelated. Third, redundant 
information is removed from the dataset. PCA is commonly used to capture the 
largest portion of the data for the smallest number of principal components. In 
some cases, this is much smaller than the number of features. Removing such 
redundant information could potentially enhance algorithm performance by 
reducing noise in the data. However, even if this is not the case, PCA may still 
be desirable as large enhancements in efficiency may be worth small decreases in 
accuracy. Finally, using only the first two components can allow the visualiza
tion of data with many features in a way that would otherwise not be possible.

In the present study, PCA was applied to the one-hot encoded data before 
clustering. Typically, clustering is performed alone for initialization, followed 
by PCA to reduce the dimensionality, and finally, clustering repeated again on 
the reduced dataset. This was the procedure followed in the present study. 
Notably, the data containing the new variables that are present after PCA are 
entirely numerical, which makes it incompatible with k-prototypes as k-pro
totypes requires at least one categorical variable. However, since continuous 
variables are treated in a k-means fashion in k-prototypes anyway, only 
k-means was performed after PCA transformation of the dataset.
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Results

XGBoost

The full dataset contained 2952 samples and 16 features with a known or 
hypothesized potential relationship with vitamin C status. Following hyper
parameter tuning, the XGBoost regressor managed a cross-validated R-sq 
score of 0.303. XGBoost comes with an internal mechanism for allowing 
feature importance assessment. Visual analysis of this suggested that Annual 
Family Income (INDFMIN2) and Ever told you had cancer or malignancy 
(MCQ220) were not contributing to the model. Removal of Annual Family 
Income caused a small increase of R-Sq to 0.304 and removal of Ever told you 
had cancer or malignancy had no effect. It was investigated whether manual 
removal of other parameters also had the same effect on R-Sq, however, 
removal of other parameters caused model performance to worsen. Hence, 
a maximum cross-validated R-Sq of 0.304 was achieved with XGBoost regres
sor, as shown in Figure 1.

Figure 2 shows the importance (as weight)of each of the features in making 
the prediction according to the XGBoost regressor in the final model (that is, 
without INDFMIN2 and MCQ220). Continuous variables are represented 
unchanged, whereas categorical variables are represented by their name fol
lowed by an underscore and then the numerical value used in the original 
dataset which represents their categorical value, as occurs in the process of 
one-hot encoding. This is shown in the key below the figure. Unsurprisingly, 
average daily vitamin C intake (TVC) and average daily vitamin 
C supplementation (DSQTVC) compose the two most important features in 
predicting vitamin C. After this, both systolic and diastolic blood pressure are 
third and fifth, respectively. Fourth was gender as male. Smoking-related 

Figure 1. Actual plasma vitamin C is shown in comparison to the vitamin C predicted for the test 
split of the XGBoost model.
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features also demonstrate some importance, such as when the answer to 
SMQ040 (“Do you now smoke cigarettes?”) was 1 (“Every day”). SMD460 
(“# of people who live here smoke tobacco?”) was the next highest smoking- 
related question and was concerned with the number of smokers in the home. 
SMQ020 (“Smoked at least 100 cigarettes in life”) was after this and contrib
uted to the model when the answer was 1 (“No”). Next was the feature race, 
followed by physical activity variables. Variables coded beginning with MCQ 
were medical conditions questions. These generally added little to the model.

Other Regression Algorithms

Other regression algorithms were also investigated for comparison with 
XGBoost. The data used was the same as the final input into the XGBoost 
model, and thus the pre-processing steps were the same. Unsurprisingly, RF 
also performed very well, with a score of 0.302, almost identical to XGBoost. 
For the non-ensemble methods, sklearn’s linear regression model was used as 
a starting point, providing a cross-validated regression score of 0.258. 

Figure 2. Above is the importance of each of the one-hot encoded features in the XGBoost 
prediction of plasma vitamin C. Below is the key that explains the naming of the variables on the 
Y-axis.
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Subsequent analysis suggested that there was a high degree of covariance 
between the four continuous variables (one VIF score of 291.99, and two 
others exceeding 10). Stepwise removal of the variable with the largest VIF 
score was performed, however this decreased model performance. An alter
native approach was to try linear regression algorithms that have capabilities 
to deal with covariance, namely Lasso regression. After optimizing the alpha 
value (the value responsible for modifying the strength of feature penaliza
tion), the results were basically unchanged (R-sq improvement of 0.04 to 
0.262). Ridge regression was also performed but R-Sq did not exceed 0.260 
after alpha optimization. Other hyperparameters on these models did not 
affect the outcome. The final algorithm investigated was SVM. After optimiza
tion, a maximum score of 0.294 was obtained using a radial basis function 
kernel. The results of all the regression algorithms can be seen in Figure 3.

Clustering

Clustering was performed in an attempt to improve regression results. The 
basis for this is that regression models trained on the individual clusters may 
be superior to models trained on the data as a whole. To achieve this, two 
clustering algorithms were used, individually and in combination with the 
dimensionality reduction technique PCA, which is often performed in tandem 
with clustering.

k-means
Silhouette score analysis of k-means clustering on the independent variables 
revealed 2 clusters to be the optimal number of clusters, evidenced clearly by 
the highest silhouette at k = 2 in Figure 4(a). The score was 0.787, indicating 
a high degree of quality of clustering. Thus, the labels of these two clusters 
were assigned to each of the participants in the data.

k-prototypes
As with k-means, silhouette score analysis was used to find the optimal k value, 
shown in Figure 4(b). Again, as with k-means, the optimal number of clusters 
was identified as 2, with silhouette score being highly similar (0.761) 
Regression was also performed on the two clusters identified with 
k-prototypes.

PCA
Following k-means clustering, it was also investigated whether PCA could 
improve clustering results further. Again, the one-hot encoded data was used 
for PCA analysis. First, for visualization purposes, only two components were 
used, the results of which are demonstrated in Figure 5. Next, all of the 
principal components and their respective and cumulative variance were 
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calculated. From this, a small number of components can be used to capture 
a large portion of the variance. This is presented graphically in Figure 6. It can 

Figure 3. The cross-validated R-squared scores of all of the regression algorithms investigated in 
the present study.

Figure 4. The silhouette scores at various values of k clusters for A) k-means and B) k-prototypes.
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be seen that one component captures the vast majority (89.3%) of the variance, 
after which there is a small continual decline before a plateau. Since four 
principal components captured 95.42% of the variance, this was considered an 
appropriate number of components to use going forwards. Thus, PCA was 
repeated with only four principal components, and this PCA-transformed data 
containing four features was used again for k-means clustering. Again, the 
silhouette score was used to identify the optimal number of clusters with the 
PCA-transformed dataset, as seen in Figure 7. However, the maximum silhou
ette score is much lower here (0.500) than before PCA transformation, and 
thus the PCA-transformed data was not used for future analysis.

Regression on Clusters

Two clusters were identified in the data by the k-means and k-prototypes 
algorithm. Increasing homogeneity in the data may improve the predictive 
ability of the algorithm versus using the entire dataset as a whole. Thus, to 
investigate this possibility, the data was split according to these two clusters 
and the current best performing algorithm – XGBoost – was trained on the 
two clusters separately. In addition, because PCA analysis with 2 components 
for visualization (Figure 5) suggested four clusters may be present, the same 
analysis was also performed with k = 4. Cluster 0 contained 1034 participants 
and cluster 1 had 1918 of the participants. After splitting the data into the two 
clusters, XGBoost was trained and deployed separately, and hyperparameters 
were reoptimized with the following settings: a max depth of 2, a learning rate 

Figure 5. The first two principal components displayed following k-means clustering with 2 
clusters.
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of 0.1, a subsample of 0.2, column sample by tree of 0.7, 80 estimators, and 
a regression alpha of 100 for cluster 0 and 200 for cluster 1. This led to R-sq 
values of 0.156 for cluster 0 and 0.206 for cluster 1, neither of which exceed the 
maximum R-sq score on the whole dataset. The same procedure was also 
applied following k-prototypes clustering however the clusters were the same 
length and R-sq almost identical to those following k-means. This suggests 

Figure 6. The number of components and the cumulative explained ratio is shown. The blue line 
represents the number of components required to capture >95% of the variance, which in this 
case is four.

Figure 7. The PCA transformed dataset is used for clustering. The optimal number of clusters is 
seen as 6.
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that using k-means with one-hot encoding or using k-prototypes will give 
comparable results. Finally, repeating the analysis using four clusters instead 
of two caused a decrease in XGBoost performance across the clusters. In 
conclusion, NHANES data could not be used to predict plasma vitamin 
C with meaningful accuracy.

Discussion

The present study showed that NHANES data cannot be used to predict 
plasma levels of vitamin C in American adults, evidenced by a maximum 
R-sq value of only 0.304 using XGBoost regressor and variables likely to be 
readily available to users of a hypothetical health application. The growing 
field of PN aims to provide nutritional advice personalized to the individual 
instead of on a general level. One aspect of this area involves using information 
about the individual to approximate their current status of food substances 
such as vitamins and minerals, in order to make more precise recommenda
tions and avoid malnutrition. Although vitamin C status cannot be entirely 
represented through plasma vitamin C due to peripheral placement, plasma 
levels can offer an approximation and thus can suggest whether an individual 
is in danger of insufficiency (NIH 2020). Besides this, plasma vitamin C is also 
more convenient to obtain and more widely measured than other metrics, 
meaning this data is more available. Finally, the relationship between plasma 
vitamin C and food intake may be more short term than in comparison to 
peripheral vitamin C, making it more suitable for measurement in the present 
study given the form of the dietary data available in NHANES (discussed 
below) (NIH 2020). These points formed the theoretical basis for the selection 
of plasma vitamin C over other food substances that data was also available on 
in NHANES. NHANES, however, is an epidemiological rather than a PN 
dataset. Therefore, the resolution of the data is low and instead the focus is 
on collecting data across a large number of people. This does not make it 
a good choice for the study of PN; however, it is attractive because it is free and 
publicly available. This is in contrast to other datasets that contain data more 
suitable for PN-orientated research, which are difficult to obtain. In most 
cases, contacting authors or formal application is required, which limits the 
accessibility of datasets to other researchers. These were barriers that could not 
be overcome in the timeframe of the current study, and therefore NHANES 
was selected, despite its shortcomings. Although data in PN research is witheld 
to respect the personal information that is collected, it also presents a barrier to 
the development of the field of PN. Accessible datasets such as NHANES 
suitable for the PN research would develop the field.

The field of PN is gaining traction because of the potential it has to 
revolutionize the health status of society by focusing on nutritional require
ments on a personal level rather than on a population level, where 
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recommendations are based on large groups of people and thus relevance to 
the individual is diminished. This neglect of the personal factors that affect 
nutritional requirements partially explains the failure of existing approaches 
used to attempt to improve nutritional status (Cecil and Barton 2020). By 
using personal data to predict the status or requirements of an individual (or 
group of individuals, if on the stratified level) with regard to a nutritional 
component, targeted approaches can be deployed to prevent or amend defi
ciencies before health complications ensue. In this way, public health will be 
improved whilst treatment costs due to malnutrition-related complications are 
reduced. This scenario is very achievable considering that data is increasing in 
both abundance and accessibility and the tools for the processing and analysis 
of this data are ever-improving (Kirk, Catal, and Tekinerdogan 2021).

PN needs not only to work in theory but also in practice; in this regard, cost- 
effectiveness is relevant. In many cases, to generate results of importance for 
PN, one requires basic equipment that is considered widely available in the 
modern world, such as a computer, internet access, and an environment in 
which to execute ML experiments. This enables the generation of meaningful 
results using only publicly available data, or at least data that can be obtained 
easily and non-invasively. Indeed, the importance of easily accessible personal 
variables in PN approaches utilizing ML is also described elsewhere (Berry 
et al. 2020). Besides, even when high-resolution, expensive approaches are 
required in certain cases, this cost will likely be front-loaded rather constant; 
that is, once PN results are obtained, recommendations can be administered 
that can have a long-lasting impact. Whether or not the benefits – both 
financially and in terms of health gains – outweigh the costs should be 
investigated, but it seems unlikely that financial constraints will prevent PN 
from realizing its potential.

Whereas previous data analysis approaches have relied on traditional sta
tistical methods to generate outcomes, they increasingly fall short in compar
ison to ML and other artificial intelligence approaches. This was also observed 
in the current study, in that, although no algorithm had sufficiently adequate 
performance, ML algorithms were consistently better than traditional 
approaches. ML and its subdivision deep learning can learn patterns in the 
data that would otherwise be inappreciable to their human operators and can 
do so on complex and large datasets. Using unsupervised learning, ML can 
also be helpful in the generation hypotheses, and reinforcement learning 
(another ML type) allows constant self-regulation in response to a dynamic 
environment, which will be relevant to PN in the context of the constant 
generation of data in real-time from devices such as wearables (Kirk, Catal, 
and Tekinerdogan 2021). These are aspects of PN where traditional statistical 
approaches are unable to compete with ML approaches. For a more detailed 
discussion, see the review of Kirk, Catel, and Tekinerdogan (Kirk, Catal, and 
Tekinerdogan 2021).
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Although this study aimed to predict plasma vitamin C status, it is not 
surprising that this was not achieved given the dataset used. Firstly, diet is 
a major predictor of vitamin C status since vitamin C cannot be manufactured 
by the body itself (Carr and Rowe 2020), and hence demonstrates a moderate 
relationship with plasma status when assessed via food frequency question
naire or dietary recall (Dehghan et al. 2007). NHANES collects data for the 
dietary portion of the survey using two 24-hour dietary recalls spaced between 
3 and 10 days apart (NHANES 2015). This means that the information 
collected that led to the calculated average daily vitamin C intake (denoted 
“TVC” in the current study) was derived from only two days of food data. 
Even though plasma vitamin C correlates with short-term vitamin C intake 
(NIH 2020), this time frame may still be too short to get an accurate reflection 
of real vitamin C intake. This makes it likely that the assumed vitamin 
C dietary intake was not reflective of true daily intake in many of the partici
pants, which would naturally reduce the correlation between intake and 
plasma levels, and therefore the predictive ability of the model. This could 
explain why the correlation of vitamin C intake and plasma vitamin C alone 
was lower in the present study (r = 0.29 on log-transformed TVC) than 
elsewhere (r = 0.46) (Dehghan et al. 2007). Besides these points, memory- 
based dietary self-assessment (as used by NHANES) has been criticized for 
being unreflective of true dietary intake (Archer, Pavela, and Lavie 2015), and 
this sentiment is echoed elsewhere, specifically with dietary intake and vitamin 
C (Dehghan et al. 2007). The resolution of data required for many aspects of 
PN is higher than tools like dietary recalls and food frequency questionnaires 
can provide. Thankfully, modern techniques such as dietary trackers on smart 
devices, image-based recognition of foods and barcode scanners are making 
higher resolution tracking possible (Kirk, Catal, and Tekinerdogan 2021). 
Thus, these developments may facilitate more accurate tracking of consump
tion and allow for stronger predictive models in the coming years.

One of the variables least likely to suffer from quality is that of blood 
pressure measurements since this is an objective measure. Although this 
data may not be immediately available to a hypothetical user of a health app, 
it is generally inexpensive and easy to obtain, and thus remained in the final 
model. Both systolic and diastolic blood pressure were shown to be moderate 
predictors of vitamin C. Vitamin C and blood pressure have previously been 
shown to be associated (Myint et al. 2011; Ness, Chee, and Elliott 1997), with 
randomized controlled trials showing a causal role for vitamin C influencing 
blood pressure rather than simply association due to a concurrent increase in 
fruit and vegetable consumption (Juraschek et al. 2012). Thus, it is logical that 
those with higher blood pressures could be expected to have lower levels of 
plasma vitamin C. However, it is likely in our case that such associations with 
other lifestyle habits (such as fruit and vegetable consumption) are masked by 
not only the blood pressure but also physical activity variables, which showed 
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a relationship with plasma vitamin C. Future work could look to tease these 
contributions apart, which could increase understanding and prediction accu
racy. One approach to this could be investigating the consumption of indivi
dual foods, rather than the calculated vitamin C intake. This is discussed in 
more detail below in the strengths and limitations.

Race was also shown to be a moderate predictor of vitamin C in certain 
circumstances. As with blood pressure, race is a variable that encompasses 
other information. Clearly, race conveys genetic information about the indi
vidual, but ethnic groups also differ in other ways, such as socioeconomic class 
and dietary and lifestyle habits. Such information may be falsely augmenting 
the importance of race in plasma vitamin C prediction. Thus, it would be 
beneficial for future work to investigate further the true contribution of race, 
with the aforementioned factors also accounted for. Moreover, whilst there is 
a genetic influence on vitamin C status – and there is a known relationship 
between race and these genetic variants (Carr and Rowe 2020) – race would 
serve as a poor proxy as a genetic variable. With the development of genetic 
testing and increasing public access to such services, it is likely that health 
applications will be able to incorporate both to allow the information con
tribution from either. Some genetic information is available from NHANES, 
although this is restricted and was not available for use in the time frame of the 
project. Other variables such as gender are known to have a relationship with 
vitamin C status. Whilst this has been described to be related to body compo
sition differences between men and women (Jungert and Neuhäuser-Berthold 
2015), such information was not included in the present study as this informa
tion is less accessible. Health-related questions were included as a variety of 
disease states are associated with vitamin C deficiency, even after recovery 
(Carr and Rowe 2020); however, health variables generally had poor predictive 
value.

Annual family income (INDFMIN2) was used to approximate socioeco
nomic status, which has an established relationship with vitamin C intake 
(Carr and Rowe 2020; NIH 2020). However, this was dropped from the model 
since it worsened the predictive quality of the model. Even if annual family 
income cannot adequately approximate socioeconomic status, it is strange that 
this variable would negatively impact the model. An alternative variable 
offered by NHAENS, Annual household income (INDHHIN2), was also 
investigated but offered no contribution to the model. These artifacts may 
again reflect the quality of the NHANES data. Finally, it should also be 
considered that the addition of other variables present in the NHANES data 
could have improved the prediction accuracy. However, NHANES has a large 
number of variables and each requires time to process and integrate. 
Furthermore, each additional variable comes with the cost of more missing 
data. Thus, executive decisions were made on which variables to incorporate 
based on prior knowledge and assumed relationship with vitamin C.
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The prediction of a continuous value (as with plasma vitamin C) is 
a regression problem. The problem could have also been viewed as 
a classification problem with different levels of adequacy being the label 
classes, but this was ultimately decided against and instead a value was pre
dicted. This is advantageous because more information is conveyed (i.e., an 
exact number rather than a broad label), and because the absolute value may 
be relevant to know for general health, such as was described above with the 
relationship between plasma vitamin C and blood pressure (Juraschek et al. 
2012). Thus, users may wish to know exact amounts. Besides, assigning class 
labels to a numeric predicted value is straightforward, meaning this informa
tion can be additionally conveyed to a hypothetical user. The models selected 
tend to perform well on regression. The popularity of XGBoost is clearly 
demonstrated by its domination in Kaggle data science contests in recent 
times. For reasons discussed in the methods section, XGBoost has various 
advantages that enhance its performance above other regression algorithms. 
Hence, it is unsurprising that XGBoost was also the best performer in the 
current study, although only very marginally so compared to RF. RF and 
XGBoost are different algorithms and perform differently on different datasets, 
however as a boosting algorithm XGBoost has the ability to improve on the 
mistakes that previous weak learners made earlier in the process to provide 
a strong final estimate (boosting). The trees in XGBoost are very short, some
times so short they are known as decision stumps. RF instead uses bagging to 
improve estimation over using a single estimator (i.e., a decision tree) and does 
this in parallel as opposed to XGBoost which does this iteratively. The advan
tage of boosting and the range of hyperparameters available for tuning mean 
XGBoost can be expected to have a slight edge over RF. SVR – another 
algorithm with strong capabilities in regression problems – achieved 
a maximum R-sq value comparable with those of XGBoost and RF, and thus 
this R-sq value may represent an upper limit of predictive ability based on the 
quality of the data. This reemphasises the fact that NHANES has low applic
ability in such types of PN-orientated research as this. As a baseline algorithm, 
multiple linear regression was chosen, which had the lowest performance. In 
an attempt to account for some of the covariance between continuous vari
ables, Lasso and Ridge regression were also employed, which led to minor 
improvements. This could be owed to the fact that the majority of the data 
were categorical in nature.

Following regression, clustering was applied to the data. As an unsupervised 
method, clustering has the potential to group the data in a way that may not be 
intuitive to the human eye but ultimately makes groups that are more homo
genous than the data as a whole. Doing so can have certain advantages. First, 
this is an example of stratification, which is a level of personalization in PN. 
Identifying the presence of groups in work such as this may lead to the 
identification of groups in the population that share characteristics that may 
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have an impact on health and disease. Thus, such groups – if relevant to 
vitamin C – may also be relevant to other areas of health and may have other 
nutritional requirements. Secondly, making groups more homogenous could 
improve the prediction accuracy of the model by reducing noise and allowing 
for better training, as was observed by Ramyaa et al. when predicting body
weight from macronutrient and exercise variables (Ramyaa et al. 2019). Thus, 
in ML, techniques such as clustering can provide the opportunity to improve 
on results or identify patterns that would otherwise go unnoticed. Silhouette 
score analysis (Figure 4) revealed two clusters (k = 2) with k-means provided 
the best clustering results. However, when these clusters were used to train the 
XGBoost model, results showed a significant decrease. The most logical 
explanation for this is that, although two clusters could be clearly defined, 
they had no relevance to the ultimate status of plasma vitamin C. Thus, the 
large decrease in n from 2952 (with the whole dataset) to 1034 and 1918 for 
cluster 0 and cluster 1, respectively, reduced instances from which the model 
could learn from. In support of this, cluster 0 (with fewer participants) had the 
lower score of the two.

A strength of the study includes the fact that NHANES is designed as 
a nationally representative sample of the American population. This means 
that results obtained should apply, theoretically, to the American adult popu
lation as a whole, and not just select subsets or groups. Having said that, the 
results using such a sample were not strong, and this reinforces the idea that 
PN research would benefit more from using smaller sample sizes but with 
higher resolution data than large sample sizes such as NHANES. However, 
having such a large sample size is also a strength in itself. Additionally, this 
large sample size allowed the removal of participants with missing data and 
thus meant imputation techniques could be avoided. Since there is no reason 
to believe the missing data followed any kind of pattern, such data removal can 
be considered consequence-free, as opposed to imputation which inherently 
makes assumptions on the data. The machine learning techniques applied to 
the data can also be considered some of the best currently available. Over 
recent years, RF has been dominant in performance on classification and 
regression tasks. Recently, XGBoost has taken a slight edge over RF and 
generally performs better, if not equally as good, on these tasks. SVR/SVM is 
also a high-quality algorithm. A final strength of the current work is that all 
results were averaged cross-validated results. Using cross-validation to evalu
ate results provides a more honest representation of the performance of the 
model by ensuring all data is used for training and testing. This prevents 
getting unusually high or low test scores simply due to the randomness of how 
the data was split.

There are also points for improvement. As discussed above, the main concern 
of the current study is that the NHANES dataset is designed as an epidemiological 
dataset and not a PN dataset. Thus, the quality and resolution of the data is 
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naturally lower than that required to produce meaningful predictions. For exam
ple, two leading papers in the area of PN are (Berry et al. 2020) and (Zeevi et al. 
2015) who both predicted post-prandial glucose response. Although this presents 
a different challenge and requires different input variables, the resolution of the 
data was much higher. That is, data was collected more meticulously and in more 
detail on every individual, facilitating a high prediction accuracy. This type of 
high-resolution data will certainly be required to produce meaningful outcomes in 
the coming years of PN, though with this comes increased costs. In such cases, 
a cost-benefit trade-off becomes apparent, especially outside of the research setting 
and in situations of practical application, such as the clinic. Whether or not the 
benefits of high-resolution personalized approaches outweigh the costs is cur
rently not known and will likely differ on a case-to-case basis within the various 
domains of health where PN approaches are applied. However, it is encouraging 
to know that not all PN approaches require high-resolution and expensive 
techniques to derive meaningful results (Kirk, Catal, and Tekinerdogan 2021).

The data being derived from a US population (i.e., NHANES) naturally 
restricts the generalizability of the results. Indeed, in populations outside of 
the US it is reasonable to expect that prediction accuracy would be even 
lower due to differences in personal and dietary data. Rather than aiming to 
develop data of high generalizability, however, as may be preferred in 
epidemiological approaches, work in the field of PN should look to use 
datasets relevant to the population in question. The NHANES has the 
advantages of being large in size, breadth of data collected, and of being 
accessible, meaning that researchers are not required to collect such data 
themselves. If such publicly available datasets could be utilized to generate 
relevant PN recommendations this would be beneficial for clinical practice 
by facilitating tailored recommendations for patients based on personal data 
that would be either already available or easily obtainable to the clinic. Future 
work should aim to find higher prediction accuracy using such data as it 
circumvents the need for variables obtained via potentially expensive and 
invasive means.

There may also be room for improvement in data processing. Log transfor
mation of continuous variables was performed, and this improved results. 
Normalization and standardization were also investigated – both before and 
after log transformation – but none of these four combinations improved results. 
Regardless, it is possible that other data transformation techniques could have 
been more fruitful. Lastly, the present study used the calculated vitamin C intake 
for each participant provided by NHANES, which was then averaged across the 
two days of food data (labeled as TVC). However, it would be of interest to see if 
better accuracy could be obtained using the individual foods consumed instead 
of the calculated vitamin C amount. This should, theoretically, convey the same 
information on vitamin C consumption as using a calculated total, and, in fact, 
could be more accurate, since this circumvents points of error (e.g., measuring 
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error with measuring apparatus) in the processes that lead to these values in the 
United States Department of Agriculture (USDA) database from which the 
values are derived. Moreover, using individual foods could allow the capture 
of interaction effects between foods that may enhance or reduce vitamin 
C absorption. This information would not be captured using calculated vitamin 
C intake, as used in this study. This approach was trailed, though led to poor 
performance presumably because some foods were only consumed by a handful 
of people, ultimately meaning the model was low on training instances and 
could not learn the task properly. Remedies of this using participants with fixed 
or restricted diets may be of interest for future work.

Conclusion

In conclusion, using data from the NHANES dataset likely to be readily available 
from a hypothetical health app user, plasma vitamin C was predicted with 
a maximum accuracy of R-sq equal to 0.3. Whilst this is evidence of some 
predictive capability, it cannot be considered high enough to be meaningful. 
This low predictive quality is likely owed to the fact that dietary data – a major 
predictor in plasma vitamin C status – was both low in resolution and had too low 
a frequency of collection. For effective PN research, higher quality data will be 
required. Of all of the regression algorithms investigated, XGBoost showed the best 
performance, closely followed by RF and then SVR. The superiority of these 
algorithms is in line with prior expectations since these algorithms have excellent 
reputations for solving regression tasks. Neither clustering nor PCA improved 
prediction accuracy. The current study adds to the PN body of literature by 
showing that data of a higher resolution than the NHANES provides is required 
for PN research.
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