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ABSTRACT
This paper presents GlidarPoly, an efficacious pipeline of 3D gait 
recognition for flash lidar data based on pose estimation and 
robust correction of erroneous and missing joint measurements. 
A flash lidar can provide new opportunities for gait recognition 
through a fast acquisition of depth and intensity data over an 
extended range of distance. However, the flash lidar data are 
plagued by artifacts, outliers, noise, and sometimes missing 
measurements, which negatively affects the performance of 
existing analytics solutions. We present a filtering mechanism 
that corrects noisy and missing skeleton joint measurements to 
improve gait recognition. Furthermore, robust statistics are inte-
grated with conventional feature moments to encode the 
dynamics of the motion. As a comparison, length-based and 
vector-based features extracted from the noisy skeletons are 
investigated for outlier removal. Experimental results illustrate 
the superiority of the proposed methodology in improving gait 
recognition given noisy, low-resolution flash lidar data.

ARTICLE HISTORY 
Received 11 June 2021  
Revised 13 February 2022  
Accepted 14 February 2022  

Introduction

The problem of gait identification has received significant interest in the last 
decade due to the various applications in areas ranging from intelligent 
security surveillance and identifying persons of interest in criminal cases to 
designated smart environments (Charalambous 2014; Jain, Bolle, and 
Pankanti 2006). Gait analysis also plays an important role in quantifying the 
severity of certain motion-related diseases such as Parkinson’s disease (Din, 
Silvia, and Rochester 2016). While the iris (Daugman 2009), face (Schroff, 
Kalenichenko, and Philbin 2015), and fingerprint (Maltoni et al. 2009) provide 
some of the most robust biometrics for person identification, they require the 
cooperation of subjects as well as the availability of high-quality data. 
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However, many scenarios exist in which the subjects cannot be controlled or 
acquisition of data is impossible. Under such circumstances, biometrics that 
can be extracted from gait have shown promising results in several studies 
(Preis et al. 2012; Sinha, Chakravarty, and Bhowmick 2013). Features extracted 
from gait are resilient to changes in clothing or lighting conditions compared 
to color or texture, which are among the prevalent features for person identi-
fication. While patterns of walking may not be necessarily unique to indivi-
duals in practice, a combination of biometric-based static attributes, along 
with motion analysis of certain body joints, can create an effective set of 
features to recognize an individual.

Video-based gait recognition approaches are generally divided into two 
main categories, model-based, and model-free methods. Model-free methods 
rely on features that can be obtained from clean silhouettes. Fitting a model, 
such as a skeleton to human silhouettes, and using the extracted features from 
such a model for gait recognition is categorized as a model-based approach. 
The model provides benefits in terms of data compaction, computation, 
storage, scalability, and recognition accuracy. Furthermore, the skeleton- 
related attributes mimic actual physical traits in the human body and can be 
utilized as a soft biometric.

In recent years, depth cameras have become popular for gait analysis mainly 
due to their ability to provide a three-dimensional depiction of the scene 
(Batabyal, Vaccari, and Acton 2015; Clark et al. 2013; Sadeghzadehyazdi, 
Batabyal, and Acton 2021). Unlike their optical counterparts, depth cameras, 
such as lidar and Kinect, can provide depth information that is not sensitive to 
lighting conditions. In this work, we utilize flash lidar to collect data. A flash 
lidar camera uses a pulsed laser to illuminate the whole scene and 

Figure 1. Sample frames of lidar data. The top and bottom rows show depth (range) and intensity 
data, respectively.
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simultaneously record depth (range) and intensity information. Figure 1 
shows example frames of the intensity and depth data collected by a flash 
lidar camera.

With a limited number of studies, the only existing lidar-based person 
identification works are model-free and rely on background subtraction to 
extract human silhouette from the point cloud data provided by Velodyne’s 
rotating multi-beam (RMB) lidar system (Benedek et al. 2018; Gálai and 
Benedek 2015). In general, pose estimation using point cloud data can be 
a computationally expensive problem (Xuequan et al. 2018, 2019; Zhao et al. 
2021).

Existing model-based methods take advantage of high-quality skeleton data 
provided by Kinect or mocap and avoid the challenge of erroneous features. 
However, as we will discuss in TigerCub 3D flash lidar, these modalities are 
not always a proper choice for real-world applications. In contrast to Kinect 
and mocap, flash lidar has shown successful applications in numerous real- 
world applications. However, unlike Kinect and Mocap, the data collected by 
a flash lidar camera are noisy and have a low resolution that limits the 
performance of skeleton extraction systems. Features that are computed 
from the spurious skeleton models are likewise erroneous, which presents 
a major challenge to a successful gait recognition. Under the described con-
ditions, a common approach is to remove low quality and missing data, and 
then to perform the gait analysis on the remaining higher-quality information. 
The work described in this paper takes an alternative approach by presenting 
a filtering mechanism to correct erroneous and missing skeleton joints. The 
correction mechanism is valuable because the original data, which is costly to 
collect, can be preserved. In addition, we won’t lose temporal information that 
encodes the dynamics of the motion.

The proposed design contributes to improving gait recognition using flash 
lidar data, with three main contributions:

1. We present a filtering mechanism that exploits polynomial interpolation 
and robust weighted regression to correct for noisy and missing measurements 
of joint coordinates that results in data preservation.

2. With extensive skeleton correction, we show that traditional feature 
moments can serve as a better representative of motion dynamics if they are 
considered along with robust statistics for outlier identification.

3. As an alternative method for applications where data elimination is not 
an issue, we investigate features extracted from noisy skeletons for outliers, 
and present a method for detecting outliers in vector-based features.

It is important to note that our work is not intended to introduce a complex 
methodology for the gait recognition problem in general. Instead, we aim to 
present an efficient pipeline for gait recognition for flash lidar data without 
data removal. This is a challenging problem with its own complexities, due to 
the low-quality and noisy lidar data.
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In this work, we take a model-based approach, leveraging OpenPose, a pre- 
trained deep network (Cao et al. 2017), to extract a skeleton model from the 
intensity information. Using camera properties and the depth data, the skele-
ton joint coordinates can be transformed into real-world coordinates. By 
modeling the coordinates of each joint through time as a set of time sequences, 
we use Tukey’s test (Tukey 1977) for an automated outlier removal, and 
present a method for detecting outliers in vector-based features. To address 
data elimination and loss of temporal information as a result of outlier 
removal, we present GlidarPoly (gait recognition by lidar through polynomial 
correction), a filtering mechanism that corrects erroneous skeleton joints and 
recovers the missing joint data, instead of eradicating them. We also integrate 
robust statistics to the conventional feature moments to capture motion 
dynamics and improve gait identification after correction of the skeleton 
joints. Figures 3 and 4 show the pipeline of joint correction and outlier 
removal methodologies, respectively.

The remainder of this paper is organized as follows. First, the related works 
are presented in the subsequent section. Next, the proposed methodology is 
presented, followed by results and discussion. We finish the paper with 
a conclusion section.

Related Works

In our dataset, recorded by a single flash lidar camera, several factors diminish 
the quality of features that are computed from the resulting joint positions. As 
the subjects proceed toward the camera, depth data are affected by noise. The 
lack of color in the intensity data and the similarity between human clothing, 
background, and skin are some of the other elements that can negatively affect 
the quality of segmented silhouettes, detected poses, and consequently the 
feature vectors. Figure 2 shows examples of faulty detected silhouettes. There 
are a large number of frames with no detected silhouette, mostly in successive 
frames. This loss of data occurs when a subject is farther from the camera and 
close to the background, or when there is minimal movement.

Figure 2. Examples of noisy segmented silhouettes from flash lidar data.
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There are a few studies in the literature that address the problem of gait 
identification under low quality or missing silhouette conditions. Iwashita, 
Uchino, and Kurazume (2013) and Tang et al. (2016) consider cases with 
incomplete silhouettes, but do not consider the cases when an entire silhouette 
is missing. In general, these studies depend on the reference silhouettes being 
correctly segmented. Silhouette reconstruction methods such as inpainting are 
only effective when smaller parts of the silhouette are missing (Tang et al. 
2016). Methods based on gait features such as gait energy image (GEI) (Han 
and Bhanu 2005) and its variations, that are less sensitive to segmentation 
error, are also based on the non-missing silhouette criterion. While in Babaee, 
Linwei, and Rigoll (2018) and Chattopadhyay, Sural, and Mukherjee (2014), 
the authors address the problem of missing silhouettes, they only consider 
sequences with a 90-degree camera view in the former and frontal view in the 
latter study. A 3D model-based approach is view- and scale-invariant and can 
avoid the problem of missing and faulty segmented silhouettes.

In general, model fitting is a complex process. In recent years, several works 
have explored deep learning models to address the model fitting problem (Cao 
et al. 2017; Rao et al. 2021; Zheng et al. 2019). On the other hand, numerous 
studies leverage Kinect as a markerless motion capture tool that generates 
high-quality intensity and depth data in real-time, along with joint positions of 
the skeleton. Ball et al. (Ball et al. 2012) used maximum, mean, and standard 
deviation of a set of lower body angles over a half gait cycle as features and 
k-means clustering algorithm on a dataset collected from four subjects. Araujo 
et al. (Araujo, Graña, and Andersson 2013) introduced eleven static anthro-
pometric features and investigated the effect of different subsets of features in 
gait recognition. Sinha et al. (Sinha, Chakravarty, and Bhowmick 2013) pro-
posed a set of area-based features plus the distance between different body 
segment centroids. They combined these attributes with features in Ball et al. 
(2012) and Preis et al. (2012), and obtained a higher accuracy compared with 
the work of Ball and Preis on a dataset of 10 subjects. Kumar and Babu (Kumar 
and Venkatesh Babu 2012) proposed a set of covariance-based measures on 
the trajectory of skeleton joints. Dikovski (Dikovski, Madjarov, and 
Gjorgjevikj 2014) evaluated the performance of different features like angles 
of lower body joints, the distance between adjacent joints, height, and step 
length over one gait cycle. Ahmed, Polash Paul, and Gavrilova (2015) utilized 
Dynamic Time Warping (DTW) to compare relative distance and relative 
angles between selected body joints. Yang et al. (2016) used a set of anthro-
pometric and relative distance-based features for identification.

To alleviate the effect of noisy data, a common approach involves the removal 
of outlier noisy data that are generated as a result of faulty measurements. 
Further processing is applied to the remaining higher-quality data. In Chi, 
Wang, and Q-H Meng (2018) and Choi et al. (2019), the authors used weighting 
schemes to reduce the effect of noisy and low-quality skeletons. However, they 
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did not address the cases where the whole skeleton is missing. The 
discussed methods are effective. But, they usually take advantage of high- 
quality data collected by Mocap or Kinect, which are generally limited to 
controlled environments. The previously mentioned limitations call for 
depth-based modalities such as flash lidar that is applicable in real-world 
scenarios. Using flash lidar will raise new problems in gait recognition. 
In turn, these problems provide an opportunity for developing novel 
methods to improve gait recognition.

Material and Methods

In this section, we describe the steps in the pipelines presented in Figure 3 
and 4. First, we explain about 2D skeleton detection and 3D joint location 
estimation in Body-tracking using intensity and depth data. Next, feature 
extraction is discussed in Feature extraction. Joint correction will be 
described in Correction of anatomical landmarks. We also address the 
computational complexity of joint correction and describe how we incor-
porate the motion dynamics for the corrected skeletons in Incorporating 
the dynamics in gait recognition for the corrected skeletons. Finally, the 
outlier detection method is explained in Outlier detection and exclusion.

Depth data

Intensity data
2D Skeleton
detector

3D Joint
location
estimator

Feature
extraction

Joint Correction

Person ID
Gait Recognition

Figure 3. Pipeline for gait recognition using the joint correction criterion of GlidarPoly. Equation (4) 
describes how depth data are combined with the output of a 2D skeleton detector (skeleton joints 
in the 2D image frame of reference) to create the 3D location of the joints in the real-world frame 
of reference.

3D Joint
location
estimator

Person IDFeature
extraction

Outlier
removal

Gait
recognition

Figure 4. Pipeline for outlier removal. Inputs to “3D Joint location estimator” remain the same as in . 
Figure 3
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Body-tracking Using Intensity and Depth Data

Figure 3 describes the workflow of the gait recognition methodology for the 
flash lidar data. We start with the 2D skeleton detection and 3D joint location 
estimation steps. For a lidar sequence V with f frames, there exists intensity 
I ¼ ½I1; I2; . . . ; If �, and depth R ¼ ½R1;R2; . . . ;Rf �, where Ii and Ri represent 
intensity and depth data at frame i. Intensity data are fed into a 2D skeleton 
detector. We leverage OpenPose, a state-of-the-art real-time pose detector, to 
fit a skeleton model and extract the location of body joints. In Figure 5, the top 
row shows examples of correctly detected skeleton joints. As we can see in this 
figure, OpenPose provides a skeleton model of 18 joints, where 5 of the joints 
represent the nose, eyes, and ears. It is important to note that some of the 
points in a skeleton model might not represent an actual joint. In general, 
these points are a set of anatomical landmarks. However, for convenience and 
consistency with literature, we call all of these points joints. The skeleton 
model that we adopt in this paper includes 13 joints. The reason for such 
choice is the fact that face joints are missing from a large majority of our 
samples. Figure 6 illustrates the skeleton model that we use in this work. Given 
Ii as the input to the skeleton detector, the output is the joint location 
coordinates that can be represented with the following vectorized form 

Ji ¼ ½xk; yk�
M
k¼1 2 <

2N (1) 

where ðxk; ykÞ are the coordinates of the kth joint in the image frame of 
reference, and M represents the number of joints. Considering the structural 
analogy between the 2D digital camera and 3D flash lidar, the pinhole camera 
model can be applied to the flash lidar camera as well (Jang et al. 2017). 

Figure 5. Top row: sample frames with correctly detected skeletons, bottom row: frames with 
faulty skeletons.
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Therefore, the relation between a point in the real-world 3-dimensional 
coordinate system and its 2-dimensional location in the image reference 
frame can be described by the following equation 

Li
j ¼

Lpi
j

f
� Di

camera (2) 

where f is the focal length of the camera and Di
camera is the depth value of joint 

i. Lpi
j represents the location of joint i in direction j in the image coordinate 

system. Here j is in the x or y direction, and Li in the z direction equals the 
depth value at the location of joint i. Furthermore, the viewpoint angle can be 
described by 

θaov ¼ 2 arctanð
Npixels

2f
Þ (3) 

where Npixels is the number of pixels in the j direction and θaov represents the 
angle of view. By combining (2) and (3), we can project the 2-dimensional 
coordinates of joints into the real-world coordinates (McCollough 1893). Li

j, 
the real-world location of joint i in direction j, can be calculated according to 
the following equation 

Li
j ¼

2
Npixels

� tanð
θaov

2
Þ � Lpi

j � Di
camera (4) 

Index Joint

1 Mid Shoulder
2 Right Shoulder
3 Right Elbow
4 Right Wrist
5 Left Shoulder
6 Left Elbow
7 Left Wrist
8 Right Hip
9 Right Knee
10 Right Ankle
11 Left Hip
12 Left Knee 
13 Left Ankle

Figure 6. The skeleton model that we use in this work. Left: index of each joint in the skeleton 
model. Right: skeleton model in a sample frame.
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As we discussed earlier, the quality of the resulting skeleton and the joint 
localization are negatively affected by several factors. The features that are 
computed using the acquired skeletons are plagued with erroneous measure-
ments. Therefore, gait recognition based on the computed defective skeletons 
results in a high rate of false positives. To resolve this problem, we present 
a filtering mechanism that employs polynomial interpolation and robust 
statistics to correct for noisy and missing measurements in time sequences 
of joint coordinate values. We will describe the filtering mechanism in 
Correction of anatomical landmarks.

Feature Extraction

To evaluate the performance of the proposed method, we use two different sets 
of feature vectors: length-based feature vectors and vector-based feature vec-
tors. The length-based feature vector consists of a set of limb lengths and 
distance between selected joints in the skeleton that are not directly connected. 
Figure 7 describes the components of the length-based feature vector. This set 
includes static limb length features and some other distance attributes that 
change during motion, and encodes information about postures.

The second set of feature vectors is vector-based. Each feature is 
a 3-dimensional vector, with origin and termination at two skeleton joints. 
Compared to distance-based features (Yang et al. 2016), or the angle-based 
attributes (Ball et al. 2012), vector-based features encode the angle and dis-
tance between selected joints of the skeleton. Figure 8 lists the joints that form 
each of the three-dimensional vectors in the vector-based feature vector. 
Unlike features in Kumar and Venkatesh Babu (2012) that are computed 

Index Feature

1 R and L Shoulder
2 R and L upper arm
3 R and L lower arm
4 Spine
5 R and L upper leg
6 R and L lower leg
7 Shoulder to shoulder
8 Elbow to elbow  
9 Wrist to wrist
10 Hip to hip
11 Knee to knee
12 Ankle to ankle
13
14

R shoulder to L ankle
L shoulder to R ankle

Figure 7. Illustration of length-based feature vectors. Left: description of each feature (L and R refer 
to the left and right joints, respectively). Right: illustration of the features.
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with respect to a reference joint, the vectors in the vector-based feature here 
are formulated between different joints, mimicking the limb vectors in the 
skeleton model.

Correction of Anatomical Landmarks

Let L be a matrix of the size of 39� Fn, where each row represents the time 
sequence of one joint in one of the directions x; y; , and z, extended over Fn 
frames. Since each skeleton consists of 13 joints, there are in total 39 joint 
coordinate time sequences. To correct for missing joint location values and 
noisy outliers in a given video, we perform filtering of joint location on each 
row of the corresponding L matrix. Let Lm represent the m th row of L 

Lm ¼ ½LmðtÞ�Fn
t¼1 LmðtÞ 2 < (5) 

Given the joint location sequence Lm, we find the sorted location of all the 
nonzero elements. We define nLm as the sorted set of all the indices in Lm with 
a non-zero value (each index corresponds with one time instant t) such that 

nLm ¼ ½n1; n2; . . . ; nR�

n1 < n2 < . . . < nR
ni 2 ½1; 2; . . . ; Fn�; i 2 ½1; 2; . . . ;R�

(6) 

where R is the number of non-zero elements in Lm. Next, between any two 
nonzero values with nonconsecutive indices along time, we fit a first-order 
polynomial through the least squares criterion 

nr 1
ns 1

� �
p1
p2

� �

¼
LmðnrÞ

LmðnsÞ

� �

(7) 

Index 3D vector

1 Neck to R Shoulder
2 Neck to L Shoulder
3 Neck to R Hip
4 Neck to L Hip
5 R Shoulder to R Elbow
6 L Shoulder to L Elbow
7 R Hip to R Knee
8 L Hip to L Knee 
9 R Elbow to R Wrist
10 L Elbow to L Wrist
11 R Knee to R Ankle
12 L Knee to L Ankle

Figure 8. Illustration of vector-based feature vectors. Left: description of each feature (L and R refer 
to the left and right joints, respectively). Right: illustration of the features.

APPLIED ARTIFICIAL INTELLIGENCE e2043525-2491



where nr; ns 2 nLm and ns � nr > 1. LmðnrÞ and LmðnsÞ are the values of Lm at nr 
and ns, respectively. p1 and p2 can be obtained by finding the least squares 
solution to the system of equations in (7). The polynomial fitting is performed 
over any two nonconsecutive time indices in the sorted time indices array of 
non-zero elements of Lm. Finally, we employ RLowess (locally weighted 
scattered plot smoothing) filter (Cleveland 1979) to smooth the resulting 
joint location sequence and alleviate the effect of remaining lower-amplitude 
spikes in Lm. RLowess assigns a value to each point by locally fitting a first- 
order polynomial, utilizing weighted least squares. Weights are computed 
using the median absolute deviation (MAD), which is a robust measure of 
variability in the data in the presence of outliers. The robustness of weights is 
critical due to the existence of smaller-amplitude spikes that act as outliers.

The described filtering procedure will effectively correct measurements 
in joint location time sequences. Furthermore, when pose-detector fails to 
detect a skeleton model, the joint location filtering can interpolate the 
missing skeleton joint locations. Figure 9 illustrates the result of filtering 
on samples of joint location coordinate time sequences.1 As we can see in 
this figure, the original joint location sequences are noisy, containing many 
missing values and outliers. In the third row of Figure 9, we can also see the 
sample frames with missing skeleton joints in the image reference frame. 

Figure 9. Effect of joint location sequence filtering. From top: sample joint location sequences 
before (first row) and after (second row) joint location sequence filtering (each joint location 
sequence corresponds with one coordinate (x; y; z) of the location of one joint through time). 
Notice the abundance of missing values in the first row, which are shown as missing sections of the 
plotted signal, that have been recovered through the joint correction (figures in the second row). 
The last two rows show samples of faulty and missing skeleton joints before (third row) and after 
(bottom row) joint location sequence filtering.
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As we observe in the last row, the missing joints are interpolated success-
fully through the filtering mechanism. We can also see two samples where 
a whole skeleton is recovered through the joint location correction. The 
joint location correction can be easily applied in the cases of occlusion for 
the one-subject and multi-subjects scenarios. While in this study the miss-
ing joint locations are the result of erroneous joint localization, it can be 
the result of occlusion. For most of the cases, the interpolation of missing 
or noisy joints follows the correct joint locations. However, there exist cases 
where the obtained localization results are not accurate. Figure 10 shows 
some failure examples in joint localization correction. The majority of such 
failure cases are the result of the existence of a considerable number of 
successive frames with missing or noisy joints that make the joint correc-
tion prone to defective measurements. However, even for failure cases, at 
least half of the joints are predicted correctly. This can enhance the like-
lihood of correct identification compared to the original localization of the 
joints.

Computational Complexity of Joint Correction
The main computational bottleneck is in the last step of joint correction 
filtering, where we use Rlowess for smoothing the curve of joint location 
time sequences, and alleviate the effect of outliers with OðNlogðNÞ þ 3Nðdþ
1ÞkÞ computational complexity. Here, N is the number of points in a joint 
location time sequence, d is the degree of the polynomial used in the regression 
(here d ¼ 1), and k is the number of k-nearest point or length of each span in 
the local regression smoothing (k is constant and the same for all the points) 
(Smolik, Skala, and Nedved 2016).

Figure 10. Failure examples of the joint location correction filtering. Sample frames of skeleton 
joints, before (top) and after (bottom) the joint location correction.
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Incorporating the Dynamics in Gait Recognition for the Corrected Skeletons

As humans, we recognize a familiar person not just by looking at their body 
measurements like height; we also incorporate the way that people move their 
bodies during activities, such as walking. In the gait recognition language, the 
first set of features that are computed from body measurements like limb 
lengths or height are called static features. Attributes like step length or speed 
that comprise the motion of gait from one posture to another posture, are 
dynamic features. When individuals with approximately the same body mea-
surements are considered, dynamic features are critical for successful gait 
recognition. Speed, step length, and stride length are among the widely used 
features to incorporate the dynamic of the motion (Koide and Miura 2016; 
Preis et al. 2012). Computing moments like mean, maximum, and variance of 
selected features over each gait cycle (Chi, Wang, and Q-H Meng 2018; Sinha, 
Chakravarty, and Bhowmick 2013; Yang et al. 2016) is another common 
practice in the majority of model-based methods. The time sequence of the 
distance between the two ankle joints is a commonly employed attribute to 
compute the gait cycle. This practice has repeatedly proven to be successful in 
encoding the dynamic of motion, achieving high accuracy in gait recognition. 
However, this analysis is commonly performed on a clean dataset with a low 
level of noise and a few to none outliers. Such datasets are commonly recorded 
under controlled conditions, like limited directions of motion in front of 
a camera.

Figure 11 shows examples of the time sequence of the ankle to ankle 
distance for lidar data after joint location correction. The sequence on the 
left shows a periodic pattern. However, like the sequence on the right side of 
Figure 11, some examples lack a clear cyclic pattern. As Chi et al. (Chi, 
Wang, and Q-H Meng 2018) discussed, variations in different walking 
factors such as walking direction, walking speed, and step length can cause 
aperiodicities in the walking patterns. This can cause complexities in the 
interpretation of the motion, such as in gait cycle computation. In addition 

20 40 60 80 100
Frame number 

0

0.1

0.2

0.3

0.4

A
n

kl
e-

to
-A

n
kl

e 
d

is
ta

n
ce

(m
)

20 40 60 80 100
Frame number 

0

0.1

0.2

0.3

0.4

A
n

kl
e-

to
-A

n
kl

e 
d

is
ta

n
ce

(m
)

Figure 11. Two examples of the ankle to ankle distance sequence of flash lidar data after joint 
correction. While the graph on the left presents a clear periodic pattern, the sequence on the right 
lacks such a pattern.
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to such intra-personal variations in the gait, with the flash lidar data, there is 
a considerable amount of consecutive frames with a missing skeleton in each 
sequence. This will cause the result of joint sequence correction prone to 
noisy measurements, and therefore, it will exacerbate the problem of the 
observed acyclic patterns. Considering the sequences in Figure 11, irrespec-
tive of a sequence being periodic or aperiodic, we consider a gait cycle as 
a local time sequence with three consecutive local maxima. To compensate 
for large variations in the gait cycle throughout one sequence of walking, we 
incorporate statistics that are robust to noisy data. In addition to the 
commonly employed statistics of mean, standard deviation, and maximum, 
we also include median, upper, and lower quartiles that are robust to noisy 
data. We build feature vectors that comprise mean, standard deviation, 
maximum, median, lower quartile, and upper quartile of each feature over 
every gait cycle. Later, we will show that the resulting feature vectors can 
improve the classification scores over the feature vectors with only non- 
robust moments.

Outlier Detection and Exclusion

Outliers are a set of observations that cannot be described by the underlying 
model of a process. While in some applications, i.e. surveillance and abnor-
mal behavior detection, outlier observations can be of interest and are kept 
for further investigation, there are situations that outliers are the result of 
faulty measurements or caused by noise. The latter type of outliers has to be 
detected and removed before model estimation because the models that are 
estimated utilizing the data which is contaminated by such outliers are not 
accurate and generate many false predictions. For gait recognition, one 
common approach is to remove outlier measurements from the collected 
data by setting some measurement thresholds (Chi, Wang, and Q-H Meng 
2018; Semwal et al. 2017; Yang et al. 2016). The second row in Figure 5 
presents some of the examples of faulty skeletons that are the result of 
erroneous joint localization. Furthermore, there are frames with missing 
skeletons.

For comparison, and as an alternative approach to deal with noisy and 
missing joint location measurements in our dataset, we employ the Tukey 
method along with some pre-filtering to detect outliers in the feature vectors. 
We choose Tukey’s test, in particular, to avoid making any assumption about 
the underlying distribution of the features. Based on Tukey’s test, an outlier is 
any value that is below Qulow � 1:5� IQR or above Quup þ 1:5� IQR, where 
IQR ¼ Quup � Qulow stands for the interquartile range. Qulow ¼

1
4 ðnþ 1Þth 

term or lower quartile, and Quup ¼
3
4 ðnþ 1Þth term or upper quartile are 

defined on an ordered set of n terms.
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Outlier Removal for Length-based Features
We define Jd ¼ ½Jd1; Jd2; . . . ; JdP� as a feature vector, where P is the number of 
features in Jd, and Jdi is the Euclidean distance between two skeleton joints. 
Before applying Tukey’s test, we first remove all the frames with missing 
skeletons. Next, Tukey’s test is employed on each feature. Jd is not an outlier if 

TukeyðfJdig
P
i¼1Þ ¼ 0PwhereJdi 2 <

þ (8) 

where 0P is a zero vector of length P. TukeyðJdiÞ ¼ 0 means that feature Jdi 
passed the Tukey’s test, or Jdi is not an outlier. Based on Equation (8), feature 
vector Jd is a non-outlier, if all of its feature components are non-outliers. In 
other words, Jd is an outlier if there exists a Jdi, such that TukeyðJdiÞ ¼ 1. As 
we will show later, while outlier removal will improve gait recognition scores, 
it comes at the cost of eliminating a considerable portion of the data.

Outlier Removal for Vector-based Features
There are cases where the components of a feature vector are vectors. This 
happens if we compute the 3-dimensional vectors between skeleton joints. In 
other words, we have a 3� Q vectorized matrix Jv3D ¼ ½Jv3D

1 ; Jv3D
2 ; . . . ; Jv3D

Q � of 
the joint coordinates. Q is the number of 3-dimensional vectors in Jv3D, and 
Jv3D

i represents the ith column, which is the 3-dimensional vector between two 
skeleton joints 

Jv3D
i ¼ ½xi; yi; zi� 2 <

3N (9) 

We need to treat each of the 3-dimensional vectors as one entity, rather than 
treating each dimension separately.

To detect outliers for this set of features, we use the concept of marginal 
median. The marginal median of a set of vectors is a vector where each of its 
components is the median of all the vector components in that direction. We 
then use cosine distance to calculate vector similarity between each set of 
3-dimensional vectors and their corresponding median vector. We define 
Jvmedian as the marginal median over all the given Jv3D feature vectors 

S3D ¼ cosðJvmedian
i ; Jv3D

i Þj
Q
i¼1 (10) 

where S3D
i ¼ cosðJvmedian

i ; Jv3D
i Þ is the cosine similarity between i element of 

feature vector Jv3D and Jvmedian. Then, Tukey’s test is employed on the cosine 
similarity measures, and a feature vector is labeled as an outlier if at least one 
of its features is an outlier. The algorithm below describes outlier detection on 
the feature vectors built from 3-dimensional vectors.

Outlier Detection for Vector-based Features
1. Over all the given feature vectors, calculate the marginal

median vector. Call this vector Jvmedian
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2. For each 3D vector Jv3D
i in each feature vector Jv3D,

calculate cosðJvmedian
i ; Jv3D

i Þ; save the results in one
row of S.
3. Employ Tukey’s test on each row of S.
4. A given feature vector Jv3D will pass Tukey’s test if
its corresponding row in S passes Tukey’s test.

Results and Discussion

The proposed joint correction is evaluated on two datasets: our flash lidar 
dataset (Evaluation on flash lidar data), and IAS-Lab (Evaluation on IAS-Lab) 
collected by a Kinect camera (Munaro et al. 2014a). While our focus is not on 
Kinect modality, due to the lack of publicly available flash lidar data for gait 
recognition, we evaluate the performance of the joint correction methodology 
on IAS-Lab RGB-ID. To evaluate the performance of the joint correction 
filtering on IAS-Lab, we remove the whole skeletons in consecutive frames 
and manually add noise to skeleton joints.

Evaluation on Flash Lidar Data

In this subsection, we first expalin about TigerCub 3D flash lidar as a modality 
that can collect intensity and depth data, simultaneously. Next, we describe the 
test setup and collected flash lidar dataset in Test setup and dataset and study 
the effect of joint correction by looking at the gait identification results before 
and after applying GlidarPoly and also present the results with outlier removal 
(Effect of joint correction on gait recognition). We then look at the effect of 
integrating robust statistics to capture motion dynamics in Effect of the robust 
statistics integration. Finally, in Effect of the number of training samples, we 
investigate the effect of the number of training samples on the performance of 
the proposed method for gait recognition.

TigerCub 3D Flash Lidar
As a depth-based modality, Kinect removes the hurdle of model fitting due to 
the direct estimation of joints coordinates. However, the working range of 
Kinect is limited. Furthermore, the depth data of Kinect is not reliable in 
outdoor environments, because the system is unable to distinguish the infra-
red light of the sensor from infrared radiation present in the outdoor environ-
ment (Fankhauser et al. 2015). In other studies, high-quality real-time skeleton 
joint positions are acquired by motion capture (mocap) (Balazia and 
Plataniotis 2017; Krzeszowski et al. 2014). In terms of applicability, mocap is 
limited to a laboratory environment. Unlike mocap, flash lidar has been 
extensively used for outdoor applications. Compared with Kinect, a flash 
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lidar camera has a significantly extended range ( > 1000 meters) and its 
performance is not degraded in outdoor environments due to the irradiance 
of the background (Horaud et al. 2016).

The TigerCub is a light-weight 3D flash lidar camera that provides real-time 
depth and intensity data, using eye-safe Zephyr laser (Horaud et al. 2016). The 
performance of the camera is not affected by the lack of light at night, or in the 
fog or dust. This sensor has a focal plane of 128� 128 and can acquire up to 20 
frames per second.

Test Setup and Dataset
The dataset in this work has been recorded using a single TigerCub 3D flash 
lidar camera. The camera is in a fixed location during all the actions. There are 
in total 34 sequences of walking actions performed by 10 subjects, captured at 
the rate of 15 fps. The recording includes walking action of three main 
categories: walking toward and away from the camera, walking on 
a diamond shape, and walking on a diamond shape while holding 
a yardstick with one hand. Figure 12 illustrates the paths of walking for the 
two cases of walking forward and backward (walking toward and away from 
the camera) and the diamond walking. For those frames in which subjects walk 
toward and away from the camera, most of the views are from the front and 
back of the person, with some frames of side views when the subjects turn 
away. The sequences with walking on a diamond shape include frames with 
a wider range of views. This will offer a wider range of poses as is shown in 
Figure 13. The number of frames per video is different, ranging from 130 to 
498 frames. Each frame has two sets of data, intensity, and depth, both with the 
same number of pixels. The intensity data are presented in gray-scale, and the 
depth data show the distance of each point in the field of view from the camera 
sensor.

Effect of Joint Correction on Gait Recognition
To evaluate the performance of the proposed joint correction, we carry out 
a comparison with four state-of-the-art relevant gait recognition methods 
before and after employing skeleton joint correction. These methods are as 

Figure 12. Illustration of two types of waIking paths: walking forward and backward (dashed line) 
and diamond walking (solid line).
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follows: Preis (Preis et al. 2012), Ball (Ball et al. 2012), Sinha (Sinha, 
Chakravarty, and Bhowmick 2013), and Yang (Yang et al. 2016). Preis et al. 
use a set of static features, plus step length and speed as dynamic features. Ball 
et al. use the moments of six lower body angles. Sinha combines the features in 
Preis et al. (2012) and Ball et al. (2012) with their area-based and distance 
between body segments features. Yang et al. utilize selected relative distance 
on different motion directions. To compare the performance of different 
methods, we consider the average accuracy and F-score. We also evaluate 
the performance of the proposed outlier removal method. We use 75% of the 
sequences for training and the rest for testing, and hire 10-fold cross- 
validation for training. To ensure the generalization of the proposed method, 
the classifier is tested on a type of walking that it was not trained on. Support 
vector machine (SVM) with the radial basis function (RBF) kernel is adopted 

Figure 13. Sample frames of diamond walking that captures a range of different poses.

Figure 14. T-SNE visualization of the length-based feature before (left) and after (right) applying 
joint correction. There is a high level of inter-class intersection before joint correction (left) that is 
mostly resolved after correcting joint location, creating clusters that are more distinctive (right).
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as our classifier. We also employed a linear kernel and, in most of the cases, we 
acquired either the same or lower accuracy with the linear kernel. In the first 
experiment, we consider the per-frame (one-shot) scenario for both length- 
based and vector-based features and do not incorporate motion dynamics in 
our features.

Figure 14 and 15 show t-SNE visualization of length-based and vector-based 
features for the training data before and after joint location correction. Some 
of the interesting observations from these visualizations are as follows:

● There is a high level of the inter-class intersection before joint correction, 
which is transformed into a wider separation among classes after the joint 
location correction.

● In the right graph of Figure 15, we see class 9 that is non-homogeneously 
scattered, which makes it more difficult to find the decision boundary. 
This is one of the reasons that we get a lower accuracy for this class (the 
per-class accuracy is presented in Table 3) and overall lower accuracy for 
the whole dataset.

● In Figure 15, we observe two separate clusters that are transformed into 
a single one after joint correction.

● The transformed features are well separated, which shows we do not 
necessarily need a more sophisticated classifier.

Table 1 shows the correct identification scores for the original (without the 
joint correction), with outlier removal, and after applying GlidarPoly. As we 
can see, the identification scores are generally low when features are computed 
from the skeleton data without skeleton joint correction. This is due to the 
existence of a considerable number of noisy and missing skeletons. We also 
observe that while outlier removal can improve the identification scores, it is 

Figure 15. T-SNE visualization of the vector-based feature before (left) and after (right) applying 
the joint correction. Before joint correction, high inter-class intersection and intra-class separation 
is observed (left). Joint correction transforms features into well-separated clusters (right).
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not as effective as the joint correction. This might be caused by noisy features 
that still exist after outlier removal. Furthermore, outlier removal eliminates 
more than 40% of the data, which can be problematic when data are limited.

The results in Table 1 demonstrate the effectiveness of joint correction, 
where the correction process improves the gait identification scores in all of 
the cases. Among the evaluated methods, the performance of Ball et al. 
(2012) does not improve as much as the other approaches. In Ball et al. 
(2012), the authors use six angles between lower body joints as features and 
compute three moments of each angle over every gait cycle. We see in 
Figure 6 that the adopted skeleton model in our work lacks foot joints that 
are essential to estimate two of the angles in Ball et al. (2012). To calculate 
these angles, we estimate the floor plane and use the normal vector to the 
plane. We speculate that the error in this estimation might also result in 
lower performance of this method compared to the others. Furthermore, it 
was reported before that distance-based features might work better than 
angle-based features, in particular, when the number of subjects is relatively 
low (Dikovski, Madjarov, and Gjorgjevikj 2014). Joint angles are also prone 
to changes in the walking speed (Han 2015; Kovač and Peer 2014). Results 
also show that vector-based features outperform length-based features. 
Furthermore, while our feature vectors do not contain the dynamics of 
the motion, vector-based features still outperform methods that incorporate 
temporal information by computing moments of features over the gait 
cycle.

Figure 16 compares the classification accuracy based on the number of 
missing joints in the original detected skeletons before and after applying 
GlidarPoly for the joint location correction. This graph shows that the 

Table 1. Correct identification scores for the proposed features (**) and the other methods. 
LB and VB stand for the length-based and vector-based feature vectors, respectively. 
Results are shown for the original (without joint correction) and after applying 
GlidarPoly. We also included the results with the proposed features after outlier removal.

Method Average Accuracy (%) Average F-score(%)

Original
Preis et al. 2012 30.26 23.67
Ball et al. 2012 27.30 23.21
Sinha, Chakravarty, and Bhowmick 2013 62.02 55.44
Yang et al. 2016 62.10 57.37
**LB 55.20 52.20
**VB 65.93 63.72
After outlier removal
**LB 66.63 61.21
**VB 80.70 75.22
After GlidarPoly correction
Preis et al. 2012 40.77 36.21
Ball et al. 2012 32.55 32.49
Sinha, Chakravarty, and Bhowmick 2013 80.11 80.40
Yang et al. 2016 75.79 72.75
**LB 73.84 70.66
**VB 84.07 80.49
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accuracy improves in all of the groups after the joint location correction. This 
confirms the effectiveness of GlidarPoly in improving skeleton joint localiza-
tion. It should be noted that samples with no missing joints also include noisy 
joint data. The sudden jumps in the joint time sequence samples in the top row 
of Figure 9 present examples of such noisy behavior in the original joint 
localization.

Effect of the Robust Statistics Integration
As we discussed earlier, to integrate the motion dynamics after applying the 
joint correction, we compute six statistics of our features over each gait cycle. 
Table 2 presents the identification scores when the statistics of length-based 
and vector-based features are computed over each gait cycle. By comparing the 
classification scores, we realize that adding the median, upper, and lower 
quartile to commonly employed statistics of mean, maximum, and standard 
deviation can improve the identification results after skeleton correction. The 
average per-class accuracy and F-score for the single-shot (per-frame) case are 
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Figure 16. Comparison of classification accuracy for vector-based features based on the number of 
missing joints in the original skeletons, before and after applying GlidarPoly for joint correction. 
The samples with no missing joints also include noisy samples. All cases show improvement after 
applying the joint location correction.

Table 2. Correct identification scores with statistics of features com-
puted over gait cycle. LB and VB stand for the length-based and 
vector-based feature vectors, respectively. The 3-statistic case refers 
to computing only mean, maximum, and standard deviation of each 
feature over every gait cycle. The 6-statistic scenario adds median, 
lower and upper quartile to the initial three statistics.

Method Average Accuracy (%) Average F-score (%)

LB (3 statistics) 75.27 73.20
LB (6 statistics) 76.03 74.88
VB (3 statistics) 83.32 80.91
VB (6 statistics) 89.12 87.06
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summarized in Table 3. We also present the per-class accuracy and F-score for 
the gait cycle statistics in Table 4. By comparing the per-class classification 
scores for the single-shot and statistics over the gait cycle, we also see that the 
minimum per-class accuracy and F-score are improved by 4:5% and 10:97% as 
a result of employing gait cycle statistics. This indicates that by employing 
features that encode motion dynamics, we can build a more reliable model 
compared to the case that only considers static features.

Effect of the Number of Training Samples
It is essential to investigate how the designed model or the selected features 
perform under limited data availability. To address this concern, we examine 
the effect of the number of training samples on the performance of the vector- 
based features, both for the single-shot approach as well as the statistics over 
a gait cycle.

In Figure 17, the left graph presents the single-shot identification accuracy 
as a function of the number of training examples, for several number of test 
samples in ½100; 1000� range. For a given number of test samples, the accuracy 
of identification improves as we increase the number of training data. A test 
sample size equal to or larger than 200 frames appears to be a proper choice 

Table 3. Correct identification scores for each class of subject for 
the single-shot scenario of vector-based features. The minimum 
and the next-to-lowest accuracy and F-score are underlined.

Subject # Average Accuracy (%) Average F-score (%)

Subject 1 93.85 96.83
Subject 2 80 79.69
Subject 3 79.23 69.36
Subject 4 74.62 64.03
Subject 5 93.08 82.88
Subject 6 76.92 64.52
Subject 7 100 84.69
Subject 8 76.92 85.29
Subject 9 66.92 78.61
Subject 10 82.31 88.25

Table 4. Correct identification scores for each class of subject for 
the statistics of vector-based features over the gait cycle. The 
minimum and the next-to-lowest accuracy and F-score are 
underlined.

Subject # Average Accuracy (%) Average F-score (%)

Subject 1 71.42 83.33
Subject 2 85.71 80
Subject 3 85.71 92.31
Subject 4 85.71 75
Subject 5 100 93.33
Subject 6 100 82.35
Subject 7 100 77.78
Subject 8 85.71 92.31
Subject 9 85.71 92.31
Subject 10 78.57 88
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empirically, as the accuracy trend is shown to be more stable. We also observe 
that the best performance is obtained with a training set of 1000 samples, 
irrespective of the number of test data.

In Figure 17, the right graph illustrates the same experiment with a various 
number of gait cycles. This graph shows classification accuracy when the 
statistics of features over a gait cycle are considered as the feature vectors. 
The number of training cycles changes over the range of ½50; 230�. We observe 
that regardless of the number of test samples, with a training sample of at least 
200 gait cycles, we can acquire the highest accuracy with this feature. This 
limitation can be problematic when the available number of gait cycles per 
subject is severely limited.

Evaluation on IAS-Lab

IAS-Lab RGB-ID dataset includes three sets, “Training,” “TestingA,” and 
“TestingB” of 11 different subjects. Subjects perform walking action and rotate 
on themselves during walking. The outfits of the subjects in “TestingA” are 
different from their outfits in “Training” set. “TestingB” sequences are cap-
tured in a different room, with subjects wearing the same outfits as in the 
“Training” sequences. Furthermore, some sequences in “TestingB” are 
recorded in a dark environment. First, we compute the single-shot rank-1 
identification accuracy for our vector-based and length-based features and 
compare it with several state-of-the-art methods with the original data in 
Single-shot identification with IAS-Lab. Next, we manually add noise to 
some of the skeleton joint locations and randomly remove some of the other 

200 400 600 800 1000
Number of frames

60

65

70

75

80

85

A
ve

ra
g

e 
ac

cu
ra

cy
(%

)

Num test = 1000
Num test = 600
Num test = 200
Num test = 100

50 100 150 200
Number of gait cycles

50

60

70

80

90

100

A
ve

ra
g

e 
ac

cu
ra

cy
(%

)

Num test = 100
Num test = 70
Num test = 40
Num test = 30

Figure 17. Average classification accuracy for different sizes of training sample sets given multiple 
numbers of test examples for the single-shot (left), and statistics over the gait cycle (right) 
scenarios. Both plots are acquired for vector-based features.
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joint location information. Then, we apply GlidarPoly, and compare the 
results of gait recognition with the corrupted joints and after employing 
GlidarPoly in Effect of joint correction on gait recognition. Finally, we look 
at the effect of integrating robust statistics to capture motion dynamics after 
applying GlidarPoly for skeleton correction in Effect of the robust statistics 
integration.

Single-shot Identification with IAS-Lab
Table 5 shows the single-shot rank-1 identification accuracy for our length- 
based and vector-based features (the last two rows), and several other RGB and 
depth-based methods on the IAS-Lab dataset. All the results with the RGB- 
based features (features that are extracted from RGB images) are reported 
based on Ancong, Zheng, and Lai (2017). As we can see, 2D RGB-based 
features achieve better results on “TestingB” compared with “TestingA” 
where subjects are wearing different outfits. This is because changes in the 
outfit can affect the consistency of these types of features. D13 skeleton feature 
(Munaro et al. 2014b) consists of 11 length-based features and 2 ratios of 
length-based features. PCM þ Skeleton (Munaro et al. 2014a) adds the point 
cloud matching to these skeleton-based features of Munaro et al. (2014b). In 
Pala et al. (2019), the authors use a weighted combination of 3D skeletal and 
3D face features to improve person re-identification. The 3D CNN (Haque, 
Alahi, and Fei-Fei 2016) is trained on the 3D point cloud, while 3D RAM 
(Haque, Alahi, and Fei-Fei 2016) is a recurrent attention model trained on 4D 

Table 5. Single-shot identification: Rank-1 identification accuracy for the proposed features, 
several RGB-based (features that are extracted from RGB images), and depth-based (features 
that are extracted using depth data, e.g. skeleton-based features) features for IAS-Lab RGBD-ID 
“TestingA” (different outfits) and “TestingB” (different rooms, various illuminations) sets. With 
(Rao et al. 2021), we only report the best results that was achieved by Reverse Reconstruction 
method. With our features, we only show the best results that was achieved by NN (Nearest 
Neighbors) and SVM (Support Vector Machine) for the Length-based and Vector-based features, 
respectively.

Method TestingA TestingB

RGB-based features
HOG (Oreifej, Mehran, and Shah 2010; Ancong, Zheng, and Lai 2017) 31 47.21
Gabor-LBP (Zhang and Shutao 2011; Ancong, Zheng, and Lai 2017) 28.71 51.38
LOMO (S. Liao et al. 2015; Ancong, Zheng, and Lai 2017) 26.37 30.97
Depth-based features
D13 Skeleton (NN) (Munaro et al. 2014b) 22.5 55.5
D16 Skeleton+Adaboost (Pala et al. 2019) 27.4 39.2
PCM+Skeleton (Munaro et al. 2014a) 25.6 63.3
3D CNN (Haque, Alahi, and Fei-Fei 2016) 44.2 56.2
3D RAM (Haque, Alahi, and Fei-Fei 2016) 48.3 63.7
ED+SKL (Ancong, Zheng, and Lai 2017) 48.75 58.65
Multi-layer LSTM (Zheng et al. 2019) 34.4 30.9
PoseGait (R. Liao et al. 2020) 41.4 37.1
Reverse Reconstruction (Rao et al. 2021) 60.1 62.5
Length-based (NN) 46.61 70.64
Vector-based (SVM) 55.21 67.71
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tensors of 3D point cloud over time. ED þ SKL (Ancong, Zheng, and Lai 
2017) is another depth-based feature, computed from eigen-depth and skele-
ton-based attributes. In Zheng et al. (2019), an attentional Recurrent 
Relational Network-LSTM is designed that can model the spatial information 
and temporal dynamics in skeletons, simultaneously. 3D pose data concate-
nated with several other spatio-temporal features are fed as the input to a CNN 
for gait recognition in PoseGait (R. Liao et al. 2020).Rao et al. (2021) present 
a self-supervised method with locality-awareness to learn gait representations. 
In the last two rows, we present the results with our length-based and vector- 
based features using NN (nearest neighbor) and SVM classifiers. For the NN 
classifier, we use the Manhattan distance with five nearest neighbors, similar to 
our previous study (Nasrin et al. 2019). The results show that Reverse 
Reconstruction (Rao et al. 2021) outperforms other methods on “TestingA” 
where subjects are wearing outfits different from the training set. Our vector- 
based feature comes second in terms of performance for “TestingA,” with 
6:46% higher accuracy compared with the next best performing method (ED 
+SKL). On “TestingB” (where there are changes in the illumination), our 
length-based and vector-based features acquire the first and second highest 
accuracies compared with the other methods.

Effect of Joint Correction on Gait Recognition
To evaluate the performance of the joint correction filtering on IAS-Lab, we 
added some errors using Gaussian distribution, to randomly selected joints. 
Furthermore, we randomly removed the joint location information of some 
other joints. Table 6 presents the single-shot rank-1 identification accuracy on 
the IAS-Lab with the added noise and after applying GlidarPoly for joint 
location correction. As the results show, the identification scores improve 
considerably after applying GlidarPoly. We see the identification accuracy 
after applying GlidarPoly is close to the results with the original data (the 

Table 6. Single-shot identification: Rank-1 identification 
accuracy for the proposed features on IAS-Lab RGBD-ID 
“TestingA” (different outfits) and “TestingB” (different 
rooms, various illuminations) before (with added noise 
and removed joints) and after applying GlidarPoly for 
correction. We only show the best results that was 
achieved by NN (Nearest Neighbors) and SVM (Support 
Vector Machine) for the Length-based and Vector-based 
features, respectively.

Method TestingA TestingB

With added noise
Length-based (NN) 23.86 30.18
Vector-based (SVM) 39.19 46.35
After applying GlidarPoly
Length-based (NN) 48.24 63.93
Vector-based (SVM) 52.58 62.34
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last two rows of Table 5), which again proves the effectiveness of the proposed 
joint correction filtering mechanism. For the length-based features in 
“TestingA” set, we see that the results with GlidarPoly are even better than 
the results with the original uncorrupted data in Table 5. This might indicate 
the removal of some of the noise that exists in the original data. The results in 
these tables show that improvement is more pronounced with “TestingB” in 
IAS-Lab. Furthermore, length-based features in general see a higher percen-
tage of improvement compared with the vector-based features. Table 6 shows 
that identification accuracy improves in the range of ½15%; 33%� after applying 
GlidarPoly to correct the faulty joint locations in IAS-Lab.

Effect of the Robust Statistics Integration
Table 7 shows the rank-1 identification scores after computing the 6 statistics 
of length-based and vector-based features of corrected skeletons over the gait 
cycle for “TestingA” and “TestingB” sets. By comparing the results with the 
single-shot identification accuracy after joint correction in Table 6, we only 
observe improvements in two cases (cases with improvements are shown in 
boldface.) As we discussed earlier in Effect of the number of training samples 
and illustrated in Figure 17, our evaluation shows that we need an order of 10 
gait cycles for training to acquire improvement over the single-shot scenario. 
To achieve this improvement on the lidar dataset, we need on average at least 
20 gait cycles per subject. While in our lidar dataset there is only one subject 
with less than 20 gait cycles for training, in IAS-Lab dataset there are 3 subjects 
with such a condition. Therefore, we observe fewer cases of improvement in 
IAS-Lab dataset compared with our flash lidar data.

Discussion

Our experiments show that GlidarPoly, the proposed filtering method for 
skeleton correction, is effective in improving the quality of noisy skeleton 
joints and recovering missing joints and therefore enhancing gait recognition 
results. We also observed that while outlier removal improves gait recognition 

Table 7. Rank-1 identification accuracy using the 6 
statistics of the proposed features on IAS-Lab 
“TestingA” (different outfits) and “TestingB” (different 
rooms, various illuminations) after joint location cor-
rection. We only show the best results on average 
that was achieved by NN (Nearest Neighbors) and 
SVM (Support Vector Machine) for the Length-based 
and Vector-based features, respectively.

Method TestingA TestingB

Length-based (NN) 53.88 66.88
Vector-based (SVM) 46.89 61.29
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scores, it is still inferior to skeleton correction with GlidarPoly. Outlier 
removal can be a practical solution when outlier and noisy frames are 
a small portion of the collected data. However, data elimination can raise 
serious issues when a considerable portion of the data are outliers (as with our 
dataset). In particular, when outliers exist in consecutive frames, which is 
common in the flash lidar dataset, outlier removal results in the elimination of 
temporal information that is critical for applications such as gait recognition. 
As we saw in Table 2 , once we employ temporal information after joint 
correction, outlier removal results in even lower recognition accuracy as 
compared with the joint location correction.

We also observed that incorporating robust statistics such as median and 
upper and lower quartiles to the more common feature moments can provide 
a richer representation of temporal information after skeleton correction. In 
Figure 18, we show the performance of three sets of feature statistics over every 
gait cycle after applying GlidarPoly on the lidar data, and “TestingA” (different 
outfits) and “TestingB” (different rooms, various illuminations) in IAS-Lab. 
We use NN and SVM as classifiers. In the majority of cases, lower quartile, 
upper quartile, and median outperform the mean, max, and standard devia-
tion set after joint location correction. We even see cases, where the former can 
acquire higher identification accuracy compared with the combination of all 
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Figure 18. Comparison of the performance of mean, max, standard deviation set, and lower 
quartile, upper quartile, median set, and the set of all the six statistics to capture the dynamic of 
the motion after joint location correction. Comparison is performed for lidar and “TestingA” 
(different outfits) and “TestingB” (different rooms, various illuminations) in IAS-Lab datasets with 
both types of features and SVM (Support Vector Machine) and NN (Nearest Neighbors) as 
classifiers. LB and VB stand for length-based and vector-based features, respectively. In the 
majority of cases, lower quartile, upper quartile, median set outperforms mean, max, standard 
deviation set.
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the six statistics. This suggests that lower and upper quartile and median as 
robust statistics are better identifiers of temporal information when joint 
correction is performed to recover corrupted and missing data.

Among the proposed features, we observe that vector-based features out-
perform the length-based features in all cases, except for the “TestingB” of 
IAS-Lab. We hypothesize that changes in the illumination can lead to length- 
based features being more robust measures than vector-based features. Too 
much illumination can create a bleached-out image with insufficient contrast. 
In addition, we cannot see objects of interest in their true three-dimensionality 
if insufficient illumination is provided. Therefore, illumination variations can 
diminish the power of vector-based features.

In this work, we focused on a model-based gait recognition approach for 
flash lidar modality through an extensive joint correction of the estimated 
skeletons. Another possible approach can consist of filtering intensity and 
depth information and using the filtered data for pose estimation and gait 
recognition. But, we should note that the filtering of depth map in time-of- 
flight (TOF) cameras such as flash lidar is, in general, a computationally 
expensive process (Kim, Kim, and Yo-Sung 2013). Furthermore, due to the 
low resolution of both intensity and depth data of flash lidar, the effect of such 
filtering on the improvement of pose estimation and gait recognition is not 
clear.

The filtering mechanism presented here improves gait recognition by cor-
recting missing and noisy skeleton joints in two steps. The two-step approach 
is vital, as it avoids the effect of noisy measurements in generating an initial 
prediction for the missing values in the first step. Besides, by adopting a robust 
smoothing filter in the second step, the negative effect of the remaining out-
liers and noisy prediction of the first step are diminished. However, there are 
cases that correction fails. Examples of such failures are shown in Figure 10. 
The filtering procedure can fail if a joint or a whole skeleton is missing over 
multiple consecutive frames. As the number of consecutive frames with 
a missing skeleton increases, the probability of failure rises. This is because 
the correction mechanism uses first-order polynomial fitting in the first step, 
which loses adequate support as the number of missing skeleton or missing 
joints increases. On the other hand, higher-order polynomial will over-smooth 
the final prediction, resulting in more false predictions. For a better imputa-
tion of missing values and correction of missing measurements, modeling the 
dynamics of the motion is also helpful. This is, in particular, essential in more 
realistic scenarios, where the dynamic of the motion such as the walking speed 
might change during motion. For such a direction of study, a larger collection 
of data from each subject would be required.

A major direction for future work calls for a dataset that consists of a larger 
population of subjects with a more diverse group of settings. This can be 
beneficial in multiple ways. First, it will open an avenue for training a deep 
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pose estimation tool that generally requires a large and diverse collection of 
images. In the first step of the presented pipeline, we utilize OpenPose, a state- 
of-the-art pose estimation tool. As these tools are trained with images collected 
by optical cameras, their performance is adversely affected by the noisy 
imaging process of flash lidar cameras. With a large collection of flash lidar 
images, flash lidar-based deep pose models can be designed that can alleviate 
the performance of skeleton detection. Second, the availability of a large 
collection of flash lidar data paves the path for a well-designed optimization 
model to find relevant, yet interpretable features. In this work, we opt for 
anthropometric-based features to avoid the interpretability issue of a complex 
feature design. However, with a large data collection, there might be a need for 
a more distinct set of features to recognize a larger collection of the population 
considering the limitations of flash lidar modality.

Conclusion

In this work, we present an efficient pipeline to improve the application of 
flash lidar for the gait recognition problem. The main challenge is caused by 
the low quality and noisy imaging process of flash lidar. Such signal quality 
adversely affects the performance of state-of-the-art algorithms for skeleton 
detection. The detected skeletons from the collected sequences contain 
a considerable number of erroneous joint location measurements. 
Furthermore, detections for several skeleton joints are missing in many 
frames. Under the described scenario, a common practice involves removing 
noisy data. However, data elimination results in the loss of temporal infor-
mation and renders identification impossible in numerous frames, which is 
not desirable for time-critical applications, such as with surveillance. To 
improve the quality of joint localization and to enhance gait recognition 
accuracy using flash lidar modality, we present GlidarPoly. GlidarPoly 
employs a filtering mechanism to correct faulty skeleton joint locations. 
We also present an automatic outlier detection method for applications 
where data elimination is not an issue. Furthermore, to incorporate motion 
dynamics after data correction, robust statistics are integrated that can 
effectively improve the performance of the designed features that only 
employ traditional feature moments over the gait cycles. The presented 
pipeline is appealing in terms of computational complexity, scalability, and 
a simple, yet effective design.

Note

1. A video presentation of before and after applying GlidarPoly is provided http://viva-lab. 
ece.virginia.edu/pages/projects/gaitrecognition.htmlhere
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