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Abstract 
In theorem LP [1], Liu proves the theorem when N = 2, but it can’t be ex-
tended to the general case in his proof. So we consider the condition that the 
families of holomorphic curves share eleven hyperplanes, and we get the 
theorem 1.1. 
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1. Introduction 

Some theoretical and practical problems of research often boil down to the 
whole function and normality of meromorphic function. In 1907, P. Montel 
raised the concept of normal family. And nowadays, the theory of normal family 
has a good development. The core of the theory of normal family is the study of 
the format rule. It is possible to relate the normality of a family of the function 
and the function value for Nevanlinna value distribution theory in the 1930s. In 
1975, Israel mathematician L.Z Alcman, starting from Marty formal rule, gave 
the new method of formal rule called Zalcman lemma. Then, in 1989, Pang Xu-
echeng improved Zalcman’s way, who got the Pang-Zalcman lemma, and he 
made it possible to study involving the formal rule of derived function. 

In high-dimensional complex manifold holomorphic mappings about formal 
rule research, Tu Zhenhan firstly studied normality problems which involves the 
multiplicity of holomorphic mappings in 1999. Then, in 2014, Yang Liu, Caiyun 
Fang and Xuecheng Pang who use the high-dimensional Zalcman lemma of 
GAladro and S.G Krantz, generalize two family of meromorphic function nor-
mal rule, which was proved by Xiao-jun Liu, Lisan Hua and Pang Xuecheng, and 
they get the relative results about the holomorphic curves. 
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In value distribution and normal family theory of meromorphic functions, 
there is a well-known phenomenon named Bloch’s heuristic principle, that is to 
say, a family of meromorphic functions which have a property   in common 
D ⊂   should be normal on D if this property   forces a meromorphic 
function on the whole complex plane   to be constant. Later, Zalcman (see [2] 
[3]) formulated a more precise statement (known as Zalcman’s principle and 
Zalcman-Pang principle) to determine the normality for families of meromor-
phic functions. 

In the case of holomorphic curves, there does still exist some similar pheno-
menon. 

Firstly, Chen and Yan [4] proved the following result concerning uniqueness 
theorem for holomorphic curves. 

Theorem CY. Let f and g be two nonconstant holomorphic curves from   
to ( )N

 , and 1,jH j q≤ ≤  be q hyperplanes in ( )N
  located in general 

position such that ( ) ( ),j jf H g H    and ( )f z  “share” jH  with ( )g z , 
1 j q≤ ≤ . If 2 3q N≥ + , then f g= . 

Remark 1.1. Here, “share” means not only ( ) ( )j jf z H g z H∈ ⇔ ∈ , but also 
requires ( ) ( )f z g z=  on those points where ( ) ( )1 1

j jf H g H− −= . 
Later, in [5], Yang et al. considered the corresponding result in normal family 

theory of holomorphic curves and obtained. 
Theorem YFP.   is a family of holomorphic curves from a domain D ⊂   

into ( )N
  and 1,jH j q≤ ≤  be 2 1q N≥ +  hyperplanes in ( )N

  located 
in general position. Suppose that for each ,f g ∈ , ( ) ( )j jf z H g z H∈ ⇔ ∈ , 
z D∈ , 1 j q≤ ≤ . Then   is normal on D. 

Obviously, the condition in Theorem CY is much stronger than those in 
Theorem YFP. Naturally, a question is posed that how to narrow the gap. 

Liu et al. [6] used a special curve of f named derived curve to replace g and 
proved the following theorem. 

Theorem LPY. Let   be a family of holomorphic maps of a domain D ⊂   
to ( )N

 . Let ( ){ }: , 0N
l lH x x α= ∈ =  be hyperplanes in ( )N

  lo-
cated in general position, where ( )T

0 0, , , 0, 1, 2, , 2 1l l lN la a a l Nα = ≠ = +  . As-
sume also that the following two conditions hold for every f ∈ : 

1) If ( ) lf z H∈ , then , 1, 2, , 2 1lf H l N∇ ∈ = +  

2) If ( ) 2 1

1

N
ll

f z H+

=
∈


, then 
( ) 0

0

,f z H

f H
δ≥ , where 0 1δ< <  is constant, 

{ }0 0 0H w= = . 

Then   is normal on D. 
In [1], Liu et al. remove the restriction of the first coefficients of hyperplanes 

of above theorem in the case ( )2
  and prove the following theorem. 

Theorem LP.   is a family of holomorphic maps of a domain D ⊂   to 
( )2
 . Let { }0 0 0H w= = , ( ){ }2

0: , 0l lH x x Hα= ∈ = ≠   be hyperplanes 
in ( )2

  located in general position, where ( )T
0 1 2, , , 1, 2,3, 4,5l l l la a a lα = = . 

Assume the following conditions hold for every f ∈ : 
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1) ( ) lf z H∈  if and only if , 1, 2,3, 4,5lf H l∇ ∈ =  

2) If ( ) 5

1 ll
f z H

=
∈


, then 
( ) 0

0

,f z H

f H
δ≥ , where 0 1δ< <  is a constant. 

Then   is normal on D. 
Unfortunately, the proof this proof of this theorem cannot be generalized to 

the ( )N
 , and we get the main result of article is as follows: 

Theorem 1.1. Let   be a family of holomorphic maps of a domain D ⊂   
to ( )4  . Let { }0 0 0H w= =  and ( ){ }4

0: , 0l lH x x Hα= ∈ = ≠  be 
hyperplanes in ( )4   located in general position, where  

( )0 1 2 3 4

T
, , , , , 1, 2,3, ,11l l l l l l lα α α α α α= =   

Assume the following conditions hold for every f ∈ : 
1) ( ) lf z H∈  if and only if , 1, 2,3, ,11lf H l∇ ∈ =   

2) If ( ) 11

1 ll
f z H

=
∈


, then 
( ) 0

0

,f z H

f H
δ≥ , where 0 1δ< <  is a constant. 

Then   is normal on D. 
Before we continue to the proof of the main result, let us set some notation. 
Throughout, D is a domain in   and { }0 0 0H w= =  always represents the 

first coordinate hyperplane. We write ( ) ( ) ,nf z f z z D⇒ ∈  to indicate that the 
sequence { }nf  converges to f uniformly on compact subsets of D by the Fubi-
ni-Study metric on ( )N

 . For a holomorphic curve ( )f z  in D, the spherical  

derivative of f at the point z is still denoted by 2

f f
f

f

′∧
= . 

Frequently, given a sequence, { }1nf
∞  of maps, we need to extract an appro-

priate subsequence; and this necessity may recur within a single proof. To avoid 
the awkwardness of multiple indices, we again denote the extracted subsequence 
by { }nf  (rather than, say, { }knf ), and signal this operation by “taking a sub-
sequence and renumbering, “or simply “renumbering”. The same convention 
applies to sequence of constants. 

2. Definitions and Notations 

At first, we recall some definitions and notations for ( )N
 . 

Let ( ) { }1 \ 0 /N N += ∼   be the N-dimensional complex projective space, 
and for any ( )0 1, , , Nx x x x=  , ( ) ( ) { }1

0 1 , \, , 0N N
Ny y y y += ∈ =    , x y∼  

if and only if there exists some λ ∈ , such that  
( ) ( )0 1 0 1, , , , , ,N Nx x x y y yλ=  . The equivalence class of ( )0 1, , , Nx x x  is 
denoted by [ ]0 1: : : Nx x x  and  

( ) [ ] ( ) { }{ }1
0 1 0 1 \: : : : , , , 0N N

N Nx x x x x x x x += = = ∈    . 
Let 1 2, , , qH H H  be hyperplanes in ( )N

  which are given by 

 ( ){ }0 0 1 1: , 0N
N NH x x a x a x a xα= ∈ = + + + =

    

          (1) 

with nonzero coefficient vectors ( )T
0 1, 2,, , 1, , ,Na a a qα = =

   

    
Definition 2.1. The hyperplanes 1 2, , , qH H H  are said to be in general po-
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sition if for any injective maps { } { }: 0,1, 2, , 1, 2, ,N qφ →  , the vectors  

( ) ( )0 , , Nφ φα α  are linearly independent. 
Second, let ( ): Nf D →    be a holomorphic map and U be an open set in 

D. Any holomorphic map 1: Nf U +→   such that ( )( ) ( )f z f z≡  in U is 
called a representation of f on U, where { } ( )1 \: 0N N+ →     is the standard 
quotient map. 

Definition 2.2. For any open subset U of D, ( )0 1, , , Nf f f f=   is called to 
be a reduced representation of f on U, if 0 1, , , Nf f f  are holomorphic func-
tions on U without common zeros. 

Let ( ){ }: , 0NH x x α= ∈ =


   be a hyperplane, we denote 

0max i N iH aα ≤ ≤= = . Throughout, we only consider normalized hyperplane 
representations so that 1H =  

Next, for any reduced representation f of a holomorphic map f, we define the 
holomorphic function. 

 ( ) ( ) ( )0, , ,i ii
Nf z H f z a f zα
=

= = ∑                 (2) 

And put 

 ( ) ( ){ }1 22

0 ii
Nf z f z
=

= ∑                      (3) 

Finally, according to the definition of the derived curves in [7], we have the 
following definition. 

Definition 2.3. Let f be a holomorphic map of D into ( )N
 ,  

( )0 1, , , Nf f f f=   be any reduced representation of f on D with ( ) 0zfµ ≠ ,  
{ }0,1, , Nµ ∈  . Then 

( )( ) ( ) ( ) ( )
( )

2
0 1 1, : : , : : ,

: : , N

f z W f f d W f f d f d W f f d

W f f d

µ µ µ µ µ µ µ

µ

− +
∇ = 







  (4) 

is called to be the µth derived holomorphic map of f, where ( )d z  be a holo-
morphic function such that 2f dµ  and ( ), iW f f dµ , ( )0,1, , ;i N i µ= ≠  
have no common zeros. 

Remark 2.1. For simplicity, we also write fµ∇  as f∇ , and obviously the de-
finition of fµ∇  does not depend on the choice of a reduced represention of f. 

3. Preliminary Lemmas  

Before we give the proof of our main theorem, we need the following version of 
Zalcman’s lemma for holomorphic mappings from the domain Ω ⊆   to  

( )N
 , which was proved by Aladro and Krantz in [8]. 

Lemma 3.1 (see [8]). Let   be a family of holomorphic maps of a hyper-
bolic domain Ω ⊂   into ( )N

 . The family   is not normal on Ω if and 
only if there exist sequences { }nf ⊂  , { }nz ⊂ Ω , with 0nz z→ ∈Ω , { }nρ  
and 0nρ > , 0nρ → , such that  

( ) ( ):n n n ng f zζ ρ ζ= +  
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converges uniformly on compact subsets of   to a nonconstant holomorphic 
map g of   into ( )N

 . 
The degenerate second main theorem in Nevanlina theory shows the follow-

ing fact 
Lemma 3.2 (see ([9], p. 141)). Let ( ): Nf →    be a holomorphic map, 

and ( )1, , 2 1qH H q N≥ +  be hyperplanes in ( )N   in general position. If 
for each 1, ,j q=  , either ( )f   is contained in jH , or ( )f   omits jH , 
then f is constant. 

Lemma 3.3 (see ([10], p. 34)). If ( )f z  and ( )( )1,2,3zνϕ ν =  are mero-
morphic functions in the finite plane such that 

( ) ( ){ }, , , 1, 2,3,T r o T r fνϕ ν= =
 

Then we have  

( ){ } ( ) ( )
3

1

11 1 , , ,o T r f N r S r f
fν νϕ=

 
− < + − 

∑
 

where ( ) ( ){ }, ,S r f o T r f= , r →∞ . 
Lemma 3.4 (see ([9], p. 124)). Let 0 1 1, , , nf f f +  be nowhere zero entire func-

tions with 

0 1 1 0.nf f f ++ + + =  

Consider the partition 

{ } 1 20,1, , 1 kn I I I+ =    

such that i and j are in the same class I


 if and only if i ij jf c f=  for some 
nonzero constant ijc . Then 

0i
i I

f
∈

=∑


 

for any I


. 
Lemma 3.5 (see ([1], p. 5)). Let [ ] ( )0 : : : N

Ng g g= →     be a holo-
morphic curve with finite order and ( )0 0g ζ ≡/ , where 2N ≥  is an integer. 
And let ( ){ }: , 0NH x x α= ∈ =

 

  be hyperplanes in ( )N
  located in 

general position, whose first coefficients 0a


 are nonzero, for all  
1,2, , 2 1N= + 

. Let ( ) ( )( )0 1, , , Ng g g gζ ζ=   be any reduced representa-
tion of g, if we denote 

( )
( )0

1 0

, 1, 2, , 1
N

i
i

i

g
G a a N

g
ζ
ζ=

= + = +∑
  

   

and assume that ( ) 0,G ζ ζ≠ ∈


  and ( ) 0,G ζ ζ′ ≠ ∈


 , then we have g is 
linearly degenerate. 

4. Proof of Theorem 1.1  

Suppose   is not normal on D. Then by Lemma 3.1, there exist points 

0nz z D→ ∈ , positive numbers 0nρ →  and holomorphic maps nf ∈  such 
that  

https://doi.org/10.4236/ajcm.2021.112008
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( ) ( ) ( ) ,n n n ng f z gζ ρ ζ ζ ζ= + ⇒ ∈  

where g is a nonconstant holomorphic map with finite order on   
Let ( ) ( )( )0 1 2 3 4, , ,,g g g g g gζ ζ=  be the reduced representation of g. Since
,1 11H ≤ ≤


 , are in generalposotion, without loss of generality, we may assume 
that the first coefficients of 1 2 3 4 5 6 7, , , , , ,H H H H H H H  are nonzero. 

Case (A). g is linearly nondegenerate. 
From the case (A) of theorem LP, we have ( ) 0G ζ ≠



 and  
( ) 0, 1,2,3,4,5,6,7G ζ′ ≠ =



 , ζ ∈ , then by lemma 3.5, g is linearly nondege-
nerate, a contradiction. 

Case (B). g is linearly degenerate. 
We can suppose 0 1 2 3, , ,g g g g  are linearly nondegenerate. 
Since 0G ≡



 or 0, 1,2,3,4,5,6,7G ≠ =


 , sofrom Lemma 3.5, we have  

0 0g ≠  and g is a holomorphic map. 
Then G



 is holomorphic in  . And we have 1,1 7Gρ ≤ ≤ ≤


 . 

Then 31 2 4
0 1 2 3 4

0 0 0 0

e ,1 7Agg g gG a a a a a B
g g g g

ζ= + + + + = ≤ ≤

      

 . Specially, 

when 0G ≡


, 0B =


. 

{ }1 2 3 4, , , 1, 2,3, 4,5,6,7j j j j∀ ∈ , without loss of generality,  

1 2 3 4 51, 2, 3, 4, 5j j j j j= = = = = . 
Let 3 51 2 4

1 1 2 2 3 3 4 4 5 5e e e e e 0A AA A Ak B k B k B k B k Bζ ζζ ζ ζ+ + + + = , 1 2 3 4, , ,k k k k  and 

5k  are constants. 

Since 31 2 4

0 0 0 0

1, , , ,
gg g g

g g g g
 are linearly degenerate, then there exist a nonzero 

vector ( )T
1 2 3 4 5, , , ,b b b b b  such that 

1

2
31 2 4

3
0 0 0 0

4

5

, 01, , ,

b
b

gg g g b
g g g g

b
b

 
 
 
  =
 
 


 




 




 

Let  

10 20 30 40 50

11 21 31 41 51

12 22 32 42 52

13 23 33 43 53

14 24 34 44 54

a a a a a
a a a a a

A a a a a a
a a a a a
a a a a a

 
 
 
 =
 
 
 
 

 

Since 0A ≠ , then let ( ) ( )T T1
1 2 3 4 5 1 2 3 4 5, , , , , , , ,k k k k k A b b b b b−= . It is a nonzero 

vector. Then 3 51 2 4
1 2 3 4 5e , e , e , e , eA AA A AB B B B Bζ ζζ ζ ζ  are linearly degenerate. 

Claim. There exist an injective map { } { }: 1, 2,3, 4 1,2,3,4,5σ → , such that  
(1) (2) (3) (4)

(1) (2) (3) (4)e , e , e , eA A A AB B B Bσ σ σ σζ ζ ζ ζ
σ σ σ σ  are linearly nondegenerate. 
Proof of claim. Without loss of generality, we may assume that there exists 

some constants 1 2 3 4, , ,    , such that  
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5 31 2 4
5 1 1 2 2 3 3 4 4e e e e eA AA A AB B B B Bζ ζζ ζ ζ= + + +     
Since  

( )3 51 2 4 31 2 4
1 2 3 4 5

0 0 0 0

e , e , e , e , e 1, , , ,A AA A A gg g gB B B B B A
g g g g

ζ ζζ ζ ζ  
=  
 

 

Then ( )3 51 2 4 131 2 4
1 2 3 4 5

0 0 0 0

1, , , , e , e , e , e , eA AA A Agg g g B B B B B A
g g g g

ζ ζζ ζ ζ − 
= 

 
 

Then we can let  
4

10

e , 0,1, 2,3ij A
ij i

i

g
c B j

g
ζ

=

= =∑                    (*) 

Let 

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

c c c c
c c c c

C
c c c c
c c c c

 
 
 =
 
 
 

 

If ( ) 3r C ≤ , which implies the equation set 

0

1

2

3

0

q
q

C
q
q

 
 
  =
 
 
 

 

Have untrivial solution, then there exist some constants 0 1 2 3, , ,q q q q , which are 
not identical to zero, such that 

( )31 2 4

0

1
1 2 3 4

2

3

e , e , e , e 0AA A A

q
q

B B B B C
q
q

ζζ ζ ζ

 
 
  =
 
 
 

 

i.e. 

0

131 2

20 0 0

3

1, , , 0

q
qgg g
qg g g
q

 
    =    
 

 

Then 31 2

0 0 0

1, , ,
gg g

g g g
 are linear degenerate, a contradiction and ( ) 3r C = . 

If 31 2 4
1 2 3 4e , e , e , eAA A AB B B Bζζ ζ ζ  are linearly degenerate, then there exists some 

constants 0 1 2 3, , ,c c c c , which are not identical to zero, such that 

( )31 2 4

0

1
1 2 3 4

2

3

e , e , e , e 0AA A AB B B B
c
c

c

c

ζζ ζ ζ

 
 
  =
 
 
 

 

By (*), we have 
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0

1131 2

20 0 0

3

1, , , 0

c
cgg g C
cg g g
c

−

 
     =      
 

 

which implies 31 2

0 0 0

1, , ,
gg g

g g g
 are linearly degenerate , a contradiction. The claim 

is proven. 
Then 31 2 4

1 2 3 4e , e , e , eAA A AB B B Bζζ ζ ζ  are linearly nondegenerate, which implies

1 2 3 4, , ,A A A A  are different from easy other. 
Since ,1 6H ≤ ≤



  be hyperplanes in ( )4
  located in general position. 

Then every five exist four differences in 1 2 3 4 5 6, , , , ,A A A A A A  
If there exist { }1,2,3,4,5,6l∈ , such that 0lB = , without loss of generality, 

we can let 6 0B = , so 0, 1, 2,3, 4,5iB i≠ =  
Since 3 51 2 4

1 2 3 4 5e , e , e , e , eA AA A AB B B B Bζ ζζ ζ ζ  are linearly degenerate. Without 
loss of generality, let 1 2A A=  

But obviously, there are not exists four linearly nondegenerate in 
3 61 2 4

1 2 3 4 6e , e , e , e , eA AA A AB B B B Bζ ζζ ζ ζ , a contradiction. So 0, 1,2,3,4,5,6lB l≠ =  
Since { }1 2 3 4 5, , , , 1, 2,3, 4,5,6j j j j j∀ ∈ ,  

3 51 2 4
1 2 3 4 5
e , e , e , e , ej jj j jA AA A A

j j j j jB B B B Bζ ζζ ζ ζ  are linearly degenerate, which mean 
that there exists two identical in 

1 2 3 4 5
, , , ,j j j j jA A A A A  

Then every five exists two identical in 1 2 3 4 5 6, , , , ,A A A A A A . 
If 1 2 3 4, , ,A A A A  are differences, then 5A  equals one of 1 2 3 4, , ,A A A A , let 

15A A= . Similarly, 6A  equals one of 1 2 3 4, , ,A A A A , let 6 2A A= . 
Then it is impossible to exist four differences in 1 2 4 5 6, , , ,A A A A A , a contradic-

tion, so 0 1 2 3, , ,g g g g  are linearly degenerate. 
If 0 1 2, ,g g g  are linearly nondegenerate, then ( )0 1 2 3 4, , , , 3r g g g g g =  
Since every four linearly independent in 1 2 3 4 5 6 7, , , , , ,α α α α α α α . Let  
[ ]1 2 3 4, , ,B α α α α= , ( ) 4r B = , then  

( )( ) ( )0 1 2 3 4 0 1 2 3 4, , , , , , , , 3r g g g g g B r g g g g g= =  
Since 

( )31 2 431 2 4
1 2 3 4

0 0 0 0

1, , , , e , e , e , eAA A Agg g g B B B B B
g g g g

ζζ ζ ζ 
= 

 
 

then exist i j≠ , such that i jA A= , { }, 1, 2,3, 4i j∈  
If 1 2 3, ,A A A  are different, so 4 5 6 7, , ,A A A A  equal one of 1 2 3, ,A A A , let 

4 1A A= , 5 2A A= , 6 3A A= , 7 1A A= , then it is obviously that there not exist 
three differences in 1 4 5 6 7, , , ,A A A A A , a contradiction. 

So 0 1 2, ,g g g  are linearly degenerate. 
So there exist constants 0 1 2, ,p p p  which are not identical to zero, such that

0 0 1 1 2 2 0p g p g p g+ + =  

1) 2 0p ≠ , then 0 1
2 0 1

2 2

p pg g g
p p

= − −  and 2 3 4,,g g g  can be linear repre-

sentation by 0 1,g g . 
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So there exist constants 1 2 1 2, , ,k k l l , such that 2 1 0 2 1g p g p g= + ,  

3 0 0 1 1 2 2g k g k g k g= + + , 4 0 0 1 1 2 2 3 3g l g l g l g l g= + + +  
Then  

( ) ( )

( ) ( )( )
2 3 4

1 2 3 4

31 2 4
0 1 2 3 4

0 0 0 0

0 0 0 2 0 0 2 0 3 0 3 2 0

1
1 1 2 1 2 1 1 3 1 2 1

0

l l l

l l l l

gg g gG a a a a a
g g g g

a p a a k k p a l l p l k l k p

ga a p a k k p a l p l l k k p
g

= + + + +

= + + + + + + +

+ + + + + + + +

     



 

Since 1 2 3 4 5, , , ,α α α α α  are linearly independent, then exist { }1, 2,3,4,5∈ , 
such that ( ) ( )( )1 2 3 41 1 2 1 2 1 1 3 1 2 1 0l l l la a p a k k p a l p l l k k p+ + + + + + + ≠  

If for such  , 0G′ ≡


, which implies that 1

0

g C
g

≡ , a contradiction. Then, 

we have 0G′ ≠


 and 1

0

0
g
g

′ 
≠ 

 
. 

From lemma 3.2, without loss of generality, we may assume the first coeffi-
cient of 8H  is nonzero, i.e. 80 0a ≠ . If the first coefficient of 9H  are still non-
zero, i.e. 90 0a ≠ , we have g omits 9H  or ( )g   is contained in 9H . 

Since ( )T
8 81 82 83 840, , , ,a a a aα = , we have all zeros of 8,g α  are multiple. 

Thus, all zeros of 

( ) ( )

( ) ( )( )
8 0 82 83 0 2 0 84 0 2 0 3 0 3 2 0

1
81 82 1 83 1 2 1 84 2 1 1 3 1 2 1

0

G p a a k k p a l l p l k l k p
ga a p a k k p a l p l l k k p
g

= + + + + + +

+ +  + + + + + +
 

are multiple. 
If for all ζ ∈ , 8, 0g α ≠  or 0≡ . By lemma 3.2, we have g is a constant 

curve, a contradiction. 
Then, there exists some 0ζ ∈ , such that ( )8 0, 0g α ζ =  and  

( )8, 0g α ζ ≡/ . This implies that 

( ) ( )( )
0

1
81 82 1 83 1 2 1 84 2 1 1 3 1 2 1

0

0,
ga a p a k k p a l p l l k k p
g

ζ

′ 
+ + + + + + + = 

 
    

a contradiction. 
Thus, the first coefficient of 9H  are still zero, i.e. 90 0a = . Similarly, we have 

all zeros of ,g α


 are multiple, we have all zeros of 

( ) ( )

( ) ( )( )
2 3 4

1 2 3 4

0 0 2 0 0 2 0 3 0 3 2 0

1
1 1 2 1 2 1 1 3 1 2 1

0

, 8,9

l l l

l l l l

G p a a k k p a l l p l k l k p

ga a p a k k p a l p l l k k p
g

 

= + + + + + +

+ + + + + + + + =





 

are multiple. 
If for all ζ ∈ , , 0g α ≠



 or 0≡ , 8,9= . By lemma 3.2, we have g is a 
constant curve, a contradiction. 

Then, there exist some 0ζ ∈ , 8=  or 9, such that ( )0, 0g α ζ =


 and 
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( ), 0g α ζ ≡/


. This implies that 

( ) ( )( )1 2 3 4

0

1
1 1 2 1 2 1 1 3 1 2 1

0

0,l l l l
ga a p a k k p a l p l l k k p
g

ζ

′ 
+ + + + + + + = 

 
    

a contradiction. 
2) 2 0p = , then 0 1,p p  are not identical to zero. 
a) 0 0p ≠ , a contradiction. 

b) 0 0p = , then 1 0p ≠ , which implies 1 0g ≡ , then 1

0

0
g
g

≡ , a contradic-

tion. 
Thus,   is normal on D. The proof of Theorem 1.1 is finished 
So in a word, we can make a conclusion as follows: 
Theorem 1.1. Let   be a family of holomorphic maps of a domain D ⊂   

to ( )4
 . Let { }0 0 0H w= =  and ( ){ }4

0: , 0l lH x x Hα= ∈ = ≠  be 
hyperplanes in ( )4

  located in general position, where  

( )0 1 2 3 4

T
, , , , , 1, 2,3, ,11l l l l l l lα α α α α α= =   

Assume the following conditions hold for every f ∈ : 
1) ( ) lf z H∈  if and only if , 1, 2,3, ,11lf H l∇ ∈ =   

2) If ( ) 11

1 ll
f z H

=
∈


, then 
( ) 0

0

,f z H

f H
δ≥ , where 0 1δ< <  is a constant. 

Then   is normal on D. 
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