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and Rashedur M. Rahman a

aDepartment of Electrical & Computer Engineering, North South University, Dhaka, Bangladesh; bSchool 
of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA

ABSTRACT
One of the challenges of training artificial intelligence models 
for classifying satellite images is the presence of label noise in 
the datasets that are sometimes crowd-source labeled and as 
a result, somewhat error prone. In our work, we have utilized 
three labeled satellite image datasets namely, SAT-6, SAT-4, and 
EuroSAT. The combined dataset consists of over 900,000 image 
patches that belong to a land cover class. We have applied some 
standard pixel-based feature extraction algorithms to extract 
features from the images and then trained those features with 
various machine learning algorithms. In our experiment, three 
types of artificial label noises are injected – Noise Completely at 
Random (NCAR), Noise at Random (NAR) and Noise Not at 
Random (NNAR) to the training datasets. The noisy data are 
used to train the algorithms, and the effect of noise on the 
algorithm performance are compared with noise-free test sets. 
From our study, the Random Forest and the Back-propagation 
Neural Network classifiers are found to be the least sensitive to 
label noises. As label noise is a common scenario in human- 
labeled image datasets, the current research initiative will help 
the development of noise robust classification methods for 
various relevant applications.
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Introduction

Now a days, satellite imaging is being used in various fields including crop 
growth monitoring, rainforest growth time series analysis, urbanization rate 
monitoring, infrastructural and environmental effect monitoring of calamities 
like earthquake, forest fire and cyclone or may be even for the estimation of 
financial capacity of the people of a particular region. But the applications 
having diverse domains and data interpretation practices are carefully ana-
lyzed first to find suitable representation models applicable for a particular 
scenario. Satellite images used for these applications usually utilize high- 
resolution images and even for a very small geographical region, the temporal 
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image data can become terra bytes or more in size. Moreover, due to the 
collection process of satellite images, there is usually a good amount of atmo-
spheric noise present in the images like cloud, aerosol, etc. As a result, the data 
can be difficult to interpret and label even with the help of an expert labeler. 
The modern earth orbiting satellites capture images in a wide range of 
spectrum even outside the visible zone using highly sophisticated sensors. In 
order to analyze and fully utilize the potential of this huge amount of data in 
and outside of our visible spectrum, efficient and robust automation technol-
ogy is a must.

Label noise is a type of noise typically present in the satellite or other crowd- 
sourced image datasets where a particular training instance is miss-labeled. 
This usually happens because of human error and inadequate training of the 
labeler. For example, in the satellite imaging domain, a group of people may be 
asked to label a particular area for two classes, i.e. roads and houses. Now, as 
the images are not always clearly distinguishable, a house located very close to 
a road may be labeled as part of the road by the human labeler. This may 
happen just randomly or sometimes in the case when the data of different 
instances look very similar to each other. In the remote-sensing sector, there 
are thousands of fresh contributors with insufficient training and a scarcity of 
efficient trainers. For an example, in the agriculture domain, suppose we are 
training a classifier that distinguishes between green and ready fruits. Now, in 
the training dataset, entirely labeled by human entity, there will be some 
instances where a fruit may be just partially ripe. Due to the difference in 
human judgment, some labelers may categorize that fruit as green while others 
will categorize the same fruit as ripe. These sorts of labeling errors occur 
specially in the image datasets very commonly.

The three categories of label noise that we have considered in our study are 
Noise Completely at Random (NCAR), Noise at Random (NAR) and Noise 
Not at Random (NNAR). NCAR is the type of noise in labels that is indepen-
dent of any other variables in the data. It is the scenario where the labeler has 
made a random mistake. On the other hand, the NAR error model has some 
dependency to the class labels. Suppose, in a particular application some 
particular class elements are hard to identify from the satellite image dataset. 
As a result, that particular class instances will have higher than average 
probability of being mislabeled. NNAR happens for the boundary class ele-
ments. For example, when labeling satellite data using only the RGB (human 
visible) bands, the difference between trees and light vegetation is compara-
tively very small. In that case, there can be some labeling error in these 
instances that is not random but depends on the feature values (RGB values).

Label noise instances disproportionately increase the complexity of 
machine learning models. For example, in a Decision Tree based classifier, 
a noisy instance will increase the number of branches in an otherwise perfect 
leaf node. The effect can be mitigated to some extent using post pruning or 
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other regularization methods based on the algorithm being used. But in 
general, noisy labels make the classifiers converge slowly, add fluctuations in 
the model results, and may as well increase the model size and complexity.

Image classification schemes are usually of two types, pixel level and object 
level. Here NAR and NCAR types of noise are easy to determine but most 
difficult noise is the NNAR. Interesting thing is that, most of the times, NNAR 
appears in object-based classifiers (Frank et al. 2017). In pixel-based classifica-
tion schemes, features can be extracted easily but in object-based classifiers it is 
more complex than that. In a deep learning network, the features are usually 
extracted internally by the network and as a result finding and representing the 
boundary cases are difficult.

In our study, we have injected artificial NCAR, NAR and NNAR noises in 
three datasets to measure the effect on various machine learning algorithms. 
We adopted a pixel-based feature extraction scheme for the experiment and 
injected various levels of noise to measure their effects. The primary objectives 
of our work are:

(1) Measure the effect of different types of label noise on the performance of 
machine learning based image classification.

(2) Analyze the variation of accuracy and model complexity of several 
machine learning image classification algorithms under the presence 
of label noise.

(3) Report a comparative study of the performance of machine learning 
models at different percentage of label noise and find the best noise 
tolerant machine learning model in different noise scenarios.

To the best of our knowledge, the effect of artificial label noise has not been 
quantitatively measured and compared on satellite image dataset. We believe 
that our work will help the future researchers develop more noise robust 
systems for satellite image classification tasks by machine learning models.

Related Works

Frank et al. (2017) discussed the presence of label noise and how it affects 
image classification on high quality satellite images. The Images for their study 
were collected from the Christchurch, New Zealand after a massive earthquake 
attack of February 2011. The images had several rubble features like road, 
commercial building, green-park, under-construction building and contained 
red, green and blue band data. There were some confusing pixels to categorize 
between road and under-construction building types. In their discussion they 
explained how label noise instances disproportionately increased the complex-
ity of machine learning models. In their experiment, the random forest 
classifier was found to be the best in a noisy situation and to visualize the 
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accuracy they used the ROC curve with a margin of 0–1. They used the scikit- 
learn implementation of random forest with 85 trees for implementing the 
classifier. For Image Segmentation before extracting features the authors used 
the eCognition software. The eCognition tool is designed for exploring and 
making better understandable object-based Geospatial data. Basically, in 
remote sensing industry it helps the extraction of information and change 
detection in Object-based data.

For label noise injection, they adopted two separate approaches for the pixel 
based classification and the object based classification schemes. For adding 
noise in the pixel based classification training data, an x% label noise injection 
will change the label of x% of the pixels in a training image. For incorporation 
of label noise in the object based classification, firstly the images are segmented 
into objects. Then the label of x% objects will be altered to implement an x% 
noise injection. They injected two types of noise in the training dataset, NAR 
and NNAR.

After the experimental setup, they took three human labeled training 
dataset (L1, L2, and L3) which were labeled using three different methodolo-
gies and tools to measure the impact of the labeling methods on the classifica-
tion result. In L1 dataset they applied QGIS Polygon Drawing tools to draw 
arbitrary polygons. By applying QGIS they found some complexity like 
imperfect recognition of the rubble. Polygons are better to draw shape in 
normal area but to specifically identified rubble is not easy. Sometimes image 
is extremely large and after zooming 10–20 times, just using polygons it is 
difficult to detect the whole rubble area. For this reason, labeler could have 
picked non rubble area as damage. Dataset L3 was labeled to detect the areas of 
rubble. So, the labeler used eCognition segmentation (scale 25) to label that 
area which he/she think was rubble. For this decision several areas of a sample 
image were not labeled and many rubble areas were omitted from training set. 
To address both the issues they developed a web-based image segmentation 
tool where images were divided into multiple tiles. When a labeler zoom each 
tile it is also partitioned into several parts by the scale parameter 50. So here 
a labeler can easily label those areas with rubble because when clicking on 
a rubble area it automatically glows as red. Dataset L2 was labeled with this 
tool. In summary L2 dataset was labeled in the best way compared to the L1 
and L3 datasets.

The Human-Labeled datasets, L1, L2 and L3 were compared depending on 
pixel and object-based classifiers. In their study, L1 demonstrated very low 
performance in prediction of building tops in object-based as well as pixel- 
based classifiers. L3 in object-based classifier delivered very poor predication 
than L2 because L3 labeling was the worst. No rubbles predicted by L3 were 
missed by L2 but several simple rubbles missed by L3 were recognized with L2. 
But In pixel-based classifier damage classification of L2 was very poor than 
object-based classifiers.
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Pelletier et al. (2017) analyzed the effect of label noise on the performance of 
classification of land cover mapping of multiple crop types with Support 
Vector Machine and Random Forest algorithms. Analysis has been done by 
applying class label, feature label, random and systematic noises to the data. 
The impact of noise with respect to the number of training classes, input 
feature vectors, and number of training instances are then analyzed. In their 
study they used a real dataset and a synthetic dataset. The real dataset consists 
of Spot-4 and Landsat-8 satellite image data of a particular region in France for 
the year 2013, which are labeled using the French Land Parcel Information 
System Database. After some pre-processing on the data to decrease noise, 
a number of temporal values of different feature vectors were extracted from 
the dataset. To prepare the synthetic dataset, the learned temporal features for 
each of the crop types from the real dataset was then used with some Gaussian 
noise to simulate the weed/vegetation regrowth.

To inject noise in the real dataset, they added some confusion between the 
summer and winter crops thus tempering the temporal characteristic of the 
feature vectors. For the synthetic dataset, random noises for each class are 
selected and added during training. They used two versions of the SVM 
classifier – one is the linear function and another is the radial basis function 
(RBF). For multi-class classification, they used the one-vs.-one method. For 
the Random Forest classifier, they used a maximum allowed tree depth and 
a minimum allowed threshold value for node split that can help reduce the 
noise effect significantly. In the model training and evaluation phases, they 
made ten random 50–50 train-test split with no co-occurrence and later 
injected different amount of noises to test the model responses.

In their study, it was reported that the label noise of random class was more 
expensive when the number of training class decreased. From the result, the 
SVM-RBF classifier obtained the lowest performance. For most part, the SVM- 
RBF overall performance decreased linearly with higher noise. Random forest 
and SVM-Linear classifiers showed identical response for up to about 25% 
noise intensity. For noise above 25%, SVM-Linear was found to be the most 
robust classifier if not using the multi-spectral features. Through their study, 
they also showed that the model complexity, computational time and memory 
requirement increases with the increase in label noise. The systematic noise 
applied had a more severe effect on the model performances compared to the 
random noises. Above all, it was showed that with multi-spectral features 
Random Forest classifier was the most robust one among the three choices.

Land cover data and crop data are the necessary input for agriculture and 
environment monitoring system. Kussul et al. (2017) proposed a learning 
model of multilayer deep learning architecture with optical and SAR images. 
The proposed model reached an accuracy of more than 85%. They applied 
both unsupervised learning in pre-processing and supervised learning for 
classification. They collected the dataset from the capital of Ukraine using 
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Sentinal-1A and Landset-8 satellites between dates Oct-2014 to Sep-2015. 
They collected the time series data of 15 images from Sentinal-1A with 2 
combined bands and 4 images in Landest-8 with 6 bands. The data region was 
28000 square km and classified with eleven different classes (winter white, bare 
land, forest, water, winter rapeseed, grassland, spring cereals, soybeans, sun-
flowers, maize and sugar beet).

The researchers divided their methodology into four segments – pre- 
processing and segmentation, supervised classification, post-processing and 
the geospatial analysis. During pre-processing phase the authors used self- 
organized Kohonen maps (SOMs) for handling missing values and image 
segmentation. SOMs train in each and every bands separately. The core part 
of this paper is the supervised classification. In this part the authors took four 
images with 6 bands from Landsat-8 and 15 images with 2 bands from 
Sentinal-1A and then made input feature vector size 54 (4*6 + 2*15) for the 
input of Convolution Neural Network (CNN). The authors used 2 CNN 
architectures for comparison – 1D CNN with spectral domain and 2D CNN 
for Spatial domain. They applied the relu activation function which is faster 
than sigmoid in deep learning. To prevent over-fitting they used L2 regular-
ization with the probability of dropout 0.5 and applied an advanced loss 
function which is a combination of AdaGrad and RMSprop. In the post- 
processing and geospatial analysis, they tried to improve result by developing 
some algorithms and filters. In the result part overall classification accuracy 
88.7%, 92.7%, 93.5% and 94.6% were achieved for Random Forest (RF), ENN, 
1D and 2D CNN respectively. RF produced less accuracy than Neural Network 
architectures. Accuracy for water, spring crops, winter rapeseed, and sun-
flowers were not different from one model to another.

Experimental Method

This section consists of the description of the datasets used in our project, the 
list of extracted features, and feature analysis, model selection, optimization 
and tuning methods, as well as the process of artificial label noise incorpora-
tion adopted in our study.

The Datasets

The first dataset used for training and testing in our project is the Deep-Sat 
image dataset SAT-6 which in turn is built taking images from the National 
Agriculture Imagery Program (NAIP) satellite image dataset (Basu et al. 2015, 
2015). The SAT-6 dataset contains a total of 405,000 labeled images each of 
size 28 × 28. The images contain four frequency band values, Red, Green, Blue 
(RGB) and Near Infra-Red (NIR) and they are labeled as six different classes – 
Building (built up area), Barren Land (empty lands), Tree (forest and large 
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vegetation), Grassland (shrubs), Road and Water. The label file is One-hot 
encoded. An 80–20 training test distribution is applied to the dataset in the 
source. As a result there are 324,000 images present in the training set and 
a total of 81,000 images present in the test set. The ratio of the different class 
images in the training and test sets are same. Some sample images from the 
dataset are shown in Figure 1. The total number of images for each class labels 
in the training and test data sets are presented in Figure 2. The SAT-4 dataset is 
another Deep-SAT dataset extracted from the same source with 500,000 
images belonging to four different classes – barren land, trees, grasslands, 
and others. Similar to SAT-6, this dataset also has an 80–20 division.

Figure 1. Sample images of various classes from the SAT-6 Dataset.

Figure 2. Number of image per class in train and test sets of SAT-6.
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The EuroSAT dataset, prepared by (Helber, Bischke, and Dengel 2018; 
Helber et al. 2019) consists 13 band Sentinel-2 images. The 27,000 labeled 
images are divided into 10 classes and it is also publicly available. The smaller 
number of images and a higher number of classes present in this dataset gives 
us the opportunity to analyze and compare the outcome of different algo-
rithms on these datasets.

Data Availability Statement
All the datasets used in this study are used and make publicly available in 
(Basu et al. 2015, 2015; Helber, Bischke, and Dengel 2018; Helber et al. 2019).

Feature Value Extraction

A gray level image is a two dimensional array of numbers denoting the 
intensity levels in various pixel positions. Color images, like RGB images 
contain pixel intensity levels for three different colors, Red, Green and Blue. 
Depending on the used dataset, satellite images may have additional intensity 
values of other frequency spectrums which are not visible to human eye. Table 
1 presents a list of different frequency bands collected by the Sentinel-2 earth 
orbiting satellite.

Textual Features
A key part in the image classification task is image feature extraction. Images 
are a set of 2 dimensional pixel values containing two types of information; 
one is the intensity information of a single pixel in different frequency 
channels, and another is the spatial information, that is, the significance of 
the pixel value relative to other pixel values around it. To extract the spatial 
information of a particular image, a widely used feature extraction method is 

Table 1. Sentinel-2 imaging bands.

Sentinel-2 Bands
Central Wavelength 

(micro meter)

Band 1 – Coastal Aerosol 0.443
Band 2 – Blue color band 0.490
Band 3 – Green color band 0.560
Band 4 – Red color band 0.665
Band 5 – Vegetation Red Edge 0.705
Band 6 – Vegetation Red Edge 0.740
Band 7 – Vegetation Red Edge 0.783
Band 8 – Near Infra-red (NIR) 0.842
Band 8A – Vegetation Red Edge 0.865
Band 9 – Water vapor 0.945
Band 10 – Short Wave Infrared (SWIR) – Cirrus 1.375
Band 11 – SWIR 1.610
Band 12 – SWIR 2.190
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Haralick texture features. Haralick (1979) proposed the Haralick features that 
are widely used to extract image texture information as a set of quantifiable 
measures.

The suitable texture features to be used for an image dataset may depend on 
the image type and application domain. Usually image texture means some 
visual randomness, repeated patterns, and some statistical characteristics. 
Extracting texture information from an image is important because it gives 
us an insight of the image (or certain part of an image) as a quantifiable 
number. As such, the spatial information of the pixel values are preserved here.

At the heart of Haralick texture feature extraction method is the Gray Level 
Co-occurrence Matrix (GLCM) was proposed by Haralick (1979). In GLCM, 
firstly a matrix is calculated as in Figure 3 where N is the number of distinct 
gray level intensity values. The matrix entry at (i, j) cell p (i, j) denotes the 
number of times intensity level i occurred adjacent to intensity level j in an 
image. For gray level images, adjacency is calculated for four different direc-
tions as in Figures 3 and 4. As a result, if there are N different gray levels used 
in an image, then we will receive 4 NxN GLCM matrices. From these matrices 
14 different statistical texture features are extracted. The features along with 
the equations to calculate them are explained in Table 2. Although, fourteen 
features are possible to extract, usually the first 13 of them are used in practice. 
As a result, for a gray level image, we receive a 13 × 4 matrix of feature values. 
Usually only the mean of these features in different dimensions is used, so, in 
practice we receive 13 distinct feature values from a gray level image of any 
size. For color images, instead of receiving a 13 × 4 matrix, we receive a 13 × 13 
matrix. However, as we only keep the mean values of the features in different 
color and dimensions, so again, we only retain 13 feature values for color 
images as well.

In our initial model development, we have used all these 13 features for 
training and testing. For the Haralick feature extraction process, we have used 
the Mahotas implementation of Python (Coelho 2013).

Figure 3. GLCM matrix for N color levels.

Figure 4. Four directions for GLCM adjacency calculation.
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HSV Color Features
The next three features we have used in our study are the mean HSV color 
values (HSV 2021) of the images. The HSV color representation system is 
explained in Figure 5 as a color wheel. The Hue value denotes a particular 
color in the wheel while the Saturation determines the amount of white color 
mixed with the Hue selected color. Value determines the brightness, which is 
how much black color is mixed with the color. In many image processing and 
computer vision tasks the HSV color features are used instead of their RGB 
counterpart because, in an RGB image, the color values and the intensity 
(luminance) values both depend on the Red, Green and Blue values. As 
a result, in the RGB color space, the color values are being divided into three 
dimension and along with it, the intensity and saturation of the color is also 
spreading. But in the HSV model, the H, S, and V values are all independent 
and can be used as separate unrelated feature dimensions for easier model 
training.

Normalized Difference Vegetation Index (NDVI)
NDVI is used for monitoring live green vegetation from satellite imaging data. 
It incorporates the near infra-red band (NIR) in feature extraction. Leaves and 
plantations with chlorophyll usually absorbs sunlight from the visible spec-
trum (below 0.7 micro meters). However, they reflects the NIR band spectrum 
and appears bright in that region. As a result, the NDVI value is about 1 for the 
leaves and other biomass canopies. NDVI values are sensitive to soil and 
atmosphere effects though. As a result, in our study we have used some 
other extra features all of which incorporate the NIR band data as well. 

NDVI ¼ NIR � Redð Þ= NIRþ Redð Þ (1) 

Atmospherically Resistant Vegetation Index (ARVI)
ARVI is resistant to the air pollution such as dust and smoke. As a result, it is 
more suitable to monitor vegetation near big city or metropolitan areas. 

Figure 5. HSV color wheel (HSV 2021).
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ARVI ¼ NIR� 2 � Redð ÞþBlueð Þ= NIRþ 2 � Redð ÞþBlueð Þ (2) 

Enhanced Vegetation Index (EVI)
EVI proposed by Huete et al. (1997) is used to correct both the atmospheric 
and soil background effect on vegetation index measurement. EVI is more 
suitable to monitor the vegetation of rainforest regions. There are two varia-
tions of EVI, EVI-1 and EVI-2 (Jiang et al. 2007). We have used both of them 
in our primary feature space. In EVI 2, the Blue color band is not used in the 
equation. The authors have proposed that by not using an extra band (blue) it 
makes the equation less sensitive toward satellite sensor equipment and hence, 
make it more robust. 

EVI1 ¼ 2:5� NIR � Redð Þ= NIRð Þþ 6 � Redð Þ� 7:5 � Blueð Þþ1ð Þð Þ (3) 

EVI2 ¼ 2:5� NIR � REDð Þ= NIRþ 2:4 � REDþ 1:0ð Þ (4) 

In our study, we have used 13 Haralick texture features, 3 HSV features, 
one for each of NDVI, ARVI, EVI1 and EVI2; a total of 20 features. Note 
that, all the feature values are transformed using the ‘StandardScaler’ 
method of the scikit-learn library before using them for training. It is 
important for many machine learning algorithms that the data is trans-
formed to have 0 mean and unit standard deviation. The StandardScaler 
method does it for our datasets. After standardization, we have trained a few 
machine learning algorithms with limited dataset size and tested the results. 
At this point, we have run Linear Discriminant Analysis to analyze the 
feature importance. In the subsequent subsections, these processes are 
described in details.

Figure 6. Feature importance analysis using random forest classifier on SAT-6.
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Machine Learning Algorithms

Random Forest (RF) Based Classification
A random forest classifier consists of many independent decision trees 
(Breiman. 2001). Each of these decision trees gives a class as output for 
a particular test case. The final result is the class label selected by most of the 
trees. As there is no such correlation among those independent models the 
result is very accurate and noise robust. In our implementation, at first, we 
train a RF with 100 trees using 50,000 training images from the SAT-6 dataset 
and test the accuracy on 10,000 images. The classifier returns 99.28% accuracy 
on the test data. Using this result, we calculate the feature importance for the 
currently used 20 features. The result is given in the Figure 6. As it can be seen 
from the figure, some of features are really significant while some are not that 
much. We next verify the result with a limited training and test case for the rest 
of the Machine Learning algorithms.

Our Random Forest classifier had 100 Decision Trees with ‘min_sample-
s_leaf’ parameter value set to 2. The ‘min_samples_leaf’ in the scikit-learn 
implementation, when set to 2, for the random forest implementation will 
require a leaf to be split only if all the resulting leaves contain at least 2 training 
instances after the split. This will apply some pre-pruning to the resulting trees 
and as a result will make the classifier more noise robust.

Support Vector Classifier (SVC)
SVC separates classes by generating a hyper-plane. To separate the data linearly, 
they are embedded into higher dimensions if needed. Depending on the classi-
fication scenario it can use different kernel functions like Linear, or Radial Basis 
function. In SVC implementation, there are some parameters that can be 
adjusted to get better result out of it. A typical Support Vector Classifier 
implementation can usually classify between two different classes only using 
a single hyper-plane. In our dataset however, there are six different classes. In 
order to achieve multi class classification using Support Vector Machines, there 
are two ways in scikit-learn – the one-vs-one and the one-vs-many classifiers. In 
the one-vs-one classifier, a separate SVC is trained for each of the NC2 choice of 

Figure 7. Overview of the Neural Network classifier (SAT-6).
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class labels. This is time consuming and the one-vs-many classifier is usually 
preferable. Once a test instance is received, the classifier that successfully classify 
the instance positively with highest confidence value will be selected.

In our experiment, the Support Vector Classifier we used had L2 regular-
ization. We experimented with the strength of the regularization parameter 
C to diminish the effect of label noise on the classifier performance, but it still 
could not provide satisfactory result. The kernel we used was Radial Basis 
function with Gamma set to the default value of 1/ (number of features * 
Training set variance). The maximum iteration was set to 50 with a 5-fold 
cross validation during training.

Logistic Regression Classifier
This is a very simple way to solve classification problems. It classifies inputs 
using an activation function like sigmoid. For a two-class problem, Binary 
Logistic Regression is used typically. For our multiclass problem, the one-vs- 
rest (OVR) method is applied. In Logistic Regression classify inputs 
a threshold value of output is selected. If the output of the activation function 
is less than the threshold value, then it will be classified as one class if not then 
it will be classified as the other class. In our experiment, with 50,000 SAT-6 
training data, the accuracy of Logistic Regression (OVR) algorithm is 97.06% 
for 20 features. In our experiment, we used the default L2 regularization with 
C = 1 and maximum iteration = 100 for training the classifier.

Neural Network Based Classifier
The last classifier that we have used for our study is a fully connected Neural 
Network with 2 hidden layers having 50 fully connected neurons each and an 
output softmax layer. The hidden layers had 20% drop ratio and the ‘relu’ 
function as the activation function. During training Batch Normalization was 
applied with batch size = 500. 15% of the training data in each epoch was left 
aside for model validation. The maximum number of epoch was set to be 100. 
With 50,000 training data and 20 feature values, the training stops at 86th 
epoch with 99.02% accuracy. The training continues till the bounded 100 
epoch but the accuracy increases to be 99.04%. An overview of the network 
is provided in Figure 7.

Artificial Label Noise Injection

In our study, we have worked with NCAR, NAR and NNAR label noises. For 
a varying amount of label noise, we have measured the response of the learning 
time, efficiency and model sizes.
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Noise Completely at Random (NCAR)
In order to incorporate the NCAR noise in the train data we randomly picked 
up to 20% training samples and altered their label to a random different label. 
For each of these tempered training sets, we retrained the machine learning 
models to compare the change in different performance measures. As 
expected, the noise affected our model accuracies, convergence time and 
model size. But the effect severity was different for different algorithms.

Noise at Random (NAR)
For injecting the NAR noise, we individually picked the different classes one at 
a time, and altered up to 20% of the training instances belonging to that class. 
All other training cases remained untouched. After the noisy data was trained 
with the machine learning models, the results were stored for analysis.

Noise Not at Random (NNAR)
The NNAR noise model in our study is implemented using the Nearest 
Neighbor approach similar to Garcia et al. (2018). Due to the high memory 
and processing time requirement, we have utilized only the EuroSAT dataset 
for this part of the analysis. The experiment is conducted by first calculating 
the nearest neighbor points for all the multi-dimensional image pixel values of 
same and different class. Then, the ratio of these two distances are calculated as 
an indicator to detect the boundary class instances using Equation (5). Now, 
when injecting label noise, these boundary class instances, sorted in the 
ascending order of the Distance Ratio are targeted and their labels are altered. 
The difference of our approach from the Nearest Neighbor approach proposed 
by Garcia et al. in (Garcia et al. 2018) is that, when assigning an alternate noisy 
label to a point, we assigned the label of the same nearest inter class neighbor 

Table 3. Test accuracy of the algorithms in the absence of noise.

Algorithm
Accuracy 
(SAT-6)

Accuracy 
(SAT-4)

Accuracy 
(EuroSAT)

Neural Network 99.30 99.22 97.24
Random Forest 99.64 99.62 98.24
Logistic Regression 97.05 92.17 84.31
Support Vector Classifier 85.80 55.44 65.37

Table 4. Algorithm training time in the absence of noise.

Algorithm
Training Time (s) 

(SAT-6)
Training Time (s) 

(SAT-4)
Training Time (s) 

(EuroSAT)

Neural Network 251 214.87 22.74
Random Forest 84 186 7.66
Logistic Regression 46.9 18.09 4.61
Support Vector Classifier 197 127.33 1.95
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that was previously used for the calculation of the Distance Ratio in Equation 
(5). This way, the noise is reflects an error that would be done by a human 
labeler with higher probability. 

DistanceRatio ¼
MinimumInterClassNeighbourDistance
MinimumIntraClassNeighbourDistance

(5) 

Result Analysis

Model Comparison with Clean Labels

In the absence of any label noise, all the machine learning algorithms showed 
very good accuracy, except for the Support Vector Classifier (SVC). Although 
other algorithms showed 97–99% accuracy on the test data, the highest 
accuracy of the SVC was 85% for the SAT-6 dataset. A comparative perfor-
mance of the models in the absence of noise is shown in Tables 3 and 4. From 
the result, the Random Forest and the Neural Network models are found to be 
the best in terms of accuracy, followed by Logistic Regression. Moreover, the 
Logistic Regression algorithm is very fast to train and training the Neural 
Network model is found to be the slowest.

Analysis with NCAR Label Noise

Accuracy Analysis
In the presence of up to 20% NCAR label noise, the most robust classification 
algorithm was found to be the Random Forest Classifier (Figure 8). The test 
accuracy of the algorithm was a consistent 99.60% to 99.67% on the SAT-6 
dataset, 99.44% to 99.65% on the SAT-4 dataset and 97.78% to 98.41% on the 
EuroSAT dataset with a mean accuracy of 98.94% to 99.24%. The accuracy of 
the Neural Network algorithm under various degree of NCAR label noise is 
quite to that as well. In addition to that, the network size of a neural network 
model is fixed irrespective of the ratio of label noise present in the dataset. This 
noise independence makes it attractive to certain implementations where 
model size is a concern. The Logistic Regression Classifier used in our experi-
ment showed a slight decrease in accuracy when faced with up to 20% NCAR 
label noise (from 90.89% to 88.31%).

The Support Vector Classifier used in our experiment showed very high 
sensitivity to NCAR noise. Even a 2% noise set the test accuracy off to about 
15%. With more regularization (C = 0.2) the model showed some performance 
improvement (around 25% accuracy) but it was also taking a high amount of 
time to converge. As such, we did not further investigate the algorithm for 
higher noise percentage.
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Model Complexity Analysis
One key effect of training data label noise is its effect on the model complexity 
or training time. In respect of accuracy, the Random Forest algorithm showed 
the best result under NCAR label noise. However, the maximum and average 
depths of the decision trees inside the random forests were getting consider-
ably larger in the presence of noise. As such, the training time requirement was 
also increasing with noise during our experiment. A comparison of mean 
depth of the random forest trees and maximum tree depth with respect to 
various amount of NCAR label noise percentage are shown in Figure 9.

For the Neural Network models, once the training is completed, the model 
size is always fixed and irrespective of the dataset properties. However, the 
number of epochs required for the network to converge can vary depending on 
label noise. However, in our experiment with moderate label noise (up to 20%) 
the training process proceeded uniformly. As such we did not find any 
significant deviation in neural network model training complexity which 
could be attributed to the presence of label noise.

Logistic Regression classifier models were much faster to train compared to 
the Random Forest and Neural Network models. Complexity wise, they did 
not show too much sensitivity to the presence of label noise as well.

Analysis with NAR Label Noise

The NAR noise model in our study is evaluated by injecting up to 20% label 
noise to different class labels and comparing the effect on mean accuracies and 
other model parameters. By taking average of the resulting values for different 
percentage of noise, we have compared the individual algorithms’ perfor-
mance under the NAR label noise.

The effect of NAR noise on the three classifiers is presented in Figure 10. It 
is seen from the figure that the mean accuracies of the three algorithms 
exposed to various degree of NAR label noises were pretty stable.

As in the case of NCAR noise, the mean and max tree depths of the RF 
classifiers gradually increase under NAR noise (Figure 11). However, the noise 
have not affected the training time or model convergence time for the Neural 
Network and Logistic Regression classifiers.

Model Analysis with NNAR Label Noise

In our study, the NNAR noise applied on the EuroSAT dataset training labels 
exhibits a stronger effect on the machine learning models in comparison to the 
previous two noise models (Figure 12). The Random Forest model, in presence 
of 20% NNAR noise is showing only 87.56% accuracy while it was 98.15% for 
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20% NAR noise and 97.78% under for 20% NCAR noise. The neural net model 
is also showing almost a similar result. However, it is understandable because 
the NNAR noise is applied on the boundary instances.

Discussion

The results of our experiments indicate that Random Forest is the preferred 
classifier under small to moderate level of label noise where accuracy is the 
primary concern. However, as the forest tree sizes grow quite rapidly with the 
increase of noise, and we know that the size of a decision tree increases 
exponentially along with its depth, implementing Random Forest models in 
a limited memory scenario could be a concern.

The Back-propagation Neural Network is found almost as good as the 
Random Forest classifier with the added advantage of a minute and fixed 
model size; which makes it suitable where memory limit is a concern. One vs. 
Rest (OVR) Logistic Regression is found to have lower accuracy compared to 
Random Forest and Neural Network. On the upside though, the Logistic 
Regression models took relatively less time to train and hence, can be suitable 
for some limited processing power environments such as online learning.

It is found that the NNAR type of noise negatively affected the training 
accuracy the most. In our noise injection process for NNAR, we specifically 
changed the labels of the boundary instances (pre-selected) to the closest 
alternate class labels which made the model generalization most difficult.

Figure 8. Mean accuracy of the algorithms under NCAR label noise.
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Conclusion

In this study, varying degree of artificial label noise (NCAR, NAR and NNAR 
noise models) is applied on three labeled satellite image datasets. The effect of 
this label noise on three machine learning based Image Classification algo-
rithms (Back-propagation Neural Network, Random Forest and Logistic 
Regression) are then assessed. The step by step incremental noise injection 
and comparison method applied in our study can be applied to other datasets 

Figure 9. Mean and max depth of the random forest trees under NCAR noise.

Figure 10. Effect of NAR noise on the three algorithms.
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and fields of study where there is a high probability of label noise present on 
the data and different artificial intelligence techniques are used to train on 
those data.

As a future work, we want to experiment the effect of label noise on various 
model regularization methods. We also want to explore other forms of label 
noises and analyze algorithm performances. In this study we utilized a fixed set 
of handpicked features. In the future we want to use CNN based automatic 
feature extraction methods, and assess the model performances in both noisy 
and noiseless scenarios.

Figure 11. Effect of NAR noise on the Random Forest Classifier complexity.

Figure 12. Effect of NNAR noise on the classification algorithms.
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